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Abstract 
A plasmonic effect of silver nanoparticles (AgNPs) in dye-sensitized solar 
cells (DSSCs) is studied. In this investigation, the efficiency of dye-sensitized 
solar cells has been remarkably increased by infusion of synthesized silver 
nanoparticles into the TiO2 photoanode. Rhodaminederivative RdS1 was 
synthesized by microwave-assisted condensation of hydrazide and 3-for- 
mylchromone. The synthesized silver nanoparticles were characterized with 
UV/Vis absorption spectroscopy and transmission electron microscopy. The 
interfacial charge transport phenomena of the dye-sensitized solar cell 
(DSSCs) are determined by electrochemical impedance spectroscopy and the 
corresponding efficiencies are calculated using current-voltage (I-V) curve. 
The solar cell photoanode with silver nanoparticles infused with RdS1 in tita-
nium dioxide had the highest solar-to-electric power efficiency at 0.17%. 
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1. Introduction 

Dye-sensitized solar cells (DSSCs) have received widespread application due to 
their low cost, lightweight, low toxicity, ease of fabrication, customizable design 
with flexibility, and good performance under diverse illumination [1] [2]. Many 
technological innovations have been developed to improve the efficiency and, at 
the same time, to reduce the cost of production ranging from interfacial modifi-
cation [3] to material choices and engineering [4]. The number of studies fo-
cused on the large-scale production of DSSCs, and optimization has grown ex-
ponentially. A photosensitizing dye is used in DSSCs to convert solar energy into 
electrical energy. A typical DSSC consists of a dye-adhered nanocrystalline TiO2 
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photoanode on a Fluorine-doped Tin Oxide (FTO) substrate, counter elec-
trode, and an electrolyteiodide/triiodide (I−/ 3I

− ) [5]. Distinct types of dye have 
been used to fabricate DSSCs with varying solar-to-electricity conversion effi-
ciencies, and some among them are rhodamine dyes [6] [7]. The incorporation 
of plasmonic metal nanoparticles into the electrode of the dye-sensitized solar 
cells to boost the light absorption due to their localized surface plasmon effect 
has been very outstanding [8] [9]. When light interacts with the free electrons 
of the metal nanoparticles, surface plasmon resonance (SPR), a property of 
metal nanoparticles, is created. Thus, incorporating Silver Nanoparticles (AgNPs) 
increase light absorption in the photo-anode layer of dye-sensitized solar cells. 
Rhodamine is a reasonably priced broad band photosensitizer with good visi-
ble and near-infrared absorption spectra, and it has the essential characteris-
tics needed to function as a photosensitizer. The long absorption and emission 
wavelengths, high fluorescence quantum yield, high extinction coefficient, and 
outstanding photostability of rhodamine dyes also make Rhodamine ideal for 
use in fluorescent sensor fabrication [10] [11]. 

In the present work, we report the synthesis of plasmonic silver nanopar-
ticles and their application in TiO2 photoanode for enhancing the performance 
of DSSCs. The performance of DSSCs with and without AgNPs were compared 
and there was found to be improved efficiency for DSSCs with silver nanopar-
ticles. 

2. Experimental Details 
2.1. Materials and Methods 

All the reagents and solvents were acquired from Sigma-Aldrich, including 
3-formylchromone, Rhodamine-6G, hydrazine hydrate (85%), silver nitrate, so-
dium borohydride, acetic acid, ethanol, acetone, and iodide/triiodide electrolyte. 
Water-based colloidal graphite used in making the counter electrode was pur-
chased from Electron Microscopy Sciences (EMS). The titanium dioxide (TiO2) 
film was prepared with Titanium (IV) oxide, anatase (<25 nm) powder pur-
chased from Sigma-Aldrich. The conducting fluorine-doped tin oxide (FTO) 
glass (50 mm × 50 mm × 2.2 mm) was obtained from Sigma-Aldrich. 

The performance of the solar cell was evaluated using a 150 W fully reflective so-
lar simulator with a standard illumination of air-mass 1.5 global (AM 1.5 G filter) 
having an irradiance of 100 mW/cm2 (Sciencetech Inc, London, Ontario, Canada). 
An Interface1010E potentiostat/galvanostat/ZRA used for current, voltage, and 
impedance measurements were purchased from GAMRY Instruments (Warmin-
ster, PA, USA). The particle size and surface morphology of the synthesized-silver 
nanoparticles and silver-nanoparticle-infused titanium dioxide were examined with 
a JEOL transmission electron microscope with an accelerating voltage of 120 KV 
and a LaB6 electron gun (MA, USA). All absorption and fluorescence spectra were 
recorded using an Agilent Cary 60 UV/Vis absorption spectrometer and a Cary Ec-
lipse fluorescence spectrophotometer, respectively. 
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2.2. Synthesis and Characterization of Silver Nanoparticles 

Silver nanoparticles (AgNPs) were prepared following a previously reported 
method [12] using sodium borohydride (NaBH4) to reduce silver nitrate (Ag-
NO3). Briefly, silver nanoparticles (1 mM) and sodium borohydride (2 mM) so-
lutions were prepared in ice-chilled pure water. The two solutions were mixed 
slowly with constant stirring, and a yellowish color solution appeared. The mix-
ture was cooled for 20 minutes in ice bath, where the ice bath is used to slow 
down the reaction and give better control over final particle size/shape. Silver 
ions were reduced and clustered to form monodispersed nanoparticles as a 
transparent solution in the aqueous medium. The silver nanoparticle was cha-
racterized by UV-V spectroscopy (Agilent Cary 60 UV/Vis’s) and High Resolu-
tion-Transmission Electron Microscopy (120 KV JEOL). 

2.3. Fabrication of the Dye-Sensitized Solar Cells 

The titanium dioxide paste was prepared by mixing TiO2 powder (1 g), ethylene 
glycol (1 mL), and glacial acetic acid (3 mL). Silver nanoparticle-based titanium 
dioxide paste was prepared by mixing TiO2 powder (1 g), ethylene glycol (1 mL), 
and silver nanoparticle (3 mL) [13] [14] [15]. The anode was prepared by sub-
sequently administering TiO2 paste via the doctor-blade method, using a glass 
rod and adhesive tape to form a 2 × 2 cm rectangle, on the conductive surface of 
the FTO glass [16]. The FTO glass was air dried for 10 min and then annealed at 
450˚C for 30 min. The annealed titanium dioxide was immersed in RdS1 solu-
tion overnight. To prepare the cathode, colloidal graphite was applied to the 
conductive surface of the FTO glass and then dried at 80˚C for 10 min [17]. The 
components of the DSSC were assembled by fitting the TiO2-coated FTO glass 
on top of the colloidal graphite-coated FTO glass, followed by the introduction 
of redox iodide/triiodide electrolyte solution. The electrolyte was dropped be-
tween the photoanode and counter electrode and allowed to spread down by ca-
pillary action. The systematic complete assembly of a plasmonic DSSC and 
energy diagram is shown in Figure 1 (Scheme 1, Scheme 2). 

2.4. Microwave-Assisted Synthesis of RdS1 

Rhodamine hydrazide intermediate was synthesized according to Yang’s method 
[18]. A mixture of rhodamine hydrazide intermediate (100 mg, 0.21 mmol), 
Chrome-3-carboxaldehyde (22 mg, 0.04 mmol) and 2 mL of ethanol was placed 
in a microwave vessel (Scheme 1). The resulting mixture was stirred and placed 
in a reactor. The reaction vessel was then run under pressure and irradiation at a 
specific temperature and time. After cooling, the reaction mixture was filtered 
and washed with cold ethanol. After drying, the solid product was isolated, and 
obtained, yield 80%. 1H-NMR (d6-DMSO), δ (ppm): 8.5 (s, 1H), 8.4 (s, 1H), 8.0 
(m, 1H), 7.9 (m, 1H), 7.71 (m, 1H), 7.60 (m, 3H), 7.50 (m, 1H), 7.00 (d, 1H), 6.27 
(s, 2H), 6.10 (s, 2H), 5.01 (s, 2H, -NH), 3.14 (t, 4H, NCH2CH3), 1.87 (s, 6H, -CH3), 
1.21 (t, 6H, NCH2CH3). 13C-NMR (DMSO), δ (ppm): 165.23, 152.07, 151.33,  
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Figure 1. Schematic of a plasmonic DSSC. 

 

 
Scheme 1. Microwave-assisted synthesis of compound RdS1. 

 

 
Scheme 2. Synthesis of complex RdS1-Cu2+. 
 
147.35, 132.31, 129.48, 128.00, 127.01, 123.43, 122.13, 117.79, 104.99, 95.85, 
64.96, 55.99, 37.45, 18.53, 17.06, 14.20. HRMS (MALDI): m/z Calcd for S1 (M + 
1): 585.2496; Found: 585.2504. 

3. Results and Discussion 
3.1. Optical Properties of Silver Nanoparticles and Dye 

The optical property of synthesized silver nanoparticles was characterized by 
UV-Vis spectroscopy and high resolution-transmission electron microscopy 
(HR-TEM). The absorption spectra of the synthesized silver nanoparticles are 
shown in Figure 3(a). The absorption band at about 400 nm is apparently due to 
the surface plasmon resonance (SPR) band of the Ag nanoparticles, and so, it 
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confirms the presence of the silver nanoparticles (AgNPs). The SPR results from 
the interaction of free electrons and electromagnetic radiation [19] reported that 
rhodamine 6G dyes can form dimers on the AgNPs surface which is related to 
localized surface plasmon resonance. This phenomenon enhances the absorption 
coefficients of the dye and optical absorption, which results in an increase in the 
efficiency of the solar cell [20] [21]. The AgNPsas well as the AgNPs-infused 
TiO2 were characterized by transmission electron microscopy (TEM). The TEM 
allows for the visualization of the individual nanoparticles. The TEM images of 
the AgNPs with TiO2 showed a close interaction of the AgNPs with TiO2. The 
sizes of the AgNPs and titanium dioxide were similar, which accounts for the 
excellent interaction between the nanoparticles. The energy disperses X-ray 
spectrometry of the sample confirmed the presence of copper (Cu), carbon (C), 
and silver (Ag). The high percentage of copper in the spectrum is due to the 
copper TEM grid used for mounting the AgNPs sample. The carbon signal 
should come from the carbon-supporting film on the copper grid. The images of 
the analysis are displayed in Figure 2. 

The optical property of rhodamine derivative RdS1 was investigated using 
UV/Vis absorption and fluorescence spectroscopy. The dye solution showed no 
absorption above 400 nm, as shown in Figure 3(b), which is typical for the most 
prominent ring-closed form of rhodamine derivatives [22]. The UV/Vis spec-
trum of RdS1 was recorded in buffer at 25˚C and showed an absorption maxi-
mum at λ = 305 nm, which is attributed to the intramolecular π-π* charge 
transfer transition. Upon addition of copper(II) ion, the absorption peak at 300 
nm decreased, and a new absorption band appeared at 525 nm, which can be at-
tributed to the delocalized xanthene moiety of rhodamine and coordination of 
copper ion, as shown in Figure 3(c). As demonstrated in Scheme 2, a mono-
meric system forms a 1:1 complex. The dye RdS1 exhibited similar fluorescence 
spectroscopic properties upon binding with Cu2+. As shown in Figure 3(d), the 
fluorescence emission for RdS1 appeared at 560 nm and as well as significant 
fluorescence intensity enhancement with 5 equivalents of Cu2+ ions. 

3.2. Photovoltaic Performance of the DSSCs 

The current-voltage (I-V) characteristics were measured to study the photoelec-
tric performance of both the bare and plasmonic silver nanoparticles (AgNPs) 
incorporated dye-sensitized solar cells (DSSCs). The photovoltaic performances 
of the cells were determined via the measurements of maximum voltage (Vmax), 
maximum current (Imax), open-circuit voltage (Voc), short-circuit current (Isc), 
fill factor (FF), and the power conversion efficiency (η) of the cell. By measuring 
the current and voltage of the constructed device, it was possible to determine 
the solar-to-electric power efficiency of the dye-sensitized solar cells [23]. The 
dye-sensitized solar cell device efficiency was calculated from Figure 4 using the 
equation, where Pmax and Pin denote the maximum output power and intensity of 
the incident light, respectively. 
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Figure 2. Transmission electron microscope images of silver nanoparticles (AgNPs) (a); AgNPs along with tita-
nium dioxide nanoparticles (b); and energy-dispersive X-ray spectrometry analysis of AgNPs (c). 

 

 
Figure 3. (a) Absorption spectra of Silver Nanoparticles (AgNPs); (b) UV/Vis absorption spectra of free dye RdS1, 
(c) UV/V is absorption spectra of RdS1-Cu2+; (d) Fluorescence emission spectra of RdS1-Cu2+ in CH3CN/H2O 
(9:1 v/v) buffer solution (λmax = 490 nm). 
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Figure 4. Current-voltage characteristics of the RdS1 dye-sensitized solar cell measured 
under air-mass 1.5 global (AM 1.5 G) illumination having an irradiance of 100 mW/cm2. 
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The solar-to-electric power conversion efficiency of the rhodamine dye-fabricated 
device was compared to the efficiencies of rhodamine-fabricated devices with sil-
ver nanoparticles incorporated DSSCs. Table 1 and Figure 4 show the cur-
rent-voltage curves of the free rhodamine dye (RdS1), rhodamine-copper(II) 
complex (RdS1-Cu2+), rhodamine with AgNPs (RdS1 + AgNPs), rhoda-
mine-copper(II) complex with AgNPs (RdS1-Cu2+ + AgNPs). An increase in 
electric power efficiency was observed after the rhodamine dye RdS1 was made 
to interact with AgNPs. The efficiency of the device with RdS1 alone was 0.06% 
but increased to 0.17% after the addition of AgNPs. However, the so-
lar-to-electric power efficiency of the device decreased to 0.08% with the intro-
duction of AgNPs to the dye-copper(II) complex. Thus, the introduction of sil-
ver nanoparticles enhanced the light absorption abilities of the dye which con-
sequently led to an increase in the efficiencies of dye-sensitized solar cells. The 
enhanced photovoltaic performance could be attributed to the plasmonic effect 
of the silver nanoparticles that result in a swift transfer of an electron from the 
AgNPs to the TiO2 [24]. 

3.3. Electrochemical Impedance Measurements 

The interfacial charge mechanisms of the DSSCs were addressed using electro-
chemical impedance spectroscopy (EIS). Impedance measurements were carried 
out on the fabricated DSSCs at frequencies between 1 Hz and 106 Hz under 100 
mW/cm2 illumination. Figure 5(a) shows the EIS-Nyquist plots of fabricated 
DSSCs. The semicircle in the high-frequency region corresponds to charge  
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Table 1. Photovoltaic performance of DSSCs with and without silver nanoparticles 
(AgNPs). 

 
Vmax 
(V) 

Imax 

(mA/cm2) 
Voc  
(V) 

Isc 
(mA/cm2) 

Fill 
Factor 

Efficiency 
(%) 

RdS1 0.15 0.4 0.28 0.79 0.28 0.06 

RdS1-Cu2+ 0.14 0.71 0.20 0.98 0.49 0.10 

RdS1 + AgNPs 0.24 0.52 0.36 0.84 0.40 0.17 

RdS1-Cu2+ + AgNPS 0.13 0.63 0.20 1.02 0.40 0.08 

 

 
Figure 5. (a) Nyquist plot of the RdS1 dye-sensitized solar cell measured under air-mass 
1.5 global (AM 1.5 G) illumination having an irradiance of 100 mW/cm2; (b) Equivalent 
circuit model for EIS studies. 

 
transport resistance (Rct1) at the I−/ 3I

−  graphite interface, and semicircle in the 
middle-frequency region is attributed to charge transport resistance (Rct2) at the 
TiO2/RdS1 I−/ 3I

−  interface. An equivalent circuit model of the EIS studies is 
shown in Figure 5(b). Faster electron transfer rates are associated with smaller 
resistances, which then result in improved efficiency of the DSSC. Conversely, 
larger resistances hinder the flow of electrons, thus reducing the performance of 
the DSSC [25]. From the Bode plots of Figure 6, the electron lifetimes (τ) of the 
DSSCs created were assessed. The electron lifetimes are inversely proportional to 
the peak frequency, as shown in the formula. The formula τ = 1/(2πf), where f is 
the peak frequency associated with the charge transfer and recombination kinet-
ics at the sensitizer adsorbed photoanode/electrolyte interface, the lifetimes (τ) 
of RdS1, RdS1-Cu2+, RdS1 + AgNPs, and RdS1-Cu2+ + AgNPs were calculated 
to be 3.19, 4.00, 5.00, and 2.51 ms respectively. The fabricated DSSC with RdS1  
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Figure 6. Bode plot of the RdS1dye-sensitized solar cell measured under air-mass 1.5 
global (AM 1.5 G) illumination having an irradiance of 100 mW/cm2. 
 
Table 2. Peak frequency and lifetimes of the fabricated DSSCs. 

 
fmax (Hz) τ (ms) Efficiency (%) 

RdS1 49.86 3.19 0.06 

RdS1-Cu2+ 39.72 4.00 0.10 

RdS1 + AgNPs 31.88 5.00 0.17 

RdS1-Cu2+ + AgNPs 63.34 2.51 0.08 

 
+ AgNPs having a higher electron lifetime compared to the DSSC devices agrees 
with the I-V measurements of the open-circuit voltage (Voc) of the solar cells, 
which leads to the higher efficiency of the dye-sensitized solar cell. The peak 
frequency and lifetime of each fabricated DSSCs is summarized in Table 2. 

4. Conclusion 

In summary, Ag infused TiO2 nanoparticles were prepared by sodium borohy-
dride assisted simple reduction method. Through current-voltage (I-V) mea-
surements, it was determined that the solar-to-electric power efficiency of solar 
cells sensitized with AgNPs infused in TiO2 lattice was higher than the efficiency 
of devices without AgNPs. Electrochemical impedance (EIS) measurement re-
veals more efficient charge transportation and reduced recombination with 
AgNPs infusedTiO2 based devices compared to bare TiO2 based devices. The 
enhanced performance of the dye sensitized solar cell could be attributed to the 
plasmonic effect of the AgNPs. The study shows that the plasmonic nanopar-
ticles can serve as an efficient material for future use in DSSCs. 
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