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Abstract 
Cathodic arc evaporation is a well-established physical vapor deposition 
technique which is characterized by a high degree of ionization and high de-
position rate. So far, this technique has been mainly used for the deposition of 
tribological coatings. In this study, anti-corrosive and electrical conductive 
carbon-based coatings with a metallic interlayer were prepared on stainless 
steel substrates as surface modification for metallic bipolar plates. Hereby, the 
influence of the deposition temperature during the deposition of the carbon 
top layer was investigated. Raman spectroscopy revealed differences in the 
microstructure at 200˚C compared to 300˚C and 100˚C. Measurements of the 
interfacial contact resistance showed that the deposited coatings significantly 
improve the electrical conductivity. There are only minor differences between 
the different carbon top layers. The corrosion resistance of the coatings was 
studied via potentiodynamic polarization at room temperature and 80˚C. 
Experiments showed that the coating with a carbon top layer deposited at 
200˚C, considerably reduces the current density and thus corrosion of the 
substrate is suppressed. 
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1. Introduction 

In consideration of the high energy demand, the development of efficient and 
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eco-friendly energy systems is crucial [1]. Polymer electrolyte membrane fuel 
cells (PEMFC) exhibit good efficiency and high user convenience, including long 
travel distances and fast refuelling cycles, rendering them as a key technology 
towards climate-friendly mobility [2] [3]. The bipolar plate (BPP) is an impor-
tant component of a PEMFC since it is responsible for the distribution of hy-
drogen and oxygen, cooling and electrical connection. Thus, it must fulfill a va-
riety of requirements such as good mechanical stability, high corrosion resis-
tance and good electrical as well as thermal conductivity. Austenitic stainless 
steel is a potential material candidate to replace the graphite and composite bi-
polar plates. Especially, 316L stainless steel exhibits a promising combination of 
properties [4] [5] [6] [7]. However, the native oxide reduces the electrical con-
tact to the adjacent gas-diffusion layer (GDL) and the steel corrodes in the harsh 
PEMFC operating conditions [8] [9]. The interfacial contact resistance (ICR) 
between the BPP and GDL can significantly affect the efficiency of a fuel cell 
stack, because it contributes to a great extent to the ohmic resistance in a fuel cell 
[10] [11] [12]. Due to the corrosion, harmful metal ions can be released and 
contaminate the membrane reducing the longevity of PEMFCs [13] [14]. 

In order to prevent corrosion and simultaneously increase the electrical con-
ductivity, a variety of BPP surface modifications were studied such as pure me-
tallic and various metallic compounds [8] [15]-[20] as well as different carbon- 
based thin films [21]-[28] as either single or multi layer coatings. Hereby, car-
bon-based coatings exhibit excellent properties such as high chemical inertness 
and low electrical resistance [29]. However, the thin films are usually produced 
by balanced or unbalanced magnetron sputtering and (plasma-enhanced) chem-
ical vapor deposition which have a low ionization and deposition rate. In this 
context, cathodic arc evaporation which is a well-established physical vapor de-
position (PVD) method for tribological carbon coatings, has favorable proper-
ties, e.g. generation of a highly ionized plasma and fast deposition rate [30] [31]. 
Additionally, the deposition temperature is an important parameter which can 
significantly affect the properties of a PVD coating [32]. 

In this study, we investigate the electrical and electrochemical properties of 
carbon-based coatings on 316L stainless steel (SS316L) substrates depending on 
the deposition temperature. Three different carbon thin films were prepared by 
varying the temperature during the deposition. All samples have the same metal-
lic interlayer. 

2. Experimental  
2.1. Materials 

Austenitic stainless steel (SS316L) of 0.1 mm thickness was used as substrate 
material. The specimens were cleaned with distilled water, methanol and then 
dried with nitrogen prior to deposition. For the deposition of the carbon-based 
coatings, a cathodic arc deposition system was used. The base pressure of the 
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vacuum chamber was set at 10−4 Pa. Before coating, the native oxide layer of the 
steel substrates was removed by a plasma etching process. A chromium interlay-
er was deposited on the cleaned substrates, from a pure chromium target (99.99%), 
at a chamber temperature of 300˚C and pressure of approximately 10−1 Pa. Af-
terwards, three different carbon top layer variants were deposited from a 99.99% 
graphite target in the deposition temperature range between 300˚C and 100˚C. 
Bias voltage of several hundred of volts and pressure of approximately 10−1 Pa 
were kept constant for all carbon thin films. The total thickness, measured by 
X-ray reflectivity, of the deposited thin films was approximately 60 - 66 nm. 

2.2. Characterization Methods 

Raman spectroscopy was used to evaluate the microstructure of the deposited 
thin films. The measurements were done with a Renishaw inVia and an excita-
tion laser of 514 nm wavelength. For the evaluation of the D peak and G peak, a 
Lorentzian and a Breit-Wigner-Fano function were used, respectively. 

The interfacial contact resistance was determined similar to the procedure de-
scribed from Davies et al. [4] and Wang et al. [5]. In brief, the measurement se-
tup consits of a tensile tester for applying the compaction force and an electrical 
circuit attached to two gold-coated copper blocks with two GDL sheets and a 
sample in-between. The total resistance of the assembly is measured by an 
ohmmeter. By measuring the contact resistance of one GDL sample, which is al-
so used for calibration, one can calculate the individual contact resistance of the 
sample. For the measurements the compaction force ranged from 25 to 200 
N·cm−2. 

Corrosion resistance was investigated by potentiodynamic polarization tests in 
0.5 M H2SO4 solution at room temperature and 80˚C. For this purpose, a Metrohm 
Autolab PGSTAT302N potentio-/galvanostat was used with a three-electrode 
setup including a graphite rod as counter electrode, a Ag/AgCl reference and the 
sample as working electrode. Before the potentiodynamic tests, the open circuit 
potential was recorded for a duration of 1 h. The measurements were performed 
between −0.5 to 1.5 V vs. standard hydrogen electrode (SHE) at a scan rate of 
0.001 V·s−1. 

3. Results and Discussion  
3.1. Material characterization 

Raman spectra of carbon films are mainly composed of two broad peaks at around 
1350 cm−1 and 1580 - 1600 cm−1, namely D and G peak, respectively. The G peak 
(graphite) is related to the graphite lattice and the bond stretching of all sp2 
atoms, and the D peak (defect) results from the breathing modes of carbon rings 
and defects in the graphite crystalline structure [33]. Figure 1 shows the recorded 
Raman spectra of the deposited thin films. Whilst, the films deposited at 300˚C 
and 100˚C exhibit similar spectra and have pronounced D and G peaks (see 
Figure 1(a)), the 200˚C carbon thin film only has small peaks (see Figure 1(b)).  
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Figure 1. (a) Raman spectra of the coated samples with a carbon top layer deposited at 300˚C, 200˚C and 100˚C. (b) Enlarged 
Raman spectrum of the coated sample with a carbon top layer deposited at 200˚C. 

 
The shape of this Raman spectrum corresponds to a more disordered structure 
as described by Onoprienko et al. [34] and Chung et al. [35]. 

The full width half maximum (FWHM) and position of the G peak are asso-
ciated with disorder in the film structure, i.e. distortion of bond length and angle 
in six-fold carbon rings which originates from poor graphitic in-plane ordering 
[36] [37]. Additionally, higher D GI I  and G peak position indicates a higher 
sp2 content in the material. According to Table 1, the carbon top layers depo-
sited at 300˚C and 100˚C are likely to exhibit a similar microstructure. In com-
parison to that, the 200˚C carbon thin film has a significantly higher intensity 
ratio D GI I  of 1.59 and G peak position. Moreover, the FWHM of the G peak 
is the lowest of the samples and together with the other Raman parameters this 
indicates that the carbon top layer deposited at 200˚C might have a different mi-
crostructure but still a very high sp2 content. This is in good agreement with the 
evaluation of carbon Raman spectra from Ferrari et al. [33] [36] [38]. 

J. Robertson [30] reported that for G peak FWHM values above 50 cm−1 the 
graphite crystallites are less than or equal to 2 nm in size. In this region it is 
possible to determine the grain size aL  by 

2
D G aI I cL=                          (1) 

where aL  is in Å and c is a constant approximately equal to 0.0055 [36]. Thus, 
the carbon thin films in this work have a grain size of 1.34 nm, 1.70 nm and 1.32 
nm, respectively. Based on the results, the deposited carbon top layers can be 
classified as graphite-like carbon or nano-crystalline carbon with probably up to 
100% sp2 content. 

3.2. Interfacial Contact Resistance 

The interfacial contact resistance between the metallic BPP and the GDL has a 
significant impact on the achieved electrical power (output) of a PEMFC. Hence, 
a low ICR is necessary for bipolar plates and corresponding surface modifica-
tions. Figure 2 shows the ICR as a function of the applied compaction force for  
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Table 1. Raman parameters of the coated samples with a carbon top layer deposited at 
300˚C, 200˚C and 100˚C. 

Carbon deposition 
temperature D GI I  G peak position 

(cm−1) 
FWHM G (cm−1) FWHM D (cm−1) 

300˚C 0.99 1593 141 277 

200˚C 1.59 1601 107 353 

100˚C 0.96 1594 128 200 

 

 
Figure 2. Interfacial contact resistance as a function of applied compaction force of the 
bare SS316 substrate and the coated samples with a carbon top layer deposited at 300˚C, 
200˚C and 100˚C. 
 
the carbon-based coatings depending on the carbon deposition temperature. Up 
to a compaction of 100 N/cm2, the contact resistance rapidly decreases because 
of the constant increase in the contact area between the GDL and the specimen. 
The bare SS316L substrate exhibits the highest ICR values which can be attri-
buted to the native oxide layer. This underlines the need for highly conductive 
coatings. By applying a carbon-based coating, the ICR is reduced by more than 
two orders of magnitude. There are only small differences between the carbon 
layers deposited at different temperatures. However, the sample with a carbon 
top layer deposited at 200˚C has the highest resistance in the measurement 
range. Still, all carbon-based coatings more than fulfill the criteria, released by 
the U.S. department of energy, of 10 mΩ·cm2 [39] and achieve values less than 2 
mΩ·cm2 at 150 N/cm2. 

3.3. Potentiodynamic Polarization 

The potentiodynamic polarization curves of all specimens at room temperature 
in 0.5 M H2SO4 are depicted in Figure 3. The bare SS316L substrate has the lowest  
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Figure 3. Potentiodynamic polarization curves of the bare SS316 substrate and the coated samples with a carbon top layer depo-
sited at 300˚C, 200˚C and 100˚C. The tests were conducted in 0.5 M H2SO4 at room temperature (left) and 80˚C (right) bubbled 
with argon. 

 
Table 2. Corrosion parameters of bare SS316L and the coated samples with a carbon top 
layer deposited at 300˚C, 200˚C and 100˚C. The experimental conditions were 0.5 M 
H2SO4 at room temperature and 80˚C bubbled with argon. 

Sample 
RT 80˚C 

corrE  (V) corrj  (A·cm−2) corrE  (V) corrj  (A·cm−2) 

SS316L −0.118 1.76 × 10−5 −0.039 1.55 × 10−4 

300˚C −0.037 2.58 × 10−7 −0.060 3.33 × 10−5 

200˚C −0.028 3.46 × 10−9 −0.067 3.34 × 10−5 

100˚C −0.079 4.84 × 10−6 −0.044 5.98 × 10−5 

 
corrosion resistance and thus the highest corrosion current corrj  of approx. 1.8 
× 10−5 A·cm−2 (see Table 2). At around 0 V the formation of a protective oxide 
layer begins, which can be seen by the strong oxidation peak. Up to a potential of 
1.2 V, the stainless steel remains inert in the environment and above this poten-
tial the material enters the transpassive state. Here, the dissociation of the elec-
trolyte (i.e. water) occurs as well. This results in a steep increase in the current 
signal which can also be observed for the coated samples. 

The deposition of a carbon-based coating greatly improves the corrosion re-
sistance leading to a significantly lower corrosion current corrj  between 10−6 
and 10−9 A·m−2 (see Table 2). Structural properties such as surface morphology, 
grain size and defects affect the corrosion resistance of a material and thus the 
corrosion current density [40]. Consequently, the microstructure of a surface 
modification, i.e. a PVD coating, is an important parameter. The considerable 
lower current density of the 200˚C carbon top layer can be attributed to its dif-
ferent microstructure compared to the other carbon thin films. 

At an electrolyte temperature of 80˚C, the differences between the polariza-
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tion curves are less distinct except for the sample with a carbon top layer depo-
sited at 200˚C (see Figure 3, right). In general, the increased temperature leads 
to a more aggressive environment and hence more corrosion. This can be seen 
by the clear shift towards higher current densities and thus significantly higher 
corrosion currents corrj  (see Table 2). In the case of the 100˚C carbon top layer, 
the rise in corrj  is particularly pronounced. In contrast, the 200˚C carbon top 
layer still has a very low corrosion current. Again, this is likely due to structural 
differences (see Figure 1) and thus better corrosion protection of the SS316L 
substrate. 

4. Conclusions 

Three multi layer coatings consisting of a metallic interlayer and a carbon top 
layer deposited at different temperatures were prepared in order to investigate 
the influence of the deposition temperature on the electrical and electrochemical 
properties. The coatings were analyzed by Raman spectroscopy, interfacial con-
tact resistance measurements and potentiodynamic polarization tests in 0.5 M 
H2SO4. 

The material analysis revealed that the carbon top layers deposited at 300˚C 
and 100˚C likely have a similar microstructure because of comparable Raman 
parameters such as intensity ratio D GI I  and G peak position. Due to the sig-
nificantly higher D GI I  of 1.59 and low FWHM G of 107, it is likely that the 
200˚C carbon thin film exhibits differences in the microstructure. The shift of G 
peak position to approximately 1600 cm−1 and larger crystallite size aL  of 1.7 nm, 
compared to 1594 cm−1 and 1.3 nm, respectively, indicate a structural change. 

The uncoated substrate exhibits the highest interfacial contact resistance of all 
samples due to the native oxide layer. By applying a carbon-based coating, the 
resistance is significantly reduced. There are only minor differences between the 
different carbon top layers. However, the carbon thin film deposited at 200˚C 
exhibits the highest resistance values among the coated samples. Still, all have an 
ICR lower than 2 mΩ·cm2 at 150 N·cm−2, which is well below the DOE criteria of 
10 mΩ·cm2. 

A significant improvement of corrosion resistance due to the application of a 
carbon-based coating can be observed in the polarization curves. Here, the 200˚C 
carbon top layer exhibits the lowest corrosion current of below 10−8 A cm−2. In this 
context, the two other coatings with similar Raman parameters have comparable 
electrochemical properties. At an elevated electrolyte temperature of 80˚C, the 
corrosive attack is increased and thus higher current densities can be observed 
for all samples. However, the carbon top layer deposited at 200˚C exhibits still 
the best corrosion protection. 

In general, the results show that carbon-based coatings offer a good corrosion 
protection with excellent electrical conductivity at the same time. It is possible to 
prepare these coatings at low deposition temperatures of 200˚C or even 100˚C, 
which is of great advantage for a future production of coated bipolar plates. 
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However, further investigations regarding the electrochemical properties are re-
quired to increase the service life of a fuel cell. In this context, the microstructure 
of the carbon thin films will be further examined and the development of alter-
native interlayer materials will be considered in future studies. 
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