

Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_8(X,5)$

Nino Tsinaridze

Department of Mathematics, Faculty of Exact Sciences and Education, Batumi Shota Rustaveli State University, Batumi, Georgia Email: n tsinaridze@bsu.edu.ge

Email: n.tsinaridze@bsu.edu.ge

How to cite this paper: Tsinaridze, N. (2024) Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_{s}(X,5)$. Applied Mathematics, **15**, 169-197. https://doi.org/10.4236/am.2024.152010

Received: February 6, 2024 Accepted: February 26, 2024 Published: February 29, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

CC ①

Abstract

In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class $\Sigma_8(X,5)$. Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.

Keywords

Semigroup, Semilattice, Binary Relation

1. Introduction

Let $X \neq \emptyset$, *D* is an *X*-semilattice of unions which is closed with respect to the set-theoretic union of elements from *D*, *f* be an arbitrary mapping of the set *X* in the set *D*. To each mapping *f* we put into correspondence a binary relation α_f on the set *X* that satisfies the condition $\alpha_f = \bigcup (\{x\} \times f(x))$. The set of all such

 α_f is denoted by $B_X(D)$. It is easy to prove that $B_X(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by an *X*-semilattice of unions *D*.

We denote by \emptyset an empty subset of the set *X* or an empty binary relation. The condition $(x, y) \in \alpha$ will be written in the form $x \alpha y$.

Let $x, y \in X$, $Y \subseteq X$, $\alpha \in B_X(D)$, $\breve{D} = \bigcup_{Y \in D} Y$ and $T \in D$. We denote by the symbols $y\alpha$, $Y\alpha$, $V(D,\alpha)$, X^* and $V(X^*,\alpha)$ the following sets:

DOI: 10.4236/am.2024.152010 Feb. 29, 2024

$$y\alpha = \{x \in X \mid y\alpha x\}, Y\alpha = \bigcup_{y \in Y} y\alpha, V(D,\alpha) = \{Y\alpha \mid Y \in D\},\$$
$$X^* = \{Y \mid \emptyset \neq Y \subseteq X\}, V(X^*,\alpha) = \{Y\alpha \mid \emptyset \neq Y \subseteq X\},\$$
$$D_T = \{Z \in D \mid T \subseteq Z\}, Y_T^{\alpha} = \{y \in X \mid y\alpha = T\}.$$

Theorem 1.1. Let $D = \{\overline{D}, Z_1, Z_2, \dots, Z_{m-1}\}$ be some finite X-semilattice of unions and $C(D) = \{P_0, P_1, P_2, \dots, P_{m-1}\}$ be the family of sets of pairwise nonintersecting subsets of the set X (the set \emptyset can be repeated several times). If φ is a mapping of the semilattice D on the family of sets C(D) which satisfies the conditions

$$\varphi = \begin{pmatrix} \breve{D} & Z_1 & Z_2 & \cdots & Z_{m-1} \\ P_0 & P_1 & P_2 & \cdots & P_{m-1} \end{pmatrix}$$

and $\hat{D}_{Z} = D \setminus D_{Z}$, then the following equalities are valid:

In the sequel these equalities will be called formal. The parameters P_i

 $(0 < i \le m-1)$ there exist such parameters that cannot be empty sets for *D*. Such sets P_i are called bases sources, where sets P_j $(0 \le j \le m-1)$, which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a bases source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [1] Theorem 1.1, [2] [3] chapter 11).

Definition 1.1. The representation $\alpha = \bigcup_{T \in D} (Y_T^{\alpha} \times T)$ of binary relation α is called quasinormal, if $\bigcup_{T \in D} Y_T^{\alpha} = X$ and $Y_T^{\alpha} \cap Y_{T'}^{\alpha} = \emptyset$ for any $T, T' \in D$, $T \neq T'$ (see [1] Definition 1.2, [2], [3] chapter 1.1).

Definition 1.2. Let $\alpha, \beta \subseteq X \times X$. Their product $\delta = \alpha \circ \beta$ is defined as follows: $x \delta y$ $(x, y \in X)$ if there exists an element $z \in X$ such that $x \alpha z \beta y$ (see [1] Definition 1.3, [1], chapter 1.3).

Definition 1.3. We say that an element α of the semigroup $B_{\chi}(D)$ is external if $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_{\chi}(D) \setminus \{\alpha\}$ (see [1] Definition 1.1, [2] [3] Definition 1.15.1).

It is well known, that if *B* is all external elements of the semigroup $B_X(D)$ and *B'* is any generated set for the $B_X(D)$, then $B \subseteq B'$ (see [2] [3] Lemma 1.15.1).

2. Result

Let $\Sigma_8(X,5)$ be a class of all X-semilattices of unions, whose every element is isomorphic to an X-semilattice of unions $D = \{T_4, T_3, T_2, T_1, T_0\}$, which satisfies the condition:

$$\begin{split} & T_4 \subset T_2 \subset T_0, \ T_3 \subset T_1 \subset T_0, \ T_4 \setminus T_3 \neq \emptyset, \ T_3 \setminus T_4 \neq \emptyset, \\ & T_2 \setminus T_1 \neq \emptyset, \ T_1 \setminus T_2 \neq \emptyset, \ T_2 \setminus T_3 \neq \emptyset, \ T_3 \setminus T_2 \neq \emptyset, \\ & T_4 \setminus T_1 \neq \emptyset, \ T_1 \setminus T_4 \neq \emptyset, \ T_4 \cup T_3 = T_4 \cup T_1 = T_3 \cup T_2 = T_1 \cup T_2 = T_0 \end{split}$$

(see **Figure 1**). It is easy to see that $\tilde{D} = \{T_4, T_3, T_2, T_1\}$ is irreducible generating set of the semilattice *D*.

Let
$$C(D) = \{P_0, P_1, P_2, P_3, P_4\}$$
 is a family of sets, where $\varphi = \begin{pmatrix} T_0 & T_1 & T_2 & T_3 & T_4 \\ P_0 & P_1 & P_2 & P_3 & P_4 \end{pmatrix}$

is a mapping of the semilattice D onto the family of sets C(D) and

 P_0, P_1, P_2, P_3, P_4 are pairwise disjoint subsets of the set X. Then the formal equalities of the semilattice D have a form:

$$T_{0} = P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4},$$

$$T_{1} = P_{0} \cup P_{2} \cup P_{3} \cup P_{4},$$

$$T_{2} = P_{0} \cup P_{1} \cup P_{3} \cup P_{4},$$

$$T_{3} = P_{0} \cup P_{2} \cup P_{4},$$

$$T_{4} = P_{0} \cup P_{1} \cup P_{3}.$$

$$(2.1)$$

Here the element P_0 is source of completeness and the elements P_4, P_3, P_2, P_1 are basis sources of the semilattice D. Therefore $|X| \ge 4$ since $|P_4| \ge 1$, $|P_3| \ge 1$, $|P_2| \ge 1$, $|P_1| \ge 1$ (see Theorem 1.1).

From the formal Equalities (2.1) immediately follows

$$P_{4} = T_{2} \setminus T_{4}, P_{3} = (T_{2} \cap T_{1}) \setminus T_{3},$$

$$P_{2} = T_{3} \setminus T_{2} = T_{0} \setminus T_{2}, P_{1} = T_{4} \setminus T_{1}, P_{0} = T_{4} \cap T_{3}.$$
(2.2)

2.1. Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_8(X,5)$, When $T_4 \cap T_3 \neq \emptyset$

In the sequel, we denoted all semilattices $D = \{T_4, T_3, T_2, T_1, T_0\}$ of the class $\Sigma_8(X, 5)$ by symbol $\Sigma_{8,0}(X, 5)$, for which $T_4 \cap T_3 \neq \emptyset$. Of the last inequality from the formal Equalities (2.1) of a semilattise D follows that $T_4 \cap T_3 = P_0 \neq \emptyset$, *i.e.* $|X| \ge 5$.

Figure 1. Diagram of the semilattice D.

We denoted by symbols $\mathfrak{A}_4, \mathfrak{A}_3, \mathfrak{A}_2, \mathfrak{A}_1$ the following sets:

$$\begin{split} \mathfrak{A}_{4} &= \left\{ \left\{ T_{4}, T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{4}, T_{3}, T_{1}, T_{0} \right\}, \left\{ T_{4}, T_{2}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{1}, T_{0} \right\} \right\}, \\ \mathfrak{A}_{3} &= \left\{ \left\{ T_{4}, T_{3}, T_{0} \right\}, \left\{ T_{4}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{4}, T_{2}, T_{0} \right\}, \left\{ T_{3}, T_{1}, T_{0} \right\}, \left\{ T_{2}, T_{1}, T_{0} \right\} \right\}, \\ \mathfrak{A}_{2} &= \left\{ \left\{ T_{4}, T_{2} \right\}, \left\{ T_{4}, T_{0} \right\}, \left\{ T_{3}, T_{1} \right\}, \left\{ T_{3}, T_{0} \right\}, \left\{ T_{2}, T_{0} \right\}, \left\{ T_{1}, T_{0} \right\} \right\}, \\ \mathfrak{A}_{1} &= \left\{ \left\{ T_{4} \right\}, \left\{ T_{3} \right\}, \left\{ T_{2} \right\}, \left\{ T_{1} \right\}, \left\{ T_{0} \right\} \right\}. \end{split}$$

Lemma 2.1.1. Let $D \in \Sigma_{8,0}(X,5)$. Then the following statements are true: a) Let $T_3, T_4 \in V(D, \alpha)$, then α is external element of the semigroup $B_X(D)$; b) Let $Z \in \{T_2, T_1\}$, $Z' \in \{T_4, T_3\}$. If $Z' \not\subset Z$ and $Z, Z' \in V(D, \alpha)$, then α is external element of the semigroup $B_X(D)$;

c) Let $Z, Z' \in \{T_2, T_1\}$ and $Z \neq Z'$. If $V(D, \alpha) = \{T_2, T_1, T_0\}$, then α is external element of the semigroup $B_X(D)$.

Proof. Let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_{\chi}(D) \setminus \{\alpha\}$. If quasinormal representation of binary relation δ has a form

$$\delta = \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_3^{\delta} \times T_3\right) \cup \left(Y_2^{\delta} \times T_2\right) \cup \left(Y_1^{\delta} \times T_1\right) \cup \left(Y_0^{\delta} \times T_0\right),$$

then

$$\alpha = \delta \circ \beta = \left(Y_4^{\delta} \times T_4\beta\right) \cup \left(Y_3^{\delta} \times T_3\beta\right) \cup \left(Y_2^{\delta} \times T_2\beta\right) \cup \left(Y_1^{\delta} \times T_1\beta\right) \cup \left(Y_0^{\delta} \times T_0\beta\right). (2.1.1)$$

From the formal Equalities (1) of the semilattice D we obtain that:

$$T_{0}\beta = P_{0}\beta \cup P_{1}\beta \cup P_{2}\beta \cup P_{3}\beta \cup P_{4}\beta,$$

$$T_{1}\beta = P_{0}\beta \cup P_{2}\beta \cup P_{3}\beta \cup P_{4}\beta,$$

$$T_{2}\beta = P_{0}\beta \cup P_{1}\beta \cup P_{3}\beta \cup P_{4}\beta,$$

$$T_{3}\beta = P_{0}\beta \cup P_{2}\beta \cup P_{4}\beta,$$

$$T_{4}\beta = P_{0}\beta \cup P_{1}\beta \cup P_{3}\beta.$$

(2.1.2)

where $P_k \beta \neq \emptyset$ for any $P_k \neq \emptyset$ (k = 0, 1, 2, 3, 4) and $\beta \in B_X(D)$. Indeed, by preposition $P_k \neq \emptyset$ for any k = 0, 1, 2, 3, 4 and $\beta \neq \emptyset$ since $\emptyset \notin D$. Let $y \in P_k$ for some $y \in X$. Then $y \in T_0$, $\beta = \alpha_f$ for some $f: X \to D$ and $\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x)) \supseteq \{y\} \times f(y)$, *i.e.* there exists an element $t \in f(y)$ for which $y\alpha_f t$ and $y\beta t$. Of this and by definition of a set $P_k\beta$ we obtain that $t \in P_k\beta$ since $y \in P_k$, $y\beta t$. Thus, we have that $P_k\beta \neq \emptyset$, *i.e.* $P_k\beta \in D$ for any k = 0, 1, 2, 3, 4.

Now, let $T_i\beta = Z$ and $T_j\beta = Z'$ for some $0 \le i \ne j \le 4$ and $Z \ne Z'$, $Z, Z' \in \{T_4, T_3\}$, then from the Equalities (2.2) follows that $Z = P_0\beta = Z'$ since Z and Z' are minimal elements of the semilattice D. The equality Z = Z' contradicts the inequality $Z \ne Z'$.

The statement a) of the Lemma 2.1.1 is proved.

Let $T_i\beta = Z'$, where $Z' \in \{T_4, T_3\}$ and $T_j\beta = Z$, where $Z \in \{T_2, T_1\}$ for some $0 \le i \ne j \le 4$. If $0 \le i \le 4$, then from the formal equalities of a semilattice Dwe obtain that

$$\begin{split} T_0 \beta &= P_0 \beta \cup P_1 \beta \cup P_2 \beta \cup P_3 \beta \cup P_4 \beta = P_0 \beta = P_1 \beta = P_2 \beta = P_3 \beta = P_4 \beta = Z', \\ T_1 \beta &= P_0 \beta \cup P_2 \beta \cup P_3 \beta \cup P_4 \beta = P_0 \beta = P_2 \beta = P_3 \beta = P_4 \beta = Z', \\ T_2 \beta &= P_0 \beta \cup P_1 \beta \cup P_3 \beta \cup P_4 \beta = P_0 \beta = P_1 \beta = P_3 \beta = P_4 \beta = Z', \\ T_3 \beta &= P_0 \beta \cup P_2 \beta \cup P_4 \beta = P_0 \beta = P_2 \beta = P_4 \beta = Z', \\ T_4 \beta &= P_0 \beta \cup P_1 \beta \cup P_3 \beta = P_0 \beta = P_1 \beta = P_3 \beta = Z'. \end{split}$$

since Z' is minimal element of the semilattice D. Now, let $i \neq j$. 1) If $T_0\beta = P_0\beta = P_1\beta = P_2\beta = P_3\beta = P_4\beta = Z'$ and j = 1, 2, 3, 4, then we have $Z = T_1\beta = T_2\beta = T_3\beta = T_4\beta = Z'$,

which contradicts the inequality $Z \neq Z'$.

2) If
$$T_1\beta = P_0\beta = P_2\beta = P_3\beta = P_4\beta = Z'$$
 and $j = 0, 2, 3, 4$, then we have
 $Z = T_0\beta = T_2\beta = T_4\beta = Z' \cup P_1\beta$, where $P_1\beta \in D$

Last equalities are impossible, since $Z \neq Z' \cup T$ for any $T \in D$ and $Z \neq Z'$ by definition of a semilattice D.

3) If
$$T_2\beta = P_0\beta = P_1\beta = P_3\beta = P_4\beta = Z'$$
 and $j = 0, 1, 3, 4$, then we have
 $Z = T_0\beta = T_2\beta = T_4\beta = Z' \cup P_1\beta$, where $P_1\beta \in D$

Last equalities are impossible since $Z \neq Z' \cup T$ for any $T \in D$ and $Z \neq Z'$ by definition of a semilattice *D*.

4) If
$$T_3\beta = P_0\beta = P_2\beta = P_4\beta = Z'$$
 and $j = 0, 1, 2, 4$, then we have
 $Z = T_0\beta = T_2\beta = T_4\beta = Z' \cup P_1\beta \cup P_3\beta$,
 $Z = T_1\beta = Z' \cup P_3\beta$, where $P_1\beta, P_3\beta \in D$

Last equalities are impossible since $Z \neq Z' \cup T \cup T'$ and $Z \neq Z' \cup T$ for any $T, T' \in D$, by definition of a semilattice *D*.

5) If
$$T_4\beta = P_0\beta = P_1\beta = P_3\beta = Z'$$
 and $j = 0, 1, 2, 3$, then we have
 $Z = T_0\beta = T_1\beta = T_3\beta = Z' \cup P_2\beta \cup P_4\beta$,
 $Z = T_2\beta = Z' \cup P_4\beta$, where $P_2\beta, P_4\beta \in D$

Last equalities are impossible since $Z \neq Z' \cup T \cup T'$ and $Z \neq Z' \cup T$ for any $T, T' \in D$, by definition of a semilattice D.

The statement b) of the Lemma 2.1.1 is proved.

Let $Z, Z' \in \{T_2, T_1\}$, $T_i\beta = Z$, $T_j\beta = Z'$ and $Z \neq Z'$. If $T_i\beta = Z$ where $0 \le i \ne j \le 4$, we consider the following cases:

6) i = 0, j = 1, 2, 3, 4. Then from the Equality (2.1.2) follows that $Z \subset Z'$, which contradicts the definition of a semilattice *D*;

7) i = 1, j = 0, 2, 3, 4.

If i = 1, j = 0, 3. Then from the Equality (2.1.2) follows that $Z' \subset Z$, or $Z \subset Z'$ which contradicts the definition of a semilattice *D*,

If i = 1, j = 2, 4. Then from the Equality (1.4) follows that

$$\begin{cases} T_1\beta = (P_0\beta \cup P_3\beta \cup P_4\beta) \cup P_2\beta, \\ T_2\beta = (P_0\beta \cup P_3\beta \cup P_4\beta) \cup P_1\beta, \end{cases}$$

where $P_0\beta \cup P_3\beta \cup P_4\beta$, $P_2\beta$, $P_1\beta \in D$, *i.e.* there exists such elements $T, T', T'' \in D$, for which $Z = T \cup T'$ and $Z' = T \cup T''$. But such element $T \in D$

don't exist by definition of a semilattice D.

8) i = 2, j = 0, 1, 3, 4.

If i = 2, j = 0, 4. Then from the Equality (2.1.2) follows that $Z' \subset Z$, or

 $Z \subset Z'$ which contradicts the definition of a semilattice *D*;

If i = 2, j = 1,3. In this case analogously for the case 7) we may prove that $Z = T \cup T'$ and $Z' = T \cup T''$. But such element $T \in D$ don't exist by definition of a semilattice *D*.

9) i = 3, j = 0, 1, 2, 4.

If i = 3, j = 0, 1. Then from the Equality (2.1.2) follows that $Z' \subset Z$, which contradicts the definition of a semilattice *D*,

If i = 3, j = 2, 4. Then from the Equality (2.1.2) follows that

$$\begin{cases} T_2\beta = P_0\beta \cup (P_2\beta \cup P_3\beta \cup P_4\beta), \\ T_2\beta = P_0\beta \cup (P_1\beta \cup P_3\beta), \end{cases}$$

where $P_0\beta$, $P_2\beta \cup P_3\beta \cup P_4\beta$, $P_1\beta \cup P_3\beta \in D$, *i.e.* there exist such elements $T, T', T'' \in D$, for which $Z = T \cup T'$ and $Z' = T \cup T''$. But such element $T \in D$ don't exist by definition of a semilattice D.

10) i = 4, j = 0, 1, 2, 3.

If i = 4, j = 0, 2. Then from the Equality (2.1.2) follows that $Z \subset Z'$ which contradicts the definition of a semilattice D_3

If i = 4, j = 1, 3. Then from the Equality (2.1.2) follows that

$$\begin{cases} T_1 \beta = P_0 \beta \cup (P_2 \beta \cup P_3 \beta \cup P_4 \beta), \\ T_3 \beta = P_0 \beta \cup (P_2 \beta \cup P_4 \beta), \end{cases}$$

where $P_0\beta$, $P_2\beta \cup P_3\beta \cup P_4\beta$, $P_2\beta \cup P_4\beta \in D$, *i.e.* there exist such elements $T, T', T'' \in D$, for which $Z = T \cup T'$ and $Z' = T \cup T''$. But such element $T \in D$ do not exist by definition of a semilattice D.

The statement c) of the Lemma 2.1.1 is proved.

Lemma 2.1.1 is proved.

Let $D \in \Sigma_{8,0}(X,5)$. By symbols \mathfrak{A}_0 , $B(\mathfrak{A}_0)$ and B_0 we denoted the following sets:

$$\mathfrak{A}_{0} = \{\{T_{4}, T_{3}, T_{2}, T_{0}\}, \{T_{4}, T_{3}, T_{1}, T_{0}\}, \{T_{4}, T_{2}, T_{1}, T_{0}\}, \{T_{3}, T_{2}, T_{1}, T_{0}\}, \{T_{4}, T_{3}, T_{0}\}, \{T_{4}, T_{3}, T_{0}\}, \{T_{4}, T_{1}, T_{0}\}, \{T_{3}, T_{2}, T_{0}\}, \{T_{2}, T_{1}, T_{0}\}\}, B(\mathfrak{A}_{0}) = \{\alpha \in B_{X}(D) | V(X^{*}, \alpha) \in \mathfrak{A}_{0}\}; B_{0} = \{\alpha \in B_{X}(D) | V(X^{*}, \alpha) = D\}.$$

Remark, that the sets B_0 and $B(\mathfrak{A}_0)$ are external elements for the semigroup $B_{\chi}(D)$.

Lemma 2.1.2. Let $D \in \Sigma_{8,0}(X,5)$. Then the following statements are true: a) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_2^{\alpha} \times T_2\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

b) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_1^{\alpha} \times T_1\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_3^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

Proof. 1). Let quasinormal representation of binary relations $\,\delta\,$ and $\,\beta\,$ have a form

$$\begin{split} \delta &= \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_2^{\delta} \times T_2\right) \cup \left(Y_1^{\delta} \times T_1\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ \beta &= \left(T_4 \times T_4\right) \cup \left(\left(T_2 \setminus T_4\right) \times T_2\right) \cup \left(\left(T_0 \setminus T_2\right) \times T_1\right) \cup \left(\left(X \setminus T_0\right) \times T_0\right), \end{split}$$

where $Y_4^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$,

$$\begin{split} & T_4 \cup \left(T_2 \setminus T_4\right) \cup \left(T_0 \setminus T_2\right) \cup \left(X \setminus T_0\right) \\ & = \left(P_0 \cup P_1 \cup P_3\right) \cup P_4 \cup P_2 \cup \left(X \setminus T_0\right) = T_0 \cup \left(X \setminus T_0\right) = X, \end{split}$$

(see Equalities (2.1) and (2.2)), then $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$\begin{split} T_4\beta &= T_4, \ T_2\beta = \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\beta = T_4 \cup T_2 = T_2, \\ T_1\beta &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\beta = T_4 \cup T_1 = T_0, \ T_0\beta = T_0. \\ \alpha &= \delta \circ \beta = \left(Y_4^\delta \times T_4\beta\right) \cup \left(Y_2^\delta \times T_2\beta\right) \cup \left(Y_1^\delta \times T_1\beta\right) \cup \left(Y_0^\delta \times T_0\beta\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(Y_2^\delta \times T_2\right) \cup \left(Y_1^\delta \times T_0\right) \cup \left(Y_0^\delta \times T_0\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(Y_2^\delta \times T_2\right) \cup \left(\left(Y_1^\delta \cup Y_0^\delta\right) \times T_0\right) = \alpha, \end{split}$$

if $Y_4^{\delta} = Y_4^{\alpha}$, $Y_2^{\delta} = Y_2^{\alpha}$ and $Y_1^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $|Y_1^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement a) of the lemma 2.1.2 is proved.

2) Let quasinormal representation of binary relations $\,\delta\,$ and $\,\beta\,$ have a form

$$\begin{split} \delta &= \left(Y_3^{\delta} \times T_3\right) \cup \left(Y_2^{\delta} \times T_2\right) \cup \left(Y_1^{\delta} \times T_1\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ \beta &= \left(T_3 \times T_3\right) \cup \left(\left(T_0 \setminus T_1\right) \times T_2\right) \cup \left(\left(T_1 \setminus T_3\right) \times T_1\right) \cup \left(\left(X \setminus T_0\right) \times T_0\right), \end{split}$$

where $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$,

$$T_{3} \cup (T_{0} \setminus T_{1}) \cup (T_{1} \setminus T_{3}) \cup (X \setminus T_{0})$$

= $(P_{0} \cup P_{2} \cup P_{4}) \cup P_{1} \cup P_{3} \cup (X \setminus T_{0}) = T_{0} \cup (X \setminus T_{0}) = X,$

(see Equalities (2.1) and (2.2)), then $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$T_{4}\beta = T_{3}, \ T_{2}\beta = (P_{0} \cup P_{1} \cup P_{3} \cup P_{4})\beta = T_{3} \cup T_{2} \cup T_{1} = T_{0},$$

$$T_{1}\beta = (P_{0} \cup P_{2} \cup P_{3} \cup P_{4})\beta = T_{3} \cup T_{1} = T_{0}, \ T_{0}\beta = T_{0}.$$

$$\alpha = \delta \circ \beta = (Y_{3}^{\delta} \times T_{3}\beta) \cup (Y_{2}^{\delta} \times T_{2}\beta) \cup (Y_{1}^{\delta} \times T_{1}\beta) \cup (Y_{0}^{\delta} \times T_{0}\beta)$$

$$= (Y_{3}^{\delta} \times T_{3}) \cup (Y_{2}^{\delta} \times T_{0}) \cup (Y_{1}^{\delta} \times T_{1}) \cup (Y_{0}^{\delta} \times T_{0})$$

$$= (Y_{3}^{\delta} \times T_{3}) \cup (Y_{1}^{\delta} \times T_{1}) \cup ((Y_{2}^{\delta} \cup Y_{0}^{\delta}) \times T_{0}) = \alpha,$$

if $Y_3^{\delta} = Y_3^{\alpha}$, $Y_1^{\delta} = Y_1^{\alpha}$ and $Y_2^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since

 $\left|Y_{2}^{\delta} \cup Y_{0}^{\delta}\right| \ge 1$ ($\left|Y_{0}^{\delta}\right| \ge 0$ by preposition).

The statement b) of the lemma 2.1.2 is proved.

Lemma 2.1.2 is proved.

Lemma 2.1.3. Let $D \in \Sigma_{8,0}(X,5)$. Then the following statements are true.

a) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_2^{\alpha} \times T_2\right),$$

where $Y_4^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

b) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

c) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_1^{\alpha} \times T_1\right),$$

where $Y_3^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

d) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_3^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

e) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_2^{\alpha} \times T_2\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

f) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_1^{\alpha} \times T_1\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

g) If quasinormal representation of a binary relation α has a form
α = X × T₂, then α is generating by elements of the elements of set B(𝔄₀);
h) If quasinormal representation of a binary relation α has a form
α = X × T₁, then α is generating by elements of the elements of set B(𝔄₀);
i) If quasinormal representation of a binary relation α has a form
α = X × T₀, then α is generating by elements of the elements of set B(𝔄₀);
c) If quasinormal representation of a binary relation α has a form
α = X × T₀, then α is generating by elements of the elements of set B(𝔄₀).
Proof. 1) Let quasinormal representation of a binary relations δ, β have a form

$$\delta = (Y_4^{\delta} \times T_4) \cup (Y_1^{\delta} \times T_1) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_4 \times T_4) \cup ((T_0 \setminus T_4) \times T_2) \cup ((X \setminus T_0) \times T_0),$$

where $Y_4^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$.

$$T_4 \cup (T_0 \setminus T_4) \cup (X \setminus T_0)$$

= $(P_0 \cup P_1 \cup P_3) \cup (P_2 \cup P_4) \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X.$

Then from the statement a) of the Lemma 2.1.2 follows that β is generating by elements of the set $B(\mathfrak{A}_0)$, $\delta \in B(\mathfrak{A}_0)$ and

$$T_{4}\beta = T_{4}, \ T_{1}\beta = T_{4} \cup T_{2} = T_{2}, \ T_{0}\beta = T_{2}.$$

$$\delta \circ \beta = \left(Y_{4}^{\delta} \times T_{4}\beta\right) \cup \left(Y_{1}^{\delta} \times T_{1}\beta\right) \cup \left(Y_{0}^{\delta} \times T_{0}\beta\right)$$

$$= \left(Y_{4}^{\delta} \times T_{4}\right) \cup \left(Y_{1}^{\delta} \times T_{2}\right) \cup \left(Y_{0}^{\delta} \times T_{2}\right)$$

$$= \left(Y_{4}^{\delta} \times T_{4}\right) \cup \left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{2}\right) = \alpha,$$

if $Y_4^{\delta} = Y_4^{\alpha}$, $Y_1^{\delta} \cup Y_0^{\delta} = Y_2^{\alpha}$. Last equalities are possible since $|Y_1^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement a) of the lemma 2.1.3 is proved.

2) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_4^{\delta} \times T_4) \cup (Y_1^{\delta} \times T_1) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_4 \times T_4) \cup ((T_0 \setminus T_4) \times T_3) \cup ((X \setminus T_0) \times T_0),$$

where $Y_4^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$.

$$T_{4} \cup (T_{0} \setminus T_{4}) \cup (X \setminus T_{0})$$

= $(P_{0} \cup P_{1} \cup P_{3}) \cup (P_{2} \cup P_{4}) \cup (X \setminus T_{0}) = T_{0} \cup (X \setminus T_{0}) = X.$

Then from $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$T_{4}\beta = T_{4}, \ T_{1}\beta = T_{4} \cup T_{3} = T_{0}, \ T_{0}\beta = T_{0}.$$

$$\delta \circ \beta = \left(Y_{4}^{\delta} \times T_{4}\beta\right) \cup \left(Y_{1}^{\delta} \times T_{1}\beta\right) \cup \left(Y_{0}^{\delta} \times T_{0}\beta\right)$$

$$= \left(Y_{4}^{\delta} \times T_{4}\right) \cup \left(Y_{1}^{\delta} \times T_{0}\right) \cup \left(Y_{0}^{\delta} \times T_{0}\right)$$

$$= \left(Y_{4}^{\delta} \times T_{4}\right) \cup \left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right) = \alpha,$$

 $\begin{array}{ll} \text{if} & Y_4^\delta = Y_4^\alpha \text{,} & Y_1^\delta \cup Y_0^\delta = Y_0^\alpha \text{. Last equalities are possible since } & \left|Y_1^\delta \cup Y_0^\delta\right| \geq 1 \\ & (\left|Y_0^\delta\right| \geq 0 \quad \text{by preposition}). \end{array}$

The statement b) of the lemma 2.1.3 is proved.

3) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_3^{\delta} \times T_3) \cup (Y_2^{\delta} \times T_2) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_3 \times T_3) \cup ((T_0 \setminus T_3) \times T_1) \cup ((X \setminus T_0) \times T_0),$$

where $Y_4^{\delta}, Y_2^{\delta} \notin \{\emptyset\}$.

$$T_{3} \cup (T_{0} \setminus T_{3}) \cup (X \setminus T_{0})$$

= $(P_{0} \cup P_{2} \cup P_{4}) \cup (P_{1} \cup P_{3}) \cup (X \setminus T_{0}) = T_{0} \cup (X \setminus T_{0}) = X.$

Then from the statement b) of the Lemma 2.1.2 follows that β is generating by elements of the set $B(\mathfrak{A}_0)$, $\delta \in B(\mathfrak{A}_0)$ and

$$T_{3}\beta = T_{3}, \ T_{2}\beta = T_{3} \cup T_{1} = T_{1}, \ T_{0}\beta = T_{1}.$$

$$\delta \circ \beta = \left(Y_{3}^{\delta} \times T_{3}\beta\right) \cup \left(Y_{2}^{\delta} \times T_{2}\beta\right) \cup \left(Y_{0}^{\delta} \times T_{0}\beta\right)$$

$$= \left(Y_{3}^{\delta} \times T_{3}\right) \cup \left(Y_{2}^{\delta} \times T_{1}\right) \cup \left(Y_{0}^{\delta} \times T_{1}\right)$$

$$= \left(Y_{3}^{\delta} \times Z_{3}\right) \cup \left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{1}\right) = \alpha,$$

if $Y_3^{\delta} = Y_3^{\alpha}$, $Y_2^{\delta} \cup Y_0^{\delta} = Y_1^{\alpha}$. Last equalities are possible since $|Y_2^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement c) of the lemma 2.1.3 is proved.

4) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_3^{\delta} \times T_3) \cup (Y_2^{\delta} \times T_2) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_3 \times T_3) \cup ((T_0 \setminus T_3) \times T_2) \cup ((X \setminus T_0) \times T_0),$$

where $Y_3^{\delta}, Y_2^{\delta} \notin \{\emptyset\}$. Then $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$T_{3}\beta = T_{3}, T_{2}\beta = T_{3} \cup T_{2} = T_{0}, T_{0}\beta = T_{0}.$$

$$\delta \circ \beta = (Y_{3}^{\delta} \times T_{3}\beta) \cup (Y_{2}^{\delta} \times T_{2}\beta) \cup (Y_{0}^{\delta} \times T_{0}\beta)$$

$$= (Y_{3}^{\delta} \times T_{3}) \cup (Y_{2}^{\delta} \times T_{0}) \cup (Y_{0}^{\delta} \times T_{0})$$

$$= (Y_{3}^{\delta} \times T_{3}) \cup ((Y_{2}^{\delta} \cup Y_{0}^{\delta}) \times T_{0}) = \alpha,$$

if $Y_3^{\delta} = Y_3^{\alpha}$, $Y_2^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $|Y_2^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement d) of the lemma 2.1.3 is proved.

5) Let quasinormal representation of a binary relations δ , β have a form

$$\begin{split} \delta &= \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ \beta &= \left(\left(\left(T_2 \cap T_1\right) \setminus T_3\right) \times T_4\right) \cup \left(\left(T_2 \setminus T_1\right) \times T_2\right) \cup \left(\left(X \setminus T_4\right) \times T_0\right), \end{split}$$

where $Y_4^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$\begin{pmatrix} (T_2 \cap T_1) \setminus T_3 \end{pmatrix} \cup (T_2 \setminus T_1) \cup (X \setminus T_4) \\ = (P_0 \cup P_3) \cup P_1 \cup (X \setminus T_4) = T_4 \cup (X \setminus T_4) = X.$$

(See Equalities (2.1) and (2.2)). Then from the statement b) of the Lemma 2.1.3 follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement a) of the Lemma 2.1.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$T_4\beta = (P_0 \cup P_1 \cup P_3)\beta = T_4 \cup T_2 = T_2, \ T_0\beta = T_0.$$

$$\delta \circ \beta = (Y_4^\delta \times T_4\beta) \cup (Y_0^\delta \times T_0\beta) = (Y_4^\delta \times T_2) \cup (Y_0^\delta \times T_0) = \alpha,$$

if $Y_4^{\delta} = Y_2^{\alpha}$, $Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $|Y_4^{\delta}| \ge 1$ $|Y_0^{\delta}| \ge 1$.

The statement e) of the lemma 2.1.3 is proved.

6) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_3^{\delta} \times T_3) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (((T_2 \cap T_1) \setminus T_4) \times T_3) \cup ((T_1 \setminus T_2) \times T_1) \cup ((X \setminus T_3) \times T_0),$$

where $Y_3^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$\begin{pmatrix} (T_2 \cap T_1) \setminus T_4 \end{pmatrix} \cup (T_1 \setminus T_2) \cup (X \setminus T_3) \\ = (P_0 \cup P_4) \cup P_2 \cup (X \setminus T_3) = T_3 \cup (X \setminus T_3) = X.$$

(See Equalities (2.1) and (2.2)). Then from the statement d) of the Lemma 2.1.3 follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement b) of the Lemma 2.1.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$T_{3}\beta = (P_{0} \cup P_{2} \cup P_{4})\beta = T_{3} \cup T_{1} = T_{1}, \ T_{0}\beta = T_{0}.$$

$$\delta \circ \beta = (Y_{3}^{\delta} \times T_{3}\beta) \cup (Y_{0}^{\delta} \times T_{0}\beta) = (Y_{3}^{\delta} \times T_{1}) \cup (Y_{0}^{\delta} \times T_{0}) = \alpha,$$

if $Y_3^{\delta} = Y_1^{\alpha}$, $Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $\left|Y_4^{\delta}\right| \ge 1$. $\left|Y_0^{\delta}\right| \ge 1$.

The statement e) of the lemma 2.1.3 is proved.

7) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_2^{\delta} \times T_2) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_1 \times T_4) \cup ((T_2 \setminus T_1) \times T_2) \cup ((X \setminus T_0) \times T_0),$$

where $Y_2^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$T_1 \cup (T_2 \setminus T_1) \cup (X \setminus T_0)$$

= $(P_0 \cup P_2 \cup P_3 \cup P_4) \cup P_1 \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X$

(see Equalities (2.1) and (2.2)). Then from the statement e) of the Lemma 2.1.3 follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement a) of the Lemma 2.1.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$\begin{split} T_2 \beta &= T_4 \cup T_2 = T_2, \ T_0 \beta = T_2 \\ \delta \circ \beta &= \left(Y_2^{\delta} \times T_2 \beta \right) \cup \left(Y_0^{\delta} \times T_0 \beta \right) = \left(Y_2^{\delta} \times T_2 \right) \cup \left(Y_0^{\delta} \times T_2 \right) = X \times T_2 = \alpha, \end{split}$$

since representation of a binary relation δ is quasinormal.

The statement g) of the lemma 2.1.3 is proved.

8) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_1^{\delta} \times T_1) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_2 \times T_3) \cup ((T_1 \setminus T_2) \times T_1) \cup ((X \setminus T_0) \times T_0),$$

where $Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$T_2 \cup (T_1 \setminus T_2) \cup (X \setminus T_0)$$

= $(P_0 \cup P_1 \cup P_3 \cup P_4) \cup P_2 \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X$

(see Equalities (2.1) and (2.2)). Then from the statement f) of the Lemma 2.1.3

follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement b) of the Lemma 2.1.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$\begin{split} T_1 \beta &= T_3 \cup T_1 = T_1, \ T_0 \beta = T_1 \\ \delta \circ \beta &= \left(Y_1^{\delta} \times T_1 \beta \right) \cup \left(Y_0^{\delta} \times T_0 \beta \right) = \left(Y_1^{\delta} \times T_1 \right) \cup \left(Y_0^{\delta} \times T_1 \right) = X \times T_1 = \alpha, \end{split}$$

since representation of a binary relation δ is quasinormal.

The statement h) of the lemma 2.1.3 is proved.

9) Let quasinormal representation of a binary relation δ has a form

$$\delta = (T_4 \times T_1) \cup ((X \setminus T_4) \times T_0),$$

then

$$T_1 \delta = (P_0 \cup P_2 \cup P_3 \cup P_4) \delta = T_4 \cup T_0 = T_0, \ T_0 \delta = T_0$$

$$\delta \circ \delta = (T_4 \times T_1 \delta) \cup ((X \setminus T_4) \times T_0 \delta) = (T_4 \times T_0) \cup ((X \setminus T_4) \times T_0) = X \setminus T_0 = \alpha$$

since representation of a binary relation δ is quasinormal.

The statement i) of the lemma 2.1.3 is proved.

Lemma 2.1.3 is proved.

Lemma 2..4. Let $D \in \Sigma_{8,0}(X,5)$. Then the following statements are true.

a) If $|X \setminus T_0| \ge 1$ and $Z \in \{T_4, T_3\}$, then binary relation $\alpha = X \times Z$ is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

b) If $X = T_0$ and $Z \in \{T_4, T_3\}$, then binary relation $\alpha = X \times Z$ is external element for the semigroup $B_X(D)$.

Proof. 1) Let quasinormal representation of a binary relation δ has a form

$$\delta = \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_3^{\delta} \times T_3\right) \cup \left(Y_0^{\delta} \times T_0\right),$$

where $Y_4^{\delta}, Y_3^{\delta} \notin \{\emptyset\}$, then $\delta \in B(\mathfrak{A}_0) \setminus \{\alpha\}$. If quasinormal representation of a binary relation β has a form $\beta = (T_0 \times Z) \cup \bigcup_{t' \in X \setminus T_0} (\{t'\} \times f(t'))$, where f is any mapping of the set $X \setminus T_0$ in the set $\{T_4, T_3\} \setminus \{Z\}$. It is easy to see, that $\beta \neq \alpha$ and two elements of the set $\{T_4, T_3\}$ belong to the semilattice $V(D, \beta)$, *i.e.* $\delta \in B(\mathfrak{A}_0) \setminus \{\alpha\}$. In this case we have

$$T_{4}\beta = T_{3}\beta = T_{0}\beta = Z;$$

$$\delta \circ \beta = \left(Y_{4}^{\delta} \times T_{4}\beta\right) \cup \left(Y_{3}^{\delta} \times T_{3}\beta\right) \cup \left(Y_{0}^{\delta} \times T_{0}\beta\right)$$

$$= \left(Y_{4}^{\delta} \times Z\right) \cup \left(Y_{3}^{\delta} \times Z\right) \cup \left(Y_{0}^{\delta} \times Z\right)$$

$$= \left(\left(Y_{4}^{\delta} \cup Y_{3}^{\delta} \cup Y_{0}^{\delta}\right) \times Z\right) = X \times Z = \alpha,$$

since the representation of a binary relation δ is quasinormal. Thus, element α is generating by elements of the set $B(\mathfrak{A}_0)$.

The statement a) of the lemma 2.1.4 is proved.

2) Let $X = T_0$, $\alpha = X \times Z$, for some $Z \in \{T_4, T_3\}$ and $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_X(D) \setminus \{\alpha\}$. Then from the equality (2.1.1) and (2.1.2) we obtain that $T_4\beta = T_3\beta = T_2\beta = T_1\beta = T_0\beta = Z$, $P_0\beta = P_1\beta = P_2\beta = P_3\beta = P_4\beta = Z$,

since Z is minimal element of the semilattice D.

Now, let subquasinormal representations $\overline{\beta}$ of a binary relation β has a form

$$\overline{\beta} = \left(\left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4 \right) \times Z \right) \cup \bigcup_{t' \in X \setminus T_0} \left(\{ t' \} \times \overline{\beta}_2 \left(t' \right) \right),$$

where $\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ Z & Z & Z & Z \end{pmatrix}$ is normal mapping. But complement mapping $\overline{\beta}_2$ is empty, since $X \setminus T_0 = \emptyset$, *i.e.* in the given case, subquasinormal representation

 $\overline{\beta}$ of a binary relation β is defined uniquely. So, we have that

 $\beta = \overline{\beta} = X \times Z = \alpha$, which contradicts the condition $\beta \notin B_X(D) \setminus \{\alpha\}$.

Therefore, if $X = T_0$ and $\alpha = X \times Z$, for some $Z \in \{T_4, T_3\}$, then α is external element of the semigroup $B_{\chi}(D)$.

The statement b) of the lemma 2.1.4 is proved.

Lemma 2.1.4 is proved.

Theorem 2.1.1. Let $D \in \Sigma_{8,0}(X,5)$ and

$$\mathfrak{A}_{0} = \left\{ \left\{ T_{4}, T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{4}, T_{3}, T_{1}, T_{0} \right\}, \left\{ T_{4}, T_{2}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{1}, T_{0} \right\}, \\ \left\{ T_{4}, T_{3}, T_{0} \right\}, \left\{ T_{4}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{2}, T_{1}, T_{0} \right\} \right\}, \\ B\left(\mathfrak{A}_{0}\right) = \left\{ \alpha \in B_{X}\left(D\right) | V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{0} \right\}; B_{0} = \left\{ \alpha \in B_{X}\left(D\right) | V\left(X^{*}, \alpha\right) = D \right\}.$$

Then the following statements are true.

a) If $|X \setminus T_0| \ge 1$, then $S_0 = B_0 \cup B(\mathfrak{A}_o)$ is irreducible generating set for the semigroup $B_X(D)$;

b) If $X = T_0$, then $S_1 = B_0 \cup B(\mathfrak{A}_{\circ}) \cup \{X \times T_4, X \times T_3\}$ is irreducible generating set for the semigroup $B_X(D)$.

Proof. Let $D \in \Sigma_{8,0}(X,5)$ and $|X \setminus T_0| \ge 1$. First, we proved that every element of the semigroup $B_X(D)$ is generating by elements of the set S_0 . Indeed, let α be arbitrary element of the semigroup $B_X(D)$. Then quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_3^{\alpha} \times T_3) \cup (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha} \cup Y_3^{\alpha} \cup Y_2^{\alpha} \cup Y_1^{\alpha} \cup Y_0^{\alpha} = X$ and $Y_i^{\alpha} \cap Y_j^{\alpha} = \emptyset$ $(0 \le i \ne j \le 4)$. For the $|V(X^*, \alpha)|$ we consider the following cases:

- 1) $|V(X^*, \alpha)| = 5$. Then $\alpha \in B_0$ and $B_0 \subset S_0$ by definition of a set S_0 .
- 2) $\left| V(X^*, \alpha) \right| = 4$. Then

$$V(X^*,\alpha) \in \mathfrak{A}_4 = \{\{T_4, T_3, T_2, T_0\}, \{T_4, T_3, T_1, T_0\}, \{T_4, T_2, T_1, T_0\}, \{T_3, T_2, T_1, T_0\}\} \subset \mathfrak{A}_0$$

i.e. $\alpha \in B(\mathfrak{A}_0)$ and $B(\mathfrak{A}_0) \subset S_0$ by definition of a set S_0 . 3) $|V(X^*, \alpha)| = 3$. Then we have

$$V(X^*, \alpha) \in \mathfrak{A}_3 = \{\{T_4, T_3, T_0\}, \{T_4, T_1, T_0\}, \{T_3, T_2, T_0\}, \{T_4, T_2, T_0\}, \{T_3, T_1, T_0\}, \{T_2, T_1, T_0\}\}.$$

By definition of a set \mathfrak{A}_0 we have

$$\begin{split} &\left\{ \left\{ T_4, T_3, T_0 \right\}, \left\{ T_4, T_1, T_0 \right\}, \left\{ T_3, T_2, T_0 \right\}, \left\{ T_2, T_1, T_0 \right\} \right\} \subset \mathfrak{A}_0 \text{, i.e. in this case } \alpha \in B(\mathfrak{A}_0) \\ &\text{and } B(\mathfrak{A}_0) \subset S_0 \text{ by definition of a set } S_0. \end{split} \end{split}$$

If $V(X^*, \alpha) \in \{\{T_4, T_2, T_0\}, \{T_3, T_1, T_0\}\}$, then from the statement a) and b) of the Lemma 2.1.2 element α is generating by elements $B(\mathfrak{A}_0)$ and $B(\mathfrak{A}_0) \subset S_0$ by definition of a set S_0 .

4) $|V(X^*,\alpha)| = 2$. Then we have

 $V(X^*,\alpha) \in \mathfrak{A}_2 = \left\{ \{T_4, T_2\}, \{T_4, T_0\}, \{T_3, T_1\}, \{T_3, T_0\}, \{T_2, T_0\}, \{T_1, T_0\} \right\}.$

Then from the statement a)-f) of the Lemma 2.1.3 element α is generating by elements $B(\mathfrak{A}_0)$ and $B(\mathfrak{A}_0) \subset S_0$ by definition of a set S_0 .

5) $|V(X^*,\alpha)| = 1$. Then we have $V(X^*,\alpha) \in \mathfrak{A}_1 = \{\{T_4\}, \{T_3\}, \{T_2\}, \{T_1\}, \{T_0\}\}$.

If $V(X^*, \alpha) \in \{\{T_2\}, \{T_1\}, \{T_0\}\}$, then from the statements g), h) and i) of the Lemma 2.1.3 element α is generating by elements $B(\mathfrak{A}_0)$ and $B(\mathfrak{A}_0) \subset S_0$ by definition of a set S_0 .

If $V(X^*, \alpha) \in \{\{T_4\}, \{T_3\}\}$, then from the statement a) of the Lemma 2.1.4 element α is generating by elements $B(\mathfrak{A}_0)$ and $B(\mathfrak{A}_0) \subset S_0$ by definition of a set S_0 .

Thus, we have that S_0 is generating set for the semigroup $B_X(D)$.

If $|X \setminus T_0| \ge 1$, then the set S_0 is irreducible generating set for the semigroup $B_X(D)$ since S_0 is a set external elements of the semigroup $B_X(D)$.

The statement a) of the Theorem 2.1.1 is proved.

Now, let $D \in \Sigma_{8,0}(X,5)$ and X = D. First, we proved that every element of the semigroup $B_X(D)$ is generating by elements of the set S_1 . The cases 1), 2), 3) and 4) are proved analogously of the cases 1), 2), 3) and 4) given above and consider case, when

$$V(X^*, \alpha) \in \mathfrak{A}_1 = \{\{T_4\}, \{T_3\}, \{T_2\}, \{T_1\}, \{T_0\}\}.$$

If $V(X^*, \alpha) \in \{\{T_2\}, \{T_1\}, \{T_0\}\}$, then from the statements g), h) and i) of the Lemma 2.1.3 element α is generating by elements $B(\mathfrak{A}_0)$ and $B(\mathfrak{A}_0) \subset S_1$ by definition of a set S_1 .

If $V(X^*, \alpha) \in \{\{T_4\}, \{T_3\}\}$, then $\alpha \in S_1$ by definition of a set S_1 .

Thus, we have that S_1 is generating set for the semigroup $B_X(D)$.

If $X = T_0$, then the set S_1 is irreducible generating set for the semigroup $B_X(D)$ since S_1 is a set external elements of the semigroup $B_X(D)$.

The statement b) of the Theorem 2.1.1 is proved.

Theorem 2.1.1 is proved.

Theorem 2.1.2. Let $n \ge 6$, $D = \{T_4, T_3, T_2, T_1, T_0\} \in \Sigma_{8,0}(X, 5)$ and

$$\begin{aligned} \mathfrak{A}_{0} &= \left\{ \left\{ T_{4}, T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{4}, T_{3}, T_{1}, T_{0} \right\}, \left\{ T_{4}, T_{2}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{1}, T_{0} \right\}, \\ &\left\{ T_{4}, T_{3}, T_{0} \right\}, \left\{ T_{4}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{2}, T_{1}, T_{0} \right\} \right\}, \\ B\left(\mathfrak{A}_{0} \right) &= \left\{ \alpha \in B_{X}\left(D \right) | V\left(X^{*}, \alpha \right) \in \mathfrak{A}_{0} \right\}; B_{0} = \left\{ \alpha \in B_{X}\left(D \right) | V\left(X^{*}, \alpha \right) = D \right\}. \end{aligned}$$

Then the following statements are true.

a) If $|X \setminus T_0| \ge 1$, then the number $|S_0|$ elements of the set $S_0 = B_0 \cup B(\mathfrak{A}_0)$ is equal to

$$S_0 = 5^n - 2 \cdot 3^n + 1$$
.

b) If $X = T_0$, then the number $|S_1|$ elements of the set $S_1 = B_0 \cup B(\mathfrak{A}_o) \cup \{X \times T_4, X \times T_3\}$ is equal to

$$|S_1| = 5^n - 2 \cdot 3^n + 3$$
.

Proof. Let number of a set *X* is equal to $n \ge 6$, *i.e.* $|X| = n \ge 6$. Let

$$\begin{split} S_n &= \left\{ \varphi_1, \varphi_2, \cdots, \varphi_{n!} \right\} \text{ is a group all one to one mapping of a set } M = \left\{ 1, 2, \cdots, n \right\} \\ \text{on the set } M \text{ and } \varphi_{i_1}, \varphi_{i_2}, \cdots, \varphi_{i_m} \quad \left(m \leq n \right) \text{ are arbitrary elements of the group} \\ S_n, Y_{\varphi_1}, Y_{\varphi_2}, \cdots, Y_{\varphi_m} \text{ are arbitrary partitioning of a set } X. \text{ By symbol } k_n^m \text{ we} \\ \text{denote the number elements of a set } \left\{ Y_{\varphi_1}, Y_{\varphi_2}, \cdots, Y_{\varphi_m} \right\}. \text{ It is well known, that} \end{split}$$

$$k_n^m = \sum_{i=1}^m \frac{(-1)^{m+i}}{(i-1)! \cdot (m-i)!} \cdot i^{n-1}.$$

If m = 2, 3, 4, 5, then we have

$$k_n^2 = 2^{n-1} - 1, \quad k_n^3 = \frac{1}{2} \cdot 3^{n-1} - 2^{n-1} + \frac{1}{2}, \quad k_n^4 = \frac{1}{6} \cdot 4^{n-1} - \frac{1}{2} \cdot 3^{n-1} + \frac{1}{2} \cdot 2^{n-1} - \frac{1}{6},$$

$$k_n^5 = \frac{1}{24} \cdot 5^{n-1} - \frac{1}{6} \cdot 4^{n-1} + \frac{1}{4} \cdot 3^{n-1} - \frac{1}{6} \cdot 2^{n-1} + \frac{1}{24}.$$

If $Y_{\varphi_1}, Y_{\varphi_2}$ are any two elements partitioning of a set X and

 $\overline{\beta} = (Y_{\varphi_1} \times Z_1) \cup (Y_{\varphi_2} \times Z_2)$, where $Z_1, Z_2 \in D$ and $Z_1 \neq Z_2$. Then number of different binary relations $\overline{\beta}$ of a semigroup $B_{\chi}(D)$ is equal to

$$2 \cdot k_n^2 = 2^n - 2 \,. \tag{2.1.3}$$

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}$ are any tree elements partitioning of a set X and

$$\overline{\beta} = (Y_{\varphi_1} \times Z_1) \cup (Y_{\varphi_2} \times Z_2) \cup (Y_{\varphi_3} \times Z_3),$$

where Z_1, Z_2, Z_3 are pairwise different elements of a given semilattice *D*. Then number of different binary relations $\overline{\beta}$ of a semigroup $B_{\chi}(D)$ is equal to

$$6 \cdot k_n^3 = 3^n - 3 \cdot 2^n + 3. \tag{2.1.4}$$

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}, Y_{\varphi_4}$ are any four elements partitioning of a set X and

$$\overline{\beta} = \left(Y_{\varphi_1} \times Z_1\right) \cup \left(Y_{\varphi_2} \times Z_2\right) \cup \left(Y_{\varphi_3} \times Z_3\right) \cup \left(Y_{\varphi_4} \times Z_4\right),$$

where Z_1, Z_2, Z_3, Z_4 are pairwise different elements of a given semilattice *D*. Then number of different binary relations $\overline{\beta}$ of a semigroup $B_{\chi}(D)$ is equal to

$$24 \cdot k_n^4 = 4^n - 4 \cdot 3^n + 3 \cdot 2^{n+1} - 4.$$
(2.1.5)

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}, Y_{\varphi_4}, Y_{\varphi_5}$ are any four elements partitioning of a set X and

$$\overline{\beta} = (Y_{\varphi_1} \times Z_1) \cup (Y_{\varphi_2} \times Z_2) \cup (Y_{\varphi_3} \times Z_3) \cup (Y_{\varphi_4} \times Z_4) \cup (Y_{\varphi_5} \times Z_5),$$

where Z_1, Z_2, Z_3, Z_4, Z_5 are pairwise different elements of a given semilattice *D*. Then number of different binary relations $\overline{\beta}$ of a semigroup $B_{\chi}(D)$ is equal to

$$120 \cdot k_n^5 = 5^n - 5 \cdot 4^n + 10 \cdot 3^n - 10 \cdot 2^n + 5.$$
(2.1.6)

If $\alpha \in B_0$, then quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_3^{\alpha} \times T_3) \cup (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or a system $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha}$ are partitioning of the set *X*.

If the system $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}$, or a system $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha}$ are partitioning of the set X. Of this and from the equalities (2.1.4), (2.1.5) and (2.1.6) follows that

$$|B_0| = (5^n - 5 \cdot 4^n + 10 \cdot 3^n - 10 \cdot 2^n + 5) + (4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4)$$

= 5ⁿ - 4 \cdot 4ⁿ + 6 \cdot 3ⁿ - 4 \cdot 2ⁿ + 1.

If $\alpha \in B(\mathfrak{A}_0)$, then by definition of a set $B(\mathfrak{A}_0)$ the quasinormal representation of a binary relation α has a form:

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_2^{\alpha} \times T_2\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_1^{\alpha} \times T_1\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_3^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_3^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_3^{\alpha} \times T_3) \cup (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_3^{\alpha} \times T_3) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha}, Y_3^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_3^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_1^{\alpha} \times T_1\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_2^{\alpha} \times T_2\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$, or $Y_3^{\alpha}, Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_2^{\alpha}, Y_1^{\alpha} \in \{\emptyset\}$, or $Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \in \{\emptyset\}$ are partitioning of the set X respectively.

Of this and from the equality (2.1.3), (2.1.4) and (2.1.5) follows that

$$|B(\mathfrak{A}_0)| = 4 \cdot (2^n - 2) + 8 \cdot (3^n - 3 \cdot 2^n + 3) + 4 \cdot (4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4)$$

= 4 \cdot 4^n - 8 \cdot 3^n + 4 \cdot 2^n.

So, we have

$$\begin{aligned} |S_0| &= |B_0 \cup B(\mathfrak{A}_0)| = (5^n - 4 \cdot 4^n + 6 \cdot 3^n - 4 \cdot 2^n + 1) + (4 \cdot 4^n - 8 \cdot 3^n + 4 \cdot 2^n) \\ &= 5^n - 2 \cdot 3^n + 1, \\ |S_1| &= |B_0 \cup B(\mathfrak{A}_o) \cup \{X \times T_4, X \times T_3\}| = 5^n - 2 \cdot 3^n + 3 \end{aligned}$$

Since

$$B_0 \cap B(\mathfrak{A}_0) = B_0 \cap \{X \times T_4, X \times T_3, X \times T_2\} = B(\mathfrak{A}_0) \cap \{X \times T_4, X \times T_3, X \times T_2\} = \emptyset.$$

Theorem 2.1.2 is proved.

2.2. Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_8(X,5)$, When $T_4 \cap T_3 = \emptyset$

In the sequel, we denoted all semilattices $D = \{T_4, T_3, T_2, T_1, T_0\}$ of the class $\Sigma_8(X, 5)$ by symbol $\Sigma_{8,1}(X, 5)$ for which $T_4 \cap T_3 = \emptyset$. Of the last equality from the formal equalities of a semilattise D follows that $T_4 \cap T_3 = P_0 = \emptyset$, *i.e.* $|X| \ge 4$ since $P_4 \neq \emptyset$, $P_3 \neq \emptyset$, $P_2 \neq \emptyset$, $P_1 \neq \emptyset$.

In this case, the formal equalities of the semilattice D have a form:

$$\begin{split} T_{0} &= P_{1} \cup P_{2} \cup P_{3} \cup P_{4}, \\ T_{1} &= P_{2} \cup P_{3} \cup P_{4}, \\ T_{2} &= P_{1} \cup P_{3} \cup P_{4}, \\ T_{3} &= P_{2} \cup P_{4}, \\ T_{4} &= P_{1} \cup P_{3}. \end{split}$$
(2.2.1)

From the formal equalities of the semilattise *D* immediately follows, that:

$$P_4 = T_2 \setminus T_4, \ P_3 = T_1 \setminus T_3, \ P_2 = T_1 \setminus T_2, \ P_1 = T_2 \setminus T_1.$$
(2.2.2)

In this case we suppose that $D \in \Sigma_{8,1}(X,5)$.

By symbols $\mathfrak{A}_4, \mathfrak{A}_3, \mathfrak{A}_2$ and \mathfrak{A}_1 we denoted the following sets:

$$\begin{aligned} \mathfrak{A}_{4} &= \left\{ \left\{ T_{4}, T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{4}, T_{3}, T_{1}, T_{0} \right\}, \left\{ T_{4}, T_{2}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{1}, T_{0} \right\} \right\}, \\ \mathfrak{A}_{3} &= \left\{ \left\{ T_{4}, T_{3}, T_{0} \right\}, \left\{ T_{4}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{4}, T_{2}, T_{0} \right\}, \left\{ T_{3}, T_{1}, T_{0} \right\}, \left\{ T_{2}, T_{1}, T_{0} \right\} \right\}, \\ \mathfrak{A}_{2} &= \left\{ \left\{ T_{4}, T_{2} \right\}, \left\{ T_{4}, T_{0} \right\}, \left\{ T_{3}, T_{1} \right\}, \left\{ T_{3}, T_{0} \right\}, \left\{ T_{2}, T_{0} \right\}, \left\{ T_{1}, T_{0} \right\} \right\}, \\ \mathfrak{A}_{1} &= \left\{ \left\{ T_{4} \right\}, \left\{ T_{3} \right\}, \left\{ T_{2} \right\}, \left\{ T_{1} \right\}, \left\{ T_{3} \right\} \right\}. \end{aligned}$$

Lemma 2.2.1. Let $D \in \Sigma_{8,1}(X,5)$. Then the following statements are true:

a) Let $Z, Z' \in \{T_4, T_3, T_2\}$, $Z \neq Z'$. If $Z, Z' \in V(D, \alpha)$, then α is external element of the semigroup $B_{\chi}(D)$;

b) Let $Z \in \{T_2, T_1\}$, $Z' \in \{T_4, T_3\}$. If $Z \not\subset Z'$ and $Z, Z' \in V(D, \alpha)$, then α is external element of the semigroup $B_{\chi}(D)$.

Proof. Let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_{\chi}(D) \setminus \{\alpha\}$. If quasinormal representation of binary relation δ has a form

$$\delta = \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_3^{\delta} \times T_3\right) \cup \left(Y_2^{\delta} \times T_2\right) \cup \left(Y_1^{\delta} \times T_1\right) \cup \left(Y_0^{\delta} \times T_0\right),$$

then

$$\alpha = \delta \circ \beta = \left(Y_4^{\delta} \times T_4 \beta\right) \cup \left(Y_3^{\delta} \times T_3 \beta\right) \cup \left(Y_2^{\delta} \times T_2 \beta\right) \cup \left(Y_1^{\delta} \times T_1 \beta\right) \cup \left(Y_0^{\delta} \times T_0 \beta\right). (2.2.3)$$

From the formal equalities (2.2.1) of the semilattice D we obtain that:

$$T_{0}\beta = P_{1}\beta \cup P_{2}\beta \cup P_{3}\beta \cup P_{4}\beta,$$

$$T_{1}\beta = P_{2}\beta \cup P_{3}\beta \cup P_{4}\beta,$$

$$T_{2}\beta = P_{1}\beta \cup P_{3}\beta \cup P_{4}\beta,$$

$$T_{3}\beta = P_{2}\beta \cup P_{4}\beta,$$

$$T_{4}\beta = P_{1}\beta \cup P_{3}\beta,$$

(2.2.4)

where $P_i \beta \neq \emptyset$ for any $P_i \neq \emptyset$ (i = 1, 2, 3, 4) and $\beta \in B_X(D)$. Indeed, by preposition $P_i \neq \emptyset$ for any i = 1, 2, 3, 4 and $\beta \neq \emptyset$ since $\emptyset \notin D$. Let $y \in P_i$ for some $y \in X$, then $y \in \overline{D}$, $\beta = \alpha_f$ for some $f: X \to D$ and

 $\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x)) \supseteq \{y\} \times f(y), \text{$ *i.e.* $there exists an element } z \in f(y) \text{ for which } y\alpha_f z \text{ and } y\beta z. \text{ Of this and by definition of a set } P_i\beta \text{ we obtain that } z \in P_i\beta \text{ since } y \in P_i, y\beta z. \text{ Thus, we have } P_i\beta \neq \emptyset, \text{$ *i.e.* $} P_i\beta \in D \text{ for any } i = 1, 2, 3, 4.$

Now, let $T_i\beta = Z$ and $T_j\beta = Z'$ for some $0 \le i \ne j \le 4$ and $Z \ne Z'$, $Z, Z' \in \{T_4, T_3\}$, then from the Equalities (2.2.4) follows that $Z = P_0\beta = Z'$ since Z and Z' are minimal elements of the semilattice D. The equality Z = Z' contradicts the inequality $Z \ne Z'$.

The statement a) of the Lemma 2.2.1 is proved.

Let $T_i\beta = Z'$, where $Z' \in \{T_4, T_3\}$ and $T_j\beta = Z$, $Z \in \{T_2, T_1\}$ for some $0 \le i \ne j \le 4$. If $0 \le i \le 4$, then from the formal equalities of a semilattice *D* we

obtain that

$$\begin{split} T_0 \beta &= P_1 \beta \cup P_2 \beta \cup P_3 \beta \cup P_4 \beta = P_1 \beta = P_2 \beta = P_3 \beta = P_4 \beta = Z', \\ T_1 \beta &= P_2 \beta \cup P_3 \beta \cup P_4 \beta = P_2 \beta = P_3 \beta = P_4 \beta = Z', \\ T_2 \beta &= P_1 \beta \cup P_3 \beta \cup P_4 \beta = P_1 \beta = P_3 \beta = P_4 \beta = Z', \\ T_3 \beta &= P_2 \beta \cup P_4 \beta = P_2 \beta = P_4 \beta = Z', \\ T_4 \beta &= P_1 \beta \cup P_3 \beta = P_1 \beta = P_3 \beta = Z', \end{split}$$

since Z' is minimal element of the semilattice D. Now, let $i \neq j$. 1) If $T_0\beta = P_1\beta = P_2\beta = P_3\beta = P_4\beta = Z'$ and j = 1, 2, 3, 4, then we have $Z = T_1\beta = T_2\beta = T_3\beta = T_4\beta = Z'$,

which contradicts the inequality $Z \neq Z'$. 2) If $T_1\beta = P_2\beta = P_3\beta = P_4\beta = Z'$ and j = 0, 2, 3, 4, then we have

$$Z = T_0\beta = T_2\beta = T_4\beta = Z' \cup P_1\beta, \text{ where } P_1\beta \in D;$$

$$Z = T_3\beta = Z'.$$

Last equalities are impossible since $Z \neq Z' \cup T$ for any $T \in D$ and $Z \neq Z'$ by definition of a semilattice D.

3) If
$$T_2\beta = P_1\beta = P_3\beta = P_4\beta = Z'$$
 and $j = 0,1,3,4$, then we have
 $Z = T_0\beta = T_2\beta = T_4\beta = Z' \cup P_1\beta$, where $P_1\beta \in D$;
 $Z = T_3\beta = Z'$.

Last equalities are impossible since for any $T \in D$ and $Z \neq Z'$ by definition of a semilattice D.

4) If $T_3\beta = P_2\beta = P_4\beta = Z'$ and j = 0, 1, 2, 4, then we have

$$Z = T_0\beta = T_2\beta = T_4\beta = Z' \cup P_1\beta \cup P_3\beta,$$

$$Z = T_1\beta = Z' \cup P_3\beta, \text{ where } P_1\beta, P_3\beta \in D.$$

Last equalities are impossible since $Z \neq Z' \cup T \cup T'$ and $Z \neq Z' \cup T$ for any $T, T' \in D$, by definition of a semilattice D.

5) If $T_4\beta = P_1\beta = P_3\beta = Z'$ and j = 0, 1, 2, 3, then we have

$$Z = T_0 \beta = T_1 \beta = T_3 \beta = Z' \cup P_2 \beta \cup P_4 \beta,$$

$$Z = T_2 \beta = Z' \cup P_4 \beta, \text{ where } P_2 \beta, P_4 \beta \in D.$$

Last equalities are impossible since $Z \neq Z' \cup T \cup T'$ and $Z \neq Z' \cup T$ for any $T, T' \in D$, by definition of a semilattice D.

The statement b) of the Lemma 2.2.1 is proved.

Lemma 2.2.1 is proved.

Let $D \in \Sigma_{8,1}(X,5)$. We denoted the following sets by symbols \mathfrak{A}_0 , $B(\mathfrak{A}_0)$ and B_0 :

$$\mathfrak{A}_{0} = \{\{T_{4}, T_{3}, T_{2}, T_{0}\}, \{T_{4}, T_{3}, T_{1}, T_{0}\}, \{T_{4}, T_{2}, T_{1}, T_{0}\}, \{T_{3}, T_{2}, T_{1}, T_{0}\}, \{T_{4}, T_{3}, T_{0}\}, \{T_{4}, T_{1}, T_{0}\}, \{T_{3}, T_{2}, T_{0}\}\},$$
$$B(\mathfrak{A}_{0}) = \{\alpha \in B_{X}(D) | V(X^{*}, \alpha) \in \mathfrak{A}_{0}\}; B_{0} = \{\alpha \in B_{X}(D) | V(X^{*}, \alpha) = D\}.$$

Remark, that the sets B_0 and $B(\mathfrak{A}_0)$ are external elements for the semigroup $B_{\chi}(D)$. **Lemma 2.2.2.** Let $D \in \Sigma_{8,1}(X,5)$. Then the following statements are true:

a) If quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_2^{\alpha} \times T_2) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha}, Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

b) If quasinormal representation of a binary relation α has a form

$$\alpha = \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_1^{\alpha} \times T_1\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_3^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

c) If quasinormal representation of a binary relation α has a form

$$\alpha = (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B_0 \cup B(\mathfrak{A}_0)$.

Proof. 1). Let quasinormal representation of binary relations δ and β have a form

$$\begin{split} &\delta = \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_2^{\delta} \times T_2\right) \cup \left(Y_1^{\delta} \times T_1\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ &\beta = \left(T_4 \times T_4\right) \cup \left(\left(T_2 \setminus T_4\right) \times T_2\right) \cup \left(\left(T_0 \setminus T_2\right) \times T_1\right) \cup \left(\left(X \setminus T_0\right) \times T_0\right), \end{split}$$

where $Y_4^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$,

$$T_4 \cup (T_2 \setminus T_4) \cup (T_0 \setminus T_2) \cup (X \setminus T_0)$$

= $(P_1 \cup P_3) \cup P_4 \cup P_2 \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X,$

(see Equalities (2.2.1) and (2.2.2)), then $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$\begin{aligned} T_4 \beta &= T_4, \ T_2 \beta = \left(P_1 \cup P_3 \cup P_4\right) \beta = T_4 \cup T_2 = T_2, \\ T_1 \beta &= \left(P_2 \cup P_3 \cup P_4\right) \beta = T_4 \cup T_1 = T_0, \ T_0 \beta = T_0. \\ \alpha &= \delta \circ \beta = \left(Y_4^\delta \times T_4 \beta\right) \cup \left(Y_2^\delta \times T_2 \beta\right) \cup \left(Y_1^\delta \times T_1 \beta\right) \cup \left(Y_0^\delta \times T_0 \beta\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(Y_2^\delta \times T_2\right) \cup \left(Y_1^\delta \times T_0\right) \cup \left(Y_0^\delta \times T_0\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(Y_2^\delta \times T_2\right) \cup \left(\left(Y_1^\delta \cup Y_0^\delta\right) \times T_0\right) = \alpha, \end{aligned}$$

if $Y_4^{\delta} = Y_4^{\alpha}$, $Y_2^{\delta} = Y_2^{\alpha}$ and $Y_1^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $|Y_1^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement a) of the lemma 2.2.2 is proved.

2) Let quasinormal representation of binary relations δ and β have a form

$$\delta = (Y_3^{\delta} \times T_3) \cup (Y_2^{\delta} \times T_2) \cup (Y_1^{\delta} \times T_1) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_3 \times T_3) \cup ((T_0 \setminus T_1) \times T_2) \cup ((T_1 \setminus T_3) \times T_1) \cup ((X \setminus T_0) \times T_0).$$

where $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$,

$$T_{3} \cup (T_{0} \setminus T_{1}) \cup (T_{1} \setminus T_{3}) \cup (X \setminus T_{0})$$

= $(P_{2} \cup P_{4}) \cup P_{1} \cup P_{3} \cup (X \setminus T_{0}) = T_{0} \cup (X \setminus T_{0}) = X,$

(see Equalities (2.2.1) and (2.2.2)), then $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$\begin{split} T_4 \beta &= T_3, \ T_2 \beta = \left(P_1 \cup P_3 \cup P_4\right) \beta = T_3 \cup T_2 \cup T_1 = T_0, \\ T_1 \beta &= \left(P_2 \cup P_3 \cup P_4\right) \beta = T_3 \cup T_1 = T_0, \ T_0 \beta = T_0. \\ \alpha &= \delta \circ \beta = \left(Y_3^\delta \times T_3 \beta\right) \cup \left(Y_2^\delta \times T_2 \beta\right) \cup \left(Y_1^\delta \times T_1 \beta\right) \cup \left(Y_0^\delta \times T_0 \beta\right) \\ &= \left(Y_3^\delta \times T_3\right) \cup \left(Y_2^\delta \times T_0\right) \cup \left(Y_1^\delta \times T_1\right) \cup \left(Y_0^\delta \times T_0\right) \\ &= \left(Y_3^\delta \times T_3\right) \cup \left(Y_1^\delta \times T_1\right) \cup \left(\left(Y_2^\delta \cup Y_0^\delta\right) \times T_0\right) = \alpha, \end{split}$$

if $Y_3^{\delta} = Y_3^{\alpha}$, $Y_1^{\delta} = Y_1^{\alpha}$ and $Y_2^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $|Y_2^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement b) of the lemma 2.2.2 is proved.

3) Let quasinormal representation of binary relations $\,\delta\,$ and $\,\beta\,$ have a form

$$\begin{split} \delta &= \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_3^{\delta} \times T_3\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ \beta &= \left(\left(T_2 \setminus T_1\right) \times T_4\right) \cup \left(\left(T_1 \setminus T_2\right) \times T_3\right) \cup \left(\left(T_1 \setminus T_3\right) \times T_2\right) \\ &\cup \left(\left(T_2 \setminus T_4\right) \times T_1\right) \cup \left(\left(X \setminus T_0\right) \times T_0\right), \end{split}$$

where $Y_4^{\alpha}, Y_3^{\alpha} \notin \{\emptyset\}$,

$$(T_2 \setminus T_1) \cup (T_1 \setminus T_2) \cup (T_1 \setminus T_3) \cup (T_2 \setminus T_4) \cup (X \setminus T_0) = P_1 \cup P_2 \cup P_3 \cup P_4 \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X,$$

(see Equalities (2.2.1) and (2.2.2)), then $\delta \in B(\mathfrak{A}_0)$, $\beta \in B_0$ and

$$T_{4}\beta = (P_{1} \cup P_{3})\beta = T_{4} \cup T_{2} = T_{2},$$

$$T_{3}\beta = (P_{2} \cup P_{4})\beta = T_{3} \cup T_{1} = T_{1}, T_{0}\beta = T_{2} \cup T_{1} = T_{0},$$

$$\alpha = \delta \circ \beta = (Y_{4}^{\delta} \times T_{4}\beta) \cup (Y_{3}^{\delta} \times T_{3}\beta) \cup (Y_{0}^{\delta} \times T_{0}\beta)$$

$$= (Y_{4}^{\delta} \times T_{2}) \cup (Y_{3}^{\delta} \times T_{1}) \cup (Y_{0}^{\delta} \times T_{0}) = \alpha,$$

if $Y_4^{\delta} = Y_2^{\alpha}$, $Y_3^{\delta} = Y_1^{\alpha}$ and $Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $|Y_4^{\delta}| \ge 1$, $|Y_3^{\delta}| \ge 1$ and $|Y_0^{\delta}| \ge 0$.

The statement c) of the lemma 2.2.2 is proved.

Lemma 2.2.2 is proved.

Lemma 2.2.3. Let $D \in \Sigma_{8,1}(X,5)$. Then the following statements are true: a) If quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_2^{\alpha} \times T_2),$$

where $Y_4^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

b) If quasinormal representation of a binary relation α has a form $\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_0^{\alpha} \times T_0),$ where $Y_4^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

c) If quasinormal representation of a binary relation α has a form $\alpha = (Y_3^{\alpha} \times T_3) \cup (Y_1^{\alpha} \times T_1),$

where $Y_3^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

d) If quasinormal representation of a binary relation α has a form $\alpha = (Y_3^{\alpha} \times T_3) \cup (Y_0^{\alpha} \times T_0),$

where $Y_3^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

e) If quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times T_2) \cup (Y_0^{\alpha} \times T_0),$

where $Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

f) If quasinormal representation of a binary relation α has a form $\alpha = (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$

where $Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

g) If quasinormal representation of a binary relation α has a form

 $\alpha = X \times T_2$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

h) If quasinormal representation of a binary relation α has a form

 $\alpha = X \times T_1$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

i) If quasinormal representation of a binary relation α has a form

 $\alpha = X \times T_0$, then α is generating by elements of the elements of set $B(\mathfrak{A}_0)$.

Proof. 1) Let quasinormal representation of a binary relations δ , β have a form

$$\begin{split} \delta &= \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_1^{\delta} \times T_1\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ \beta &= \left(T_4 \times T_4\right) \cup \left(\left(T_0 \setminus T_4\right) \times T_2\right) \cup \left(\left(X \setminus T_0\right) \times T_0\right), \end{split}$$

where $Y_4^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$.

$$T_4 \cup (T_0 \setminus T_4) \cup (X \setminus T_0)$$

= $(P_1 \cup P_3) \cup (P_2 \cup P_4) \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X.$

Then from the statement a) of the Lemma 2.2.2 follows that β is generating by elements of the set $B(\mathfrak{A}_0)$, $\delta \in B(\mathfrak{A}_0)$ and

$$\begin{split} T_4 \beta &= T_4, \ T_1 \beta = T_4 \cup T_2 = T_2, \ T_0 \beta = T_2. \\ \delta \circ \beta &= \left(Y_4^\delta \times T_4 \beta\right) \cup \left(Y_1^\delta \times T_1 \beta\right) \cup \left(Y_0^\delta \times T_0 \beta\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(Y_1^\delta \times T_2\right) \cup \left(Y_0^\delta \times T_2\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(\left(Y_1^\delta \cup Y_0^\delta\right) \times T_2\right) = \alpha, \end{split}$$

If $Y_4^{\delta} = Y_4^{\alpha}$, $Y_1^{\delta} \cup Y_0^{\delta} = Y_2^{\alpha}$. Last equalities are possible since $|Y_1^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement a) of the lemma 2.2.3 is proved.

2) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_4^{\delta} \times T_4) \cup (Y_1^{\delta} \times T_1) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_4 \times T_4) \cup ((T_0 \setminus T_4) \times T_3) \cup ((X \setminus T) \times T_0),$$

where $Y_4^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$.

$$T_4 \cup (T_0 \setminus T_4) \cup (X \setminus T_0)$$

= $(P_1 \cup P_3) \cup (P_2 \cup P_4) \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X.$

Then from $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$\begin{split} T_4 \beta &= T_4, \ T_1 \beta = T_4 \cup T_3 = T_0, \ T_0 \beta = T_0. \\ \delta \circ \beta &= \left(Y_4^\delta \times T_4 \beta\right) \cup \left(Y_1^\delta \times T_1 \beta\right) \cup \left(Y_0^\delta \times T_0 \beta\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(Y_1^\delta \times T_0\right) \cup \left(Y_0^\delta \times T_0\right) \\ &= \left(Y_4^\delta \times T_4\right) \cup \left(\left(Y_1^\delta \cup Y_0^\delta\right) \times T_0\right) = \alpha, \end{split}$$

 $\begin{array}{ll} \text{if} & Y_4^\delta = Y_4^\alpha \text{,} & Y_1^\delta \cup Y_0^\delta = Y_0^\alpha \text{. Last equalities are possible since } & \left|Y_1^\delta \cup Y_0^\delta\right| \geq 1 \\ (& \left|Y_0^\delta\right| \geq 0 \quad \text{by preposition}). \end{array}$

The statement b) of the lemma 2.2.3 is proved.

3) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_3^{\delta} \times T_3) \cup (Y_2^{\delta} \times T_2) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_3 \times T_3) \cup ((T_0 \setminus T_3) \times T_1) \cup ((X \setminus T_0) \times T_0),$$

where $Y_4^{\delta}, Y_2^{\delta} \notin \{\emptyset\}$.

$$T_{3} \cup (T_{0} \setminus T_{3}) \cup (X \setminus T_{0})$$

= $(P_{2} \cup P_{4}) \cup (P_{1} \cup P_{3}) \cup (X \setminus T_{0}) = T_{0} \cup (X \setminus T_{0}) = X.$

Then from the statement b) of the Lemma 2.2.2 follows that β is generating by elements of the set $B(\mathfrak{A}_0)$, $\delta \in B(\mathfrak{A}_0)$ and

$$T_{3}\beta = T_{3}, T_{2}\beta = T_{3} \cup T_{1} = T_{1}, T_{0}\beta = T_{1}.$$

$$\delta \circ \beta = \left(Y_{2}^{\delta} \times T_{3}\beta\right) \cup \left(Y_{2}^{\delta} \times T_{2}\beta\right) \cup \left(Y_{0}^{\delta} \times T_{0}\beta\right)$$

$$= \left(Y_{3}^{\delta} \times T_{3}\right) \cup \left(Y_{2}^{\delta} \times T_{1}\right) \cup \left(Y_{0}^{\delta} \times T_{1}\right)$$

$$= \left(Y_{3}^{\delta} \times T_{3}\right) \cup \left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{1}\right) = \alpha,$$

if $Y_3^{\delta} = Y_3^{\alpha}$, $Y_2^{\delta} \cup Y_0^{\delta} = Y_1^{\alpha}$. Last equalities are possible since $|Y_2^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement c) of the lemma 2.2.3 is proved.

4) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_3^{\delta} \times T_3) \cup (Y_2^{\delta} \times T_2) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_3 \times T_3) \cup ((T_0 \setminus T_3) \times T_2) \cup ((X \setminus T_0) \times T_0),$$

where $Y_3^{\delta}, Y_2^{\delta} \notin \{\emptyset\}$. Then $\delta, \beta \in B(\mathfrak{A}_0)$ and

$$T_{3}\beta = T_{3}, T_{2}\beta = T_{3} \cup T_{2} = T_{0}, T_{0}\beta = T_{0}.$$

$$\delta \circ \beta = (Y_{3}^{\delta} \times T_{3}\beta) \cup (Y_{2}^{\delta} \times T_{2}\beta) \cup (Y_{0}^{\delta} \times T_{0}\beta)$$

$$= (Y_{3}^{\delta} \times T_{3}) \cup (Y_{2}^{\delta} \times T_{0}) \cup (Y_{0}^{\delta} \times T_{0})$$

$$= (Y_{3}^{\delta} \times T_{3}) \cup ((Y_{2}^{\delta} \cup Y_{0}^{\delta}) \times T_{0}) = \alpha,$$

if $Y_3^{\delta} = Y_3^{\alpha}$, $Y_2^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha}$. Last equalities are possible since $|Y_2^{\delta} \cup Y_0^{\delta}| \ge 1$ ($|Y_0^{\delta}| \ge 0$ by preposition).

The statement d) of the lemma 2.2.3 is proved.

5) Let quasinormal representation of a binary relations δ , β have a form

$$\begin{split} \delta &= \left(Y_4^{\delta} \times T_4\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ \beta &= \left(\left(\left(T_2 \cap T_1\right) \setminus T_3\right) \times T_4\right) \cup \left(\left(T_2 \setminus T_1\right) \times T_2\right) \cup \left(\left(X \setminus T_4\right) \times T_0\right), \end{split}$$

where $Y_4^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$\left(\left(T_2 \cap T_1\right) \setminus T_3\right) \cup \left(T_2 \setminus T_1\right) \cup \left(X \setminus T_4\right) = P_3 \cup P_1 \cup \left(X \setminus T_4\right) = T_4 \cup \left(X \setminus T_4\right) = X.$$

(See Equalities (2.2.1) and (2.2.2)). Then from the statement b) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement a) of the Lemma 2.2.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$T_4 \beta = (P_1 \cup P_3) \beta = T_4 \cup T_2 = T_2, \ T_0 \beta = T_0.$$

$$\delta \circ \beta = (Y_4^{\delta} \times T_4 \beta) \cup (Y_0^{\delta} \times T_0 \beta) = (Y_4^{\delta} \times T_2) \cup (Y_0^{\delta} \times T_0) = \alpha,$$

 $\text{if } \ Y_4^\delta = Y_2^\alpha \ \text{,} \ \ Y_0^\delta = Y_0^\alpha \ \text{. Last equalities are possible since } \ \left|Y_4^\delta\right| \geq 1 \quad \left|Y_0^\delta\right| \geq 1 \,.$

The statement e) of the lemma 2.2.3 is proved.

6) Let quasinormal representation of a binary relations δ , β have a form

$$\begin{split} \delta &= \left(Y_3^{\delta} \times T_3\right) \cup \left(Y_0^{\delta} \times T_0\right), \\ \beta &= \left(\left(\left(T_2 \cap T_1\right) \setminus T_4\right) \times T_3\right) \cup \left(\left(T_1 \setminus T_2\right) \times T_1\right) \cup \left(\left(X \setminus T_3\right) \times T_0\right), \end{split}$$

where $Y_3^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$\left(\left(T_{2}\cap T_{1}\right)\setminus T_{4}\right)\cup\left(T_{1}\setminus T_{2}\right)\cup\left(X\setminus T_{3}\right)=P_{4}\cup P_{2}\cup\left(X\setminus T_{3}\right)=T_{3}\cup\left(X\setminus T_{3}\right)=X.$$

(see Equalities (2.2.1) and (2.2.2)). Then from the statement d) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement b) of the Lemma 2.2.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$T_{3}\beta = (P_{2} \cup P_{4})\beta = T_{3} \cup T_{1} = T_{1}, \ T_{0}\beta = T_{0}.$$

$$\delta \circ \beta = (Y_{3}^{\delta} \times T_{3}\beta) \cup (Y_{0}^{\delta} \times T_{0}\beta) = (Y_{3}^{\delta} \times T_{1}) \cup (Y_{0}^{\delta} \times T_{0}) = \alpha,$$

 $\text{if} \ \ Y_3^\delta = Y_1^\alpha \ \text{,} \ \ Y_0^\delta = Y_0^\alpha \ \text{. Last equalities are possible since } \ \left|Y_4^\delta\right| \geq 1 \quad \left|Y_0^\delta\right| \geq 1 \ .$

The statement e) of the lemma 2.2.3 is proved.

7) Let quasinormal representation of a binary relations $~\delta$, $~\beta~$ have a form

$$\delta = (Y_2^{\delta} \times T_2) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_1 \times T_4) \cup ((T_2 \setminus T_1) \times T_2) \cup ((X \setminus T_0) \times T_0),$$

where $Y_2^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$T_1 \cup (T_2 \setminus T_1) \cup (X \setminus T_0) = (P_2 \cup P_3 \cup P_4) \cup P_1 \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X$$

(see Equalities (2.2.1) and (2.2.2)). Then from the statement e) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement a) of the Lemma 2.2.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$\begin{split} T_2 \beta &= T_4 \cup T_2 = T_2, T_0 \beta = T_2 \\ \delta \circ \beta &= \left(Y_2^{\delta} \times T_2 \beta \right) \cup \left(Y_0^{\delta} \times T_0 \beta \right) = \left(Y_2^{\delta} \times T_2 \right) \cup \left(Y_0^{\delta} \times T_2 \right) = X \times T_2 = \alpha, \end{split}$$

since representation of a binary relation δ is quasinormal.

The statement g) of the lemma 2.2.3 is proved.

8) Let quasinormal representation of a binary relations δ , β have a form

$$\delta = (Y_1^{\delta} \times T_1) \cup (Y_0^{\delta} \times T_0),$$

$$\beta = (T_2 \times T_3) \cup ((T_1 \setminus T_2) \times T_1) \cup ((X \setminus T_0) \times T_0),$$

where $Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$,

$$T_2 \cup (T_1 \setminus T_2) \cup (X \setminus T_0) = (P_1 \cup P_3 \cup P_4) \cup P_2 \cup (X \setminus T_0) = T_0 \cup (X \setminus T_0) = X$$

(see Equalities (2.2.1) and (2.2.2)). Then from the statement f) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B(\mathfrak{A}_0)$ and from the statement b) of the Lemma 2.2.2 element β is generating by elements of the set $B(\mathfrak{A}_0)$ and

$$T_1 \beta = T_3 \cup T_1 = T_1, T_0 \beta = T_1$$

$$\delta \circ \beta = \left(Y_1^{\delta} \times T_1 \beta\right) \cup \left(Y_0^{\delta} \times T_0 \beta\right) = \left(Y_1^{\delta} \times T_1\right) \cup \left(Y_0^{\delta} \times T_1\right) = X \times T_1 = \alpha,$$

since representation of a binary relation δ is quasinormal.

The statement h) of the lemma 2.2.3 is proved.

9) Let quasinormal representation of a binary relation δ has a form

$$\delta = (T_4 \times T_1) \cup ((X \setminus T_4) \times T_0),$$

then

$$T_1 \delta = (P_2 \cup P_3 \cup P_4) \delta = T_4 \cup T_0 = T_0, \ T_0 \delta = T_0$$

$$\delta \circ \delta = (T_4 \times T_1 \delta) \cup ((X \setminus T_4) \times T_0 \delta) = (T_4 \times T_0) \cup ((X \setminus T_4) \times T_0) = X \setminus T_0 = \alpha$$

since representation of a binary relation δ is quasinormal.

The statement i) of the lemma 2.2.3 is proved.

Lemma 2.2.3 is proved.

Lemma 2.2.4. Let $D \in \Sigma_{8,1}(X,5)$. Then the following statements are true: a) If $|X \setminus T_0| \ge 1$ and $Z \in \{T_4, T_3\}$, then binary relation $\alpha = X \times Z$ is generating by elements of the elements of set $B(\mathfrak{A}_0)$;

b) If $X = T_0$ and $Z \in \{T_4, T_3\}$, then binary relation $\alpha = X \times Z$ is external element for the semigroup $B_{\chi}(D)$.

Proof. 1) Let quasinormal representation of a binary relation δ has a form $\delta = (Y_4^{\delta} \times T_4) \cup (Y_3^{\delta} \times T_3) \cup (Y_0^{\delta} \times T_0)$,

where $Y_4^{\delta}, Y_3^{\delta} \notin \{\emptyset\}$, then $\delta \in B(\mathfrak{A}_0) \setminus \{\alpha\}$. If quasinormal representation of a binary relation β has a form $\beta = (T_0 \times T) \cup \bigcup_{t' \in X \setminus T_0} (\{t'\} \times f(t'))$, where f is any mapping of the set $X \setminus T_0$ in the set $\{T_4, T_3\} \setminus \{Z\}$. It is easy to see, that $\beta \neq \alpha$ and two elements of the set $\{T_4, T_3\}$ belong to the semilattice $V(D, \beta)$, *i.e.* $\delta \in B(\mathfrak{A}_0) \setminus \{\alpha\}$. In this case we have

$$T_{4}\beta = T_{3}\beta = T_{0}\beta = Z;$$

$$\delta \circ \beta = \left(Y_{4}^{\delta} \times T_{4}\beta\right) \cup \left(Y_{3}^{\delta} \times T_{3}\beta\right) \cup \left(Y_{0}^{\delta} \times T_{0}\beta\right)$$

$$= \left(Y_{4}^{\delta} \times Z\right) \cup \left(Y_{3}^{\delta} \times Z\right) \cup \left(Y_{0}^{\delta} \times Z\right)$$

$$= \left(\left(Y_{4}^{\delta} \cup Y_{3}^{\delta} \cup Y_{0}^{\delta}\right) \times Z\right) = X \times Z = \alpha,$$

since the representation of a binary relation δ is quasinormal. Thus, element α is generating by elements of the set $B(\mathfrak{A}_0)$.

The statement a) of the lemma 2.2.4 is proved.

2) Let $X = T_0$, $\alpha = X \times Z$, for some $Z \in \{T_4, T_3\}$ and $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_X(D) \setminus \{\alpha\}$. Then from the Equalities (2.2.3) and (2.2.4) we obtain that

$$T_4\beta = T_3\beta = T_2\beta = T_1\beta = T_0\beta = Z, \ P_1\beta = P_2\beta = P_3\beta = P_4\beta = Z,$$

since Z is minimal element of the semilattice D.

Now, let subquasinormal representations $\overline{\beta}$ of a binary relation β has a form

$$\overline{\beta} = \left(\left(P_1 \cup P_2 \cup P_3 \cup P_4 \right) \times Z \right) \cup \bigcup_{t' \in X \setminus T_0} \left(\left\{ t' \right\} \times \overline{\beta}_2 \left(t' \right) \right),$$

where $\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \emptyset & Z & Z & Z & Z \end{pmatrix}$ is normal mapping. But complement mapping

 $\overline{\beta}_2$ is empty, since $X \setminus T_0 = \emptyset$, *i.e.* in the given case, subquasinormal representation $\overline{\beta}$ of a binary relation β is defined uniquely. So, we have that

 $\beta = \overline{\beta} = X \times Z = \alpha$, which contradicts the condition $\beta \notin B_X(D) \setminus \{\alpha\}$.

Therefore, if $X = T_0$ and $\alpha = X \times Z$, for some $Z \in \{T_4, T_3\}$, then α is external element of the semigroup $B_{\chi}(D)$.

The statement b) of the lemma 2.2.4 is proved.

lemma 2.2.4 is proved.

Theorem 2.2.1. Let
$$D \in \Sigma_{8,1}(X,5)$$
 and
 $\mathfrak{A}_0 = \{\{T_4, T_3, T_2, T_0\}, \{T_4, T_3, T_1, T_0\}, \{T_4, T_2, T_1, T_0\}, \{T_3, T_2, T_1, T_0\}, \{T_4, T_3, T_0\}, \{T_4, T_1, T_0\}, \{T_3, T_2, T_0\}\},$
 $B(\mathfrak{A}_0) = \{\alpha \in B_X(D) | V(X^*, \alpha) \in \mathfrak{A}_0\}; B_0 = \{\alpha \in B_X(D) | V(X^*, \alpha) = D\}.$

Then the following statements are true.

a) If $|X \setminus T_0| \ge 1$, then $S_0 = B_0 \cup B(\mathfrak{A}_o)$ is irreducible generating set for the semigroup.

b) If $X = T_0$, then $S_1 = B_0 \cup B(\mathfrak{A}_o) \cup \{X \times T_4, X \times T_3\}$ is irreducible generating set for the semigroup $B_X(D)$.

Proof. The theorem 2.2.1 we may prove analogously of the theorems 2.1.1. **Theorem 2.2.2.** Let $n \ge 6$, $D = \{T_4, T_3, T_2, T_1, T_0\} \in \Sigma_{8,1}(X, 5)$ and

$$\begin{aligned} \mathfrak{A}_{0} &= \left\{ \left\{ T_{4}, T_{3}, T_{2}, T_{0} \right\}, \left\{ T_{4}, T_{3}, T_{1}, T_{0} \right\}, \left\{ T_{4}, T_{2}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{1}, T_{0} \right\}, \\ &\left\{ T_{4}, T_{3}, T_{0} \right\}, \left\{ T_{4}, T_{1}, T_{0} \right\}, \left\{ T_{3}, T_{2}, T_{0} \right\} \right\}, \\ B\left(\mathfrak{A}_{0} \right) &= \left\{ \alpha \in B_{X}\left(D \right) | V\left(X^{*}, \alpha \right) \in \mathfrak{A}_{0} \right\}; B_{0} = \left\{ \alpha \in B_{X}\left(D \right) | V\left(X^{*}, \alpha \right) = D \right\}. \end{aligned}$$

Then the following statements are true.

a) If $|X \setminus T_0| \ge 1$, then the number $|S_0|$ elements of the set $S_0 = B_0 \cup B(\mathfrak{A}_0)$ is equal to

$$|S_0| = 5^n - 3 \cdot 3^n + 2 \cdot 2^n + 2$$
.

b) If $X = T_0$, then the number $|S_1|$ elements of the set $S_1 = B_0 \cup B(\mathfrak{A}_{\circ}) \cup \{X \times T_4, X \times T_3\}$ is equal to

$$|S_1| = 5^n - 3 \cdot 3^n + 2 \cdot 2^n + 4.$$

Proof. Let number of a set X is equal to $n \ge 6$, *i.e.* $|X| = n \ge 6$. Let

$$\begin{split} S_n &= \left\{ \varphi_1, \varphi_2, \cdots, \varphi_{n!} \right\} \text{ is a group all one to one mapping of a set } M = \left\{ 1, 2, \cdots, n \right\} \\ \text{on the set } M \text{ and } \varphi_{i_1}, \varphi_{i_2}, \cdots, \varphi_{i_m} \quad \left(m \leq n \right) \text{ are arbitrary elements of the group} \\ S_n, Y_{\varphi_1}, Y_{\varphi_2}, \cdots, Y_{\varphi_m} \text{ are arbitrary partitioning of a set } X. \text{ By symbol } k_n^m \text{ we} \\ \text{denote the number elements of a set } \left\{ Y_{\varphi_1}, Y_{\varphi_2}, \cdots, Y_{\varphi_m} \right\}. \text{ It is well known, that} \end{split}$$

$$k_n^m = \sum_{i=1}^m \frac{(-1)^{m+i}}{(i-1)! \cdot (m-i)!} \cdot i^{n-1}.$$

If m = 2, 3, 4, 5, then we have

$$k_n^2 = 2^{n-1} - 1, \quad k_n^3 = \frac{1}{2} \cdot 3^{n-1} - 2^{n-1} + \frac{1}{2}, \quad k_n^4 = \frac{1}{6} \cdot 4^{n-1} - \frac{1}{2} \cdot 3^{n-1} + \frac{1}{2} \cdot 2^{n-1} - \frac{1}{6},$$

$$k_n^5 = \frac{1}{24} \cdot 5^{n-1} - \frac{1}{6} \cdot 4^{n-1} + \frac{1}{4} \cdot 3^{n-1} - \frac{1}{6} \cdot 2^{n-1} + \frac{1}{24}.$$

If Y_{α}, Y_{α} are any two elements partitioning of a set X and

 $\overline{\beta} = (Y_{\varphi_1} \times Z_1) \cup (Y_{\varphi_2} \times Z_2)$, where $Z_1, Z_2 \in D$ and $Z_1 \neq Z_2$. Then number of different binary relations $\overline{\beta}$ of a semigroup $B_{\chi}(D)$ is equal to

$$2 \cdot k_n^2 = 2^n - 2. \tag{2.2.5}$$

If $Y_{\omega_1}, Y_{\omega_2}, Y_{\omega_3}$ are any tree elements partitioning of a set X and

$$\overline{\beta} = (Y_{\varphi_1} \times Z_1) \cup (Y_{\varphi_2} \times Z_2) \cup (Y_{\varphi_3} \times Z_3),$$

where Z_1, Z_2, Z_3 are pairwise different elements of a given semilattice D. Then

number of different binary relations $\overline{\beta}$ of a semigroup $B_{\chi}(D)$ is equal to

$$6 \cdot k_n^3 = 3^n - 3 \cdot 2^n + 3. \tag{2.2.6}$$

If $Y_{\omega_1}, Y_{\omega_2}, Y_{\omega_3}, Y_{\omega_4}$ are any four elements partitioning of a set X and

$$\overline{\beta} = (Y_{\varphi_1} \times Z_1) \cup (Y_{\varphi_2} \times Z_2) \cup (Y_{\varphi_3} \times Z_3) \cup (Y_{\varphi_4} \times Z_4),$$

where Z_1, Z_2, Z_3, Z_4 are pairwise different elements of a given semilattice D. Then number of different binary relations $\overline{\beta}$ of a semigroup $B_X(D)$ is equal to

$$24 \cdot k_n^4 = 4^n - 4 \cdot 3^n + 3 \cdot 2^{n+1} - 4.$$
(2.2.7)

If $Y_{\omega_1}, Y_{\omega_2}, Y_{\omega_2}, Y_{\omega_4}, Y_{\omega_5}$ are any four elements partitioning of a set X and

$$\overline{\beta} = (Y_{\varphi_1} \times Z_1) \cup (Y_{\varphi_2} \times Z_2) \cup (Y_{\varphi_3} \times Z_3) \cup (Y_{\varphi_4} \times Z_4) \cup (Y_{\varphi_5} \times Z_5),$$

where Z_1, Z_2, Z_3, Z_4, Z_5 are pairwise different elements of a given semilattice D. Then number of different binary relations $\overline{\beta}$ of a semigroup $B_X(D)$ is equal to

$$120 \cdot k_n^5 = 5^n - 5 \cdot 4^n + 10 \cdot 3^n - 10 \cdot 2^n + 5.$$
 (2.2.8)

If $\alpha \in B_0$, then quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_3^{\alpha} \times T_3) \cup (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or a system $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha}$ are partitioning of the set *X*.

If the system $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}$, or a system $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha}$ are partitioning of the set *X*. Of this from the Equalities (2.2.7) and (2.2.8) follows that

$$|B_0| = (5^n - 5 \cdot 4^n + 10 \cdot 3^n - 10 \cdot 2^n + 5) + (4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4)$$

= 5ⁿ - 4 \cdot 4ⁿ + 6 \cdot 3ⁿ - 4 \cdot 2ⁿ + 1.

If $\alpha \in B(\mathfrak{A}_0)$, then by definition of a set $B(\mathfrak{A}_0)$ the quasinormal representation of a binary relation α has a form:

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_2^{\alpha} \times T_2\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_3^{\alpha}, Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_3^{\alpha} \times T_3\right) \cup \left(Y_1^{\alpha} \times T_1\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_3^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_3^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_3^{\alpha} \times T_3) \cup (Y_2^{\alpha} \times T_2) \cup (Y_1^{\alpha} \times T_1) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_4^{\alpha} \times T_4) \cup (Y_3^{\alpha} \times T_3) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_4^{\alpha}, Y_3^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_3^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = \left(Y_4^{\alpha} \times T_4\right) \cup \left(Y_1^{\alpha} \times T_1\right) \cup \left(Y_0^{\alpha} \times T_0\right),$$

where $Y_4^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$, or $Y_4^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_3^{\alpha} \times T_3) \cup (Y_2^{\alpha} \times T_2) \cup (Y_0^{\alpha} \times T_0),$$

where $Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$, or $Y_3^{\alpha}, Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ are partitioning of the set X respectively.

Of this and from the Equality (2.2.5), (2.2.6) and (2.2.7) follows that

$$|B(\mathfrak{A}_0)| = 3 \cdot (2^n - 2) + 7 \cdot (3^n - 3 \cdot 2^n + 3) + 4 \cdot (4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4)$$

= 4 \cdot 4^n - 9 \cdot 3^n + 6 \cdot 2^n + 1.

So, we have that:

$$\begin{aligned} |S_0| &= |B_0 \cup B(\mathfrak{A}_0)| \\ &= (5^n - 4 \cdot 4^n + 6 \cdot 3^n - 4 \cdot 2^n + 1) + (4 \cdot 4^n - 9 \cdot 3^n + 6 \cdot 2^n + 1) \\ &= 5^n - 3 \cdot 3^n + 2 \cdot 2^n + 2, \\ |S_1| &= |B_0 \cup B(\mathfrak{A}_\circ) \cup \{X \times T_4, X \times T_3\}| = 5^n - 3 \cdot 3^n + 2 \cdot 2^n + 4. \end{aligned}$$

Since

$$B_0 \cap B(\mathfrak{A}_0) = B_0 \cap \{X \times T_4, X \times T_3, X \times T_2\} = B(\mathfrak{A}_0) \cap \{X \times T_4, X \times T_3, X \times T_2\} = \emptyset.$$

Theorem 2.2.2 is proved

Theorem 2.2.2 is proved.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- [1] Diasamidze, Y., Givradze, O., Tsinaridze, N. and Tavdgiridze, G. (2018) Generated Sets of the Complete Semigroup Binary Relations Defined by Semilattices of the Class $\Sigma_{8}(X, n + k + 1)$. *Applied Mathematics*, **9**, 369-382. https://doi.org/10.4236/am.2018.94028
- [2] Diasamidze, Y. and Makharadze, S. (2013) Complete Semigroups of Binary Relations. Kriter, Turkey, 1-519.
- [3] Диасамидзе, Я.И. and Махарадзе, Ш.И. (2017) Полные полугруппы бинарных отношений. Lambert Academic Publishing, Saarbrucken, 1-692.