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Abstract 
In this article, we study generating sets of the complete semigroups of binary 
relations defined by X-semilattices of unions of the class ( )8 ,5XΣ . Found 
uniquely irreducible generating set for the given semigroups and when X is 
finite set formulas for calculating the number of elements in generating sets 
are derived. 
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1. Introduction 

Let X ≠ ∅ , D is an X-semilattice of unions which is closed with respect to the 
set-theoretic union of elements from D, f be an arbitrary mapping of the set X in 
the set D. To each mapping f we put into correspondence a binary relation fα   
on the set X that satisfies the condition { } ( )( )f

x X
x f xα

∈

= ×


. The set of all such  

fα  is denoted by ( )XB D . It is easy to prove that ( )XB D  is a semigroup with 
respect to the operation of multiplication of binary relations, which is called a 
complete semigroup of binary relations defined by an X-semilattice of unions D. 

We denote by ∅  an empty subset of the set X or an empty binary relation. 
The condition ( ),x y α∈  will be written in the form x yα .  

Let ,x y X∈ , Y X⊆ , ( )XB Dα ∈ , 
Y D

D Y
∈

=




 and T D∈ . We denote by the 

symbols yα , Yα , ( ),V D α , X ∗  and ( ),V X α∗  the following sets: 

How to cite this paper: Tsinaridze, N. 
(2024) Generating Sets of the Complete 
Semigroup of Binary Relations Defined by 
Semilattices of the Class ( )8 ,5XΣ . Applied 
Mathematics, 15, 169-197. 
https://doi.org/10.4236/am.2024.152010 
 
Received: February 6, 2024 
Accepted: February 26, 2024 
Published: February 29, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2024.152010
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2024.152010
http://creativecommons.org/licenses/by/4.0/


N. Tsinaridze 
 

 

DOI: 10.4236/am.2024.152010 170 Applied Mathematics 
 

{ } ( ) { }

{ } ( ) { }
{ } { }

| ,  ,  , | ,

| ,  , | ,

| ,   | .

y Y

T T

y x X y x Y y V D Y Y D

X Y Y X V X Y Y X

D Z D T Z Y y X y Tα

α α α α α α

α α

α

∈

∗ ∗

= ∈ = = ∈

= ∅ ≠ ⊆ = ∅ ≠ ⊆

= ∈ ⊆ = ∈ =



 

Theorem 1.1. Let { }1 2 1, , , , mD D Z Z Z −=


  be some finite X-semilattice of un-
ions and ( ) { }0 1 2 1, , , , mC D P P P P −= 

 be the family of sets of pairwise noninter-
secting subsets of the set X (the set ∅  can be repeated several times). If ϕ  is a 
mapping of the semilattice D on the family of sets ( )C D  which satisfies the con-
ditions  

1 2 1

0 1 2 1

      
      

m

m

D Z Z Z
P P P P

ϕ −

−

 
=   
 







 

and ˆ \Z ZD D D= , then the following equalities are valid: 

( )
0 1 2 1

0
ˆ

,
.

Zi

m

i
T D

D P P P P
Z P Tϕ

−

∈

= ∪ ∪ ∪ ∪

= ∪







 

In the sequel these equalities will be called formal. The parameters iP  
( )0 1i m< ≤ −  there exist such parameters that cannot be empty sets for D. Such 
sets iP  are called bases sources, where sets jP ( )0 1j m≤ ≤ − , which can be 
empty sets too are called completeness sources. 

It is proved that under the mapping ϕ  the number of covering elements of 
the pre-image of a bases source is always equal to one, while under the mapping 
ϕ  the number of covering elements of the pre-image of a completeness source 
either does not exist or is always greater than one (see [1] Theorem 1.1, [2] [3] 
chapter 11). 

Definition 1.1. The representation ( )T
T D

Y Tαα
∈

= ×


 of binary relation α  is 

called quasinormal, if T
T D

Y Xα

∈

=


 and T TY Yα α
′∩ =∅  for any ,T T D′∈ , T T ′≠  

(see [1] Definition 1.2, [2], [3] chapter 1.1). 
Definition 1.2. Let , X Xα β ⊆ × . Their product δ α β=   is defined as 

follows: x yδ  ( ),x y X∈  if there exists an element z X∈  such that x z yα β  
(see [1] Definition 1.3, [1], chapter 1.3). 

Definition 1.3. We say that an element α  of the semigroup ( )XB D  is ex-
ternal if α δ β≠   for all ( ) { }, \XB Dδ β α∈  (see [1] Definition 1.1, [2] [3] 
Definition 1.15.1). 

It is well known, that if B is all external elements of the semigroup ( )XB D  

and B′  is any generated set for the ( )XB D , then B B′⊆  (see [2] [3] Lemma 
1.15.1). 

2. Result 
Let ( )8 ,5XΣ  be a class of all X-semilattices of unions, whose every element is 
isomorphic to an X-semilattice of unions { }4 3 2 1 0, , , ,D T T T T T= , which satisfies 
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the condition:  

4 2 0 3 1 0 4 3 3 4

2 1 1 2 2 3 3 2

4 1 1 4 4 3 4 1 3 2 1 2 0

,  ,  \ ,  \ ,
\ ,  \ ,  \ ,  \ ,
\ ,  \ ,  .

T T T T T T T T T T
T T T T T T T T
T T T T T T T T T T T T T

⊂ ⊂ ⊂ ⊂ ≠∅ ≠∅

≠∅ ≠∅ ≠∅ ≠∅

≠∅ ≠∅ ∪ = ∪ = ∪ = ∪ =

 

(see Figure 1). It is easy to see that { }4 3 2 1, , ,D T T T T=  is irreducible generat-
ing set of the semilattice D.  

Let ( ) { }0 1 2 3 4, , , ,C D P P P P P=  is a family of sets, where 0 1 2 3 4

0 1 2 3 4

        
         

T T T T T
P P P P P

ϕ
 

=  
 

 

is a mapping of the semilattice D onto the family of sets ( )C D  and  
0 1 2 3 4, , , ,P P P P P  are pairwise disjoint subsets of the set X. Then the formal equali-

ties of the semilattice D have a form: 

0 0 1 2 3 4

1 0 2 3 4

2 0 1 3 4

3 0 2 4

4 0 1 3

,
,
,

,
.

T P P P P P
T P P P P
T P P P P
T P P P
T P P P

= ∪ ∪ ∪ ∪

= ∪ ∪ ∪

= ∪ ∪ ∪

= ∪ ∪

= ∪ ∪

                  (2.1) 

Here the element 0P  is source of completeness and the elements 4 3 2 1, , ,P P P P  
are basis sources of the semilattice D. Therefore 4X ≥  since 4 1P ≥ , 3 1P ≥ , 

2 1P ≥ , 1 1P ≥  (see Theorem 1.1). 

From the formal Equalities (2.1) immediately follows 

( )4 2 4 3 2 1 3

2 3 2 0 2 1 4 1 0 4 3

\ ,  \ ,
\ \ ,  \ ,  .

P T T P T T T
P T T T T P T T P T T
= = ∩

= = = = ∩
           (2.2) 

2.1. Generating Sets of the Complete Semigroup of Binary 
Relations Defined by Semilattices of the Class ( )X8 ,5Σ ,  
When T T4 3∩ ≠ ∅  

In the sequel, we denoted all semilattices { }4 3 2 1 0, , , ,D T T T T T=  of the class 

( )8 ,5XΣ  by symbol ( )8.0 ,5XΣ , for which 4 3T T∩ ≠∅ . Of the last inequality 
from the formal Equalities (2.1) of a semilattise D follows that 4 3 0T T P∩ = ≠∅ , 
i.e. 5X ≥ . 
 

 
Figure 1. Diagram of the semilattice D. 
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We denoted by symbols 4 3 2 1, , ,A A A A  the following sets: 

{ } { } { } { }{ }
{ } { } { } { } { } { }{ }
{ } { } { } { } { }{ }{ }
{ } { } { } { } { }{ }

4 4 3 2 0 4 3 1 0 4 2 1 0 3 2 1 0

3 4 3 0 4 1 0 3 2 0 4 2 0 3 1 0 2 1 0

2 4 2 4 0 3 1 3 0 2 0 1 0

1 4 3 2 1 0

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , ,

, , , , .

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T T T

T T T T T T T T T T T T

T T T T T

=

=

=

=

A

A

A

A

 

Lemma 2.1.1. Let ( )8.0 ,5D X∈Σ . Then the following statements are true: 

a) Let ( )3 4, ,T T V D α∈ , then α  is external element of the semigroup ( )XB D ; 

b) Let { }2 1,Z T T∈ , { }4 3,Z T T′∈ . If Z Z′ ⊄  and ( ), ,Z Z V D α′∈ , then α  is 
external element of the semigroup ( )XB D ; 

c) Let { }2 1, ,Z Z T T′∈  and Z Z ′≠ . If ( ) { }2 1 0, , ,V D T T Tα = , then α  is ex-
ternal element of the semigroup ( )XB D . 

Proof. Let α δ β=   for some ( ) { }, \XB Dδ β α∈ . If quasinormal repre-

sentation of binary relation δ  has a form  

( ) ( ) ( ) ( ) ( )4 4 3 3 2 2 1 1 0 0 ,Y T Y T Y T Y T Y Tδ δ δ δ δδ = × ∪ × ∪ × ∪ × ∪ ×  

then 

( ) ( ) ( ) ( ) ( )4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y Tδ δ δ δ δα δ β β β β β β= = × ∪ × ∪ × ∪ × ∪ × .(2.1.1) 

From the formal Equalities (1) of the semilattice D we obtain that:  

0 0 1 2 3 4

1 0 2 3 4

2 0 1 3 4

3 0 2 4

4 0 1 3

,
,
,

,
.

T P P P P P
T P P P P
T P P P P
T P P P
T P P P

β β β β β β
β β β β β
β β β β β
β β β β
β β β β

= ∪ ∪ ∪ ∪

= ∪ ∪ ∪

= ∪ ∪ ∪

= ∪ ∪

= ∪ ∪

              (2.1.2) 

where kP β ≠ ∅  for any kP ≠ ∅  ( )0,1,2,3,4k =  and ( )XB Dβ ∈ . Indeed, by 

preposition kP ≠ ∅  for any 0,1,2,3,4k =  and β ≠ ∅  since D∅∉ . Let  

ky P∈  for some y X∈ . Then 0y T∈ , fβ α=  for some :f X D→  and  

{ } ( )( ) { } ( )f
x X

x f x y f yα
∈

= × ⊇ ×


, i.e. there exists an element ( )t f y∈  for 

which fy tα  and y tβ . Of this and by definition of a set kP β  we obtain that 

kt P β∈  since ky P∈ , y tβ . Thus, we have that kP β ≠ ∅ , i.e. kP Dβ ∈  for any 
0,1,2,3,4k = . 

Now, let iT Zβ =  and jT Zβ ′=  for some 0 4i j≤ ≠ ≤  and Z Z ′≠ ,  
{ }4 3, ,Z Z T T′∈ , then from the Equalities (2.2) follows that 0Z P Zβ ′= =  since Z 

and Z ′  are minimal elements of the semilattice D. The equality Z Z ′=  con-
tradicts the inequality Z Z ′≠ . 

The statement a) of the Lemma 2.1.1 is proved. 
Let iT Zβ ′= , where { }4 3,Z T T′∈  and jT Zβ = , where { }2 1,Z T T∈  for 

some 0 4i j≤ ≠ ≤ . If 0 4i≤ ≤ , then from the formal equalities of a semilattice D 
we obtain that 

https://doi.org/10.4236/am.2024.152010


N. Tsinaridze 
 

 

DOI: 10.4236/am.2024.152010 173 Applied Mathematics 
 

0 0 1 2 3 4 0 1 2 3 4

1 0 2 3 4 0 2 3 4

2 0 1 3 4 0 1 3 4

3 0 2 4 0 2 4

4 0 1 3 0 1 3

,
,
,

,
.

T P P P P P P P P P P Z
T P P P P P P P P Z
T P P P P P P P P Z
T P P P P P P Z
T P P P P P P Z

β β β β β β β β β β β
β β β β β β β β β
β β β β β β β β β
β β β β β β β
β β β β β β β

′= ∪ ∪ ∪ ∪ = = = = = =
′= ∪ ∪ ∪ = = = = =
′= ∪ ∪ ∪ = = = = =

′= ∪ ∪ = = = =
′= ∪ ∪ = = = =

 

since Z ′  is minimal element of the semilattice D. Now, let i j≠ . 
1) If 0 0 1 2 3 4T P P P P P Zβ β β β β β ′= = = = = =  and 1,2,3,4j = , then we have  

1 2 3 4Z T T T T Zβ β β β ′= = = = = , 

which contradicts the inequality Z Z ′≠ . 
2) If 1 0 2 3 4T P P P P Zβ β β β β ′= = = = =  and 0,2,3,4j = , then we have 

0 2 4 1 1,  where Z T T T Z P P Dβ β β β β′= = = = ∪ ∈  

Last equalities are impossible, since Z Z T′≠ ∪  for any T D∈  and Z Z ′≠  
by definition of a semilattice D.   

3) If 2 0 1 3 4T P P P P Zβ β β β β ′= = = = =  and 0,1,3,4j = , then we have 

0 2 4 1 1,  where Z T T T Z P P Dβ β β β β′= = = = ∪ ∈  

Last equalities are impossible since Z Z T′≠ ∪  for any T D∈  and Z Z ′≠  
by definition of a semilattice D.   

4) If 3 0 2 4T P P P Zβ β β β ′= = = =  and 0,1,2,4j = , then we have 

0 2 4 1 3

1 3 1 3

,
Z ,  where ,
Z T T T Z P P

T Z P P P D
β β β β β
β β β β

′= = = = ∪ ∪
′= = ∪ ∈

 

Last equalities are impossible since Z Z T T′ ′≠ ∪ ∪  and Z Z T′≠ ∪  for any 
,T T D′∈ , by definition of a semilattice D.   
5) If 4 0 1 3T P P P Zβ β β β ′= = = =  and 0,1,2,3j = , then we have 

0 1 3 2 4

2 4 2 4

,
,  where ,

Z T T T Z P P
Z T Z P P P D

β β β β β
β β β β

′= = = = ∪ ∪
′= = ∪ ∈

 

Last equalities are impossible since Z Z T T′ ′≠ ∪ ∪  and Z Z T′≠ ∪  for any 
,T T D′∈ , by definition of a semilattice D.   
The statement b) of the Lemma 2.1.1 is proved. 
Let { }2 1, ,Z Z T T′∈ , iT Zβ = , jT Zβ ′=  and Z Z ′≠ . If iT Zβ =  where  

0 4i j≤ ≠ ≤ , we consider the following cases: 

6) 0,  1,2,3,4i j= = . Then from the Equality (2.1.2) follows that Z Z ′⊂ , 
which contradicts the definition of a semilattice D; 

7) 1,  0,2,3,4i j= = . 
If 1,  0,3i j= = . Then from the Equality (2.1.2) follows that Z Z′ ⊂ , or Z Z ′⊂  

which contradicts the definition of a semilattice D; 
If 1,  2,4i j= = . Then from the Equality (1.4) follows that  

( )
( )

1 0 3 4 2

2 0 3 4 1

,

,

T P P P P

T P P P P

β β β β β

β β β β β

 = ∪ ∪ ∪


= ∪ ∪ ∪
  

where 0 3 4 2 1,  ,  P P P P P Dβ β β β β∪ ∪ ∈ , i.e. there exists such elements  
, ,T T T D′ ′′∈ , for which Z T T ′= ∪  and Z T T′ ′′= ∪ . But such element T D∈  
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don’t exist by definition of a semilattice D. 
8) 2,  0,1,3,4i j= = . 
If 2,  0,4i j= = . Then from the Equality (2.1.2) follows that Z Z′ ⊂ , or  

Z Z ′⊂  which contradicts the definition of a semilattice D; 
If 2,  1,3i j= = . In this case analogously for the case 7) we may prove that 

Z T T ′= ∪  and Z T T′ ′′= ∪ . But such element T D∈  don’t exist by definition 
of a semilattice D. 

9) 3,  0,1,2,4i j= = . 
If 3,  0,1i j= = . Then from the Equality (2.1.2) follows that Z Z′ ⊂ , which 

contradicts the definition of a semilattice D; 
If 3,  2,4i j= = . Then from the Equality (2.1.2) follows that 

( )
( )

2 0 2 3 4

2 0 1 3

,

,

T P P P P

T P P P

β β β β β

β β β β

 = ∪ ∪ ∪


= ∪ ∪
 

where 0 2 3 4 1 3, ,P P P P P P Dβ β β β β β∪ ∪ ∪ ∈ , i.e. there exist such elements  
, ,T T T D′ ′′∈ , for which Z T T ′= ∪  and Z T T′ ′′= ∪ . But such element T D∈  

don’t exist by definition of a semilattice D. 
10) 4,  0,1,2,3i j= = . 
If 4,  0,2i j= = . Then from the Equality (2.1.2) follows that Z Z ′⊂  which 

contradicts the definition of a semilattice D; 
If 4,  1,3i j= = . Then from the Equality (2.1.2) follows that 

( )
( )

1 0 2 3 4

3 0 2 4

,

,

T P P P P

T P P P

β β β β β

β β β β

 = ∪ ∪ ∪


= ∪ ∪
 

where 0 2 3 4 2 4, ,P P P P P P Dβ β β β β β∪ ∪ ∪ ∈ , i.e. there exist such elements  
, ,T T T D′ ′′∈ , for which Z T T ′= ∪  and Z T T′ ′′= ∪ . But such element T D∈  

do not exist by definition of a semilattice D. 
The statement c) of the Lemma 2.1.1 is proved. 
Lemma 2.1.1 is proved. 
Let ( )8.0 ,5D X∈Σ . By symbols 0A , ( )0B A  and 0B  we denoted the fol-

lowing sets:  

{ }{ { } { } { }
{ } { } { } { }}

( ) ( ) ( ){ } ( ) ( ){ }

0 4 3 2 0 4 3 1 0 4 2 1 0 3 2 1 0

4 3 0 4 1 0 3 2 0 2 1 0

0 0 0

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , ,

| , ; | , .X X

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T

B B D V X B B D V X Dα α α α∗ ∗

=

= ∈ ∈ = ∈ =

A

A A

 

Remark, that the sets 0B  and ( )0B A  are external elements for the semi-
group ( )XB D .  

Lemma 2.1.2. Let ( )8.0 ,5D X∈Σ . Then the following statements are true: 
a) If quasinormal representation of a binary relation α  has a form 

( ) ( ) ( )4 4 2 2 0 0 ,Y T Y T Y Tα α αα = × ∪ × ∪ ×  

where { }4 2 0, ,Y Y Yα α α ∉ ∅ , then α  is generating by elements of the elements of 
set ( )0B A ; 
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b) If quasinormal representation of a binary relation α  has a form 

( ) ( ) ( )3 3 1 1 0 0 ,Y T Y T Y Tα α αα = × ∪ × ∪ ×  

where { }3 1 0, ,Y Y Yα α α ∉ ∅ , then α  is generating by elements of the elements of 
set ( )0B A ; 

Proof. 1). Let quasinormal representation of binary relations δ  and β  have 
a form  

( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )

4 4 2 2 1 1 0 0

4 4 2 4 2 0 2 1 0 0

,

\ \ \ ,

Y T Y T Y T Y T

T T T T T T T T X T T

δ δ δ δδ

β

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×
 

where { }4 2 1, ,Y Y Yα α α ∉ ∅ , 

( ) ( ) ( )
( ) ( ) ( )

4 2 4 0 2 0

0 1 3 4 2 0 0 0

\ \ \

\ \ ,

T T T T T X T

P P P P P X T T X T X

∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪ = ∪ =
 

(see Equalities (2.1) and (2.2)), then ( )0, Bδ β ∈ A  and 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

4 4 2 0 1 3 4 4 2 2

1 0 2 3 4 4 1 0 0 0

4 4 2 2 1 1 0 0

4 4 2 2 1 0 0 0

4 4 2 2 1 0 0

,  ,

,  .

,

T T T P P P P T T T

T P P P P T T T T T

Y T Y T Y T Y T

Y T Y T Y T Y T

Y T Y T Y Y T

δ δ δ δ

δ δ δ δ

δ δ δ δ

β β β

β β β

α δ β β β β β

α

= = ∪ ∪ ∪ = ∪ =

= ∪ ∪ ∪ = ∪ = =

= = × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ ∪ × =

  

if 4 4Y Yδ α= , 2 2Y Yδ α=  and 1 0 0Y Y Yδ δ α∪ = . Last equalities are possible since  

1 0 1Y Yδ δ∪ ≥  ( 0 0Y δ ≥  by preposition). 

The statement a) of the lemma 2.1.2 is proved. 
2) Let quasinormal representation of binary relations δ  and β  have a 

form  

( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )

3 3 2 2 1 1 0 0

3 3 0 1 2 1 3 1 0 0

,

\ \ \ ,

Y T Y T Y T Y T

T T T T T T T T X T T

δ δ δ δδ

β

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×
 

where { }3 2 1, ,Y Y Yα α α ∉ ∅ ,  

( ) ( ) ( )
( ) ( ) ( )

3 0 1 1 3 0

0 2 4 1 3 0 0 0

\ \ \

\ \ ,

T T T T T X T

P P P P P X T T X T X

∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪ = ∪ =
 

(see Equalities (2.1) and (2.2)), then ( )0, Bδ β ∈ A  and 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

4 3 2 0 1 3 4 3 2 1 0

1 0 2 3 4 3 1 0 0 0

3 3 2 2 1 1 0 0

3 3 2 0 1 1 0 0

3 3 1 1 2 0 0

,  ,

,  .

,

T T T P P P P T T T T

T P P P P T T T T T

Y T Y T Y T Y T

Y T Y T Y T Y T

Y T Y T Y Y T

δ δ δ δ

δ δ δ δ

δ δ δ δ

β β β

β β β

α δ β β β β β

α

= = ∪ ∪ ∪ = ∪ ∪ =

= ∪ ∪ ∪ = ∪ = =

= = × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ ∪ × =

  

if 3 3Y Yδ α= , 1 1Y Yδ α=  and 2 0 0Y Y Yδ δ α∪ = . Last equalities are possible since  
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2 0 1Y Yδ δ∪ ≥  ( 0 0Y δ ≥  by preposition). 

The statement b) of the lemma 2.1.2 is proved. 
Lemma 2.1.2 is proved. 
Lemma 2.1.3. Let ( )8.0 ,5D X∈Σ . Then the following statements are true: 

a) If quasinormal representation of a binary relation α  has a form  

( ) ( )4 4 2 2 ,Y T Y Tα αα = × ∪ ×  

where { }4 2,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

b) If quasinormal representation of a binary relation α  has a form  

( ) ( )4 4 0 0 ,Y T Y Tα αα = × ∪ ×  

where { }4 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

c) If quasinormal representation of a binary relation α  has a form  

( ) ( )3 3 1 1 ,Y T Y Tα αα = × ∪ ×  

where { }3 1,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

d) If quasinormal representation of a binary relation α  has a form 

( ) ( )3 3 0 0 ,Y T Y Tα αα = × ∪ ×  

where { }3 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

e) If quasinormal representation of a binary relation α  has a form 

( ) ( )2 2 0 0 ,Y T Y Tα αα = × ∪ ×  

where { }2 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

f) If quasinormal representation of a binary relation α  has a form 

( ) ( )1 1 0 0 ,Y T Y Tα αα = × ∪ ×  

where { }1 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

g) If quasinormal representation of a binary relation α  has a form  
2X Tα = × , then α  is generating by elements of the elements of set ( )0B A ; 

h) If quasinormal representation of a binary relation α  has a form  
1X Tα = × , then α  is generating by elements of the elements of set ( )0B A ; 

i) If quasinormal representation of a binary relation α  has a form  
0X Tα = × , then α  is generating by elements of the elements of set ( )0B A . 

Proof. 1) Let quasinormal representation of a binary relations δ , β  have a 
form 
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( ) ( ) ( )
( ) ( )( ) ( )( )

4 4 1 1 0 0

4 4 0 4 2 0 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
 

where { }4 1,Y Yδ δ ∉ ∅ .  

( ) ( )
( ) ( ) ( ) ( )

4 0 4 0

0 1 3 2 4 0 0 0

\ \

\ \ .

T T T X T

P P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ ∪ = ∪ =
 

Then from the statement a) of the Lemma 2.1.2 follows that β  is generating 
by elements of the set ( )0B A , ( )0Bδ ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

4 4 1 4 2 2 0 2

4 4 1 1 0 0

4 4 1 2 0 2

4 4 1 0 2

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y T Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =



 

if 4 4Y Yδ α= , 1 0 2Y Y Yδ δ α∪ = . Last equalities are possible since 1 0 1Y Yδ δ∪ ≥   

( 0 0Y δ ≥  by preposition). 

The statement a) of the lemma 2.1.3 is proved. 
2) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( ) ( )
( ) ( )( ) ( )( )

4 4 1 1 0 0

4 4 0 4 3 0 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
 

where { }4 1,Y Yδ δ ∉ ∅ .  

( ) ( )
( ) ( ) ( ) ( )

4 0 4 0

0 1 3 2 4 0 0 0

\ \

\ \ .

T T T X T

P P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ ∪ = ∪ =
 

Then from ( )0, Bδ β ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

4 4 1 4 3 0 0 0

4 4 1 1 0 0

4 4 1 0 0 0

4 4 1 0 0

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y T Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =



 

if 4 4Y Yδ α= , 1 0 0Y Y Yδ δ α∪ = . Last equalities are possible since 1 0 1Y Yδ δ∪ ≥   

( 0 0Y δ ≥  by preposition). 

The statement b) of the lemma 2.1.3 is proved. 
3) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( ) ( )
( ) ( )( ) ( )( )

3 3 2 2 0 0

3 3 0 3 1 0 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
 

where { }4 2,Y Yδ δ ∉ ∅ .  

( ) ( )
( ) ( ) ( ) ( )

3 0 3 0

0 2 4 1 3 0 0 0

\ \

\ \ .

T T T X T

P P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ ∪ = ∪ =
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Then from the statement b) of the Lemma 2.1.2 follows that β  is generating 
by elements of the set ( )0B A , ( )0Bδ ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

3 3 2 3 1 1 0 1

3 3 2 2 0 0

3 3 2 1 0 1

3 3 2 0 1

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y Z Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =



 

if 3 3Y Yδ α= , 2 0 1Y Y Yδ δ α∪ = . Last equalities are possible since 2 0 1Y Yδ δ∪ ≥   

( 0 0Y δ ≥  by preposition). 

The statement c) of the lemma 2.1.3 is proved. 
4) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( ) ( )
( ) ( )( ) ( )( )

3 3 2 2 0 0

3 3 0 3 2 0 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
 

where { }3 2,Y Yδ δ ∉ ∅ . Then ( )0, Bδ β ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

3 3 2 3 2 0 0 0

3 3 2 2 0 0

3 3 2 0 0 0

3 3 2 0 0

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y T Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =



 

if 3 3Y Yδ α= , 2 0 0Y Y Yδ δ α∪ = . Last equalities are possible since 2 0 1Y Yδ δ∪ ≥   

( 0 0Y δ ≥  by preposition). 

The statement d) of the lemma 2.1.3 is proved. 
5) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( )( )( ) ( )( ) ( )( )
4 4 0 0

2 1 3 4 2 1 2 4 0

,

\ \ \ ,

Y T Y T

T T T T T T T X T T

δ δδ

β

= × ∪ ×

= ∩ × ∪ × ∪ ×
 

where { }4 0,Y Yδ δ ∉ ∅ , 

( )( ) ( ) ( )
( ) ( ) ( )

2 1 3 2 1 4

0 3 1 4 4 4

\ \ \

\ \ .

T T T T T X T

P P P X T T X T X

∩ ∪ ∪

= ∪ ∪ ∪ = ∪ =
 

(See Equalities (2.1) and (2.2)). Then from the statement b) of the Lemma 
2.1.3 follows that δ  is generating by elements of the set ( )0B A  and from the 
statement a) of the Lemma 2.1.2 element β  is generating by elements of the set 
( )0B A  and 

( )
( ) ( ) ( ) ( )

4 0 1 3 4 2 2 0 0

4 4 0 0 4 2 0 0

,  .

,

T P P P T T T T T

Y T Y T Y T Y Tδ δ δ δ

β β β

δ β β β α

= ∪ ∪ = ∪ = =

= × ∪ × = × ∪ × =

 

if 4 2Y Yδ α= , 0 0Y Yδ α= . Last equalities are possible since 4 1Y δ ≥  0 1Y δ ≥ . 

The statement e) of the lemma 2.1.3 is proved. 
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6) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( )( )( ) ( )( ) ( )( )
3 3 0 0

2 1 4 3 1 2 1 3 0

,

\ \ \ ,

Y T Y T

T T T T T T T X T T

δ δδ

β

= × ∪ ×

= ∩ × ∪ × ∪ ×
 

where { }3 0,Y Yδ δ ∉ ∅ , 

( )( ) ( ) ( )
( ) ( ) ( )

2 1 4 1 2 3

0 4 2 3 3 3

\ \ \

\ \ .

T T T T T X T

P P P X T T X T X

∩ ∪ ∪

= ∪ ∪ ∪ = ∪ =
 

(See Equalities (2.1) and (2.2)). Then from the statement d) of the Lemma 
2.1.3 follows that δ  is generating by elements of the set ( )0B A  and from the 
statement b) of the Lemma 2.1.2 element β  is generating by elements of the 
set ( )0B A  and 

( )
( ) ( ) ( ) ( )

3 0 2 4 3 1 1 0 0

3 3 0 0 3 1 0 0

,  .

,

T P P P T T T T T

Y T Y T Y T Y Tδ δ δ δ

β β β

δ β β β α

= ∪ ∪ = ∪ = =

= × ∪ × = × ∪ × =

 

if 3 1Y Yδ α= , 0 0Y Yδ α= . Last equalities are possible since 4 1Y δ ≥  0 1Y δ ≥ . 

The statement e) of the lemma 2.1.3 is proved. 
7) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( ) ( )( ) ( )( )

2 2 0 0

1 4 2 1 2 0 0

,

\ \ ,

Y T Y T

T T T T T X T T

δ δδ

β

= × ∪ ×

= × ∪ × ∪ ×
 

where { }2 0,Y Yδ δ ∉ ∅ ,  

( ) ( )
( ) ( ) ( )

1 2 1 0

0 2 3 4 1 0 0 0

\ \

\ \

T T T X T

P P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ ∪ = ∪ =
 

(see Equalities (2.1) and (2.2)). Then from the statement e) of the Lemma 
2.1.3 follows that δ  is generating by elements of the set ( )0B A  and from the 
statement a) of the Lemma 2.1.2 element β  is generating by elements of the set 
( )0B A  and 

( ) ( ) ( ) ( )
2 4 2 2 0 2

2 2 0 0 2 2 0 2 2

,

,

T T T T T T

Y T Y T Y T Y T X Tδ δ δ δ

β β

δ β β β α

= ∪ = =

= × ∪ × = × ∪ × = × =

 

since representation of a binary relation δ  is quasinormal.  
The statement g) of the lemma 2.1.3 is proved. 
8) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( ) ( )( ) ( )( )

1 1 0 0

2 3 1 2 1 0 0

,

\ \ ,

Y T Y T

T T T T T X T T

δ δδ

β

= × ∪ ×

= × ∪ × ∪ ×
 

where { }1 0,Y Yδ δ ∉ ∅ ,  

( ) ( )
( ) ( ) ( )

2 1 2 0

0 1 3 4 2 0 0 0

\ \

\ \

T T T X T

P P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ ∪ = ∪ =
 

(see Equalities (2.1) and (2.2)). Then from the statement f) of the Lemma 2.1.3 
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follows that δ  is generating by elements of the set ( )0B A  and from the state-
ment b) of the Lemma 2.1.2 element β  is generating by elements of the set 
( )0B A  and 

( ) ( ) ( ) ( )
1 3 1 1 0 1

1 1 0 0 1 1 0 1 1

,

,

T T T T T T

Y T Y T Y T Y T X Tδ δ δ δ

β β

δ β β β α

= ∪ = =

= × ∪ × = × ∪ × = × =

 

since representation of a binary relation δ  is quasinormal.  
The statement h) of the lemma 2.1.3 is proved. 
9) Let quasinormal representation of a binary relation δ  has a form 

( ) ( )( )4 1 4 0\ ,T T X T Tδ = × ∪ ×  

then  

( )
( ) ( )( ) ( ) ( )( )

1 0 2 3 4 4 0 0 0 0

4 1 4 0 4 0 4 0 0

,  

\ \ \

T P P P P T T T T T

T T X T T T T X T T X T

δ δ δ

δ δ δ δ α

= ∪ ∪ ∪ = ∪ = =

= × ∪ × = × ∪ × = =

 

since representation of a binary relation δ  is quasinormal.  
The statement i) of the lemma 2.1.3 is proved. 
Lemma 2.1.3 is proved. 
Lemma 2..4. Let ( )8.0 ,5D X∈Σ . Then the following statements are true: 
a) If 0\ 1X T ≥  and { }4 3,Z T T∈ , then binary relation X Zα = ×  is gene-

rating by elements of the elements of set ( )0B A ; 
b) If 0X T=  and { }4 3,Z T T∈ , then binary relation X Zα = ×  is external 

element for the semigroup ( )XB D .  

Proof. 1) Let quasinormal representation of a binary relation δ  has a form 

( ) ( ) ( )4 4 3 3 0 0Y T Y T Y Tδ δ δδ = × ∪ × ∪ × , 

where { }4 3,Y Yδ δ ∉ ∅ , then ( ) { }0 \Bδ α∈ A . If quasinormal representation of a 

binary relation β  has a form ( ) { } ( )( )
0

0
\t X T

T Z t f tβ
′∈

′ ′= × ∪ ×


, where f is any 

mapping of the set 0\X T  in the set { } { }4 3, \T T Z . It is easy to see, that β α≠  
and two elements of the set { }4 3,T T  belong to the semilattice ( ),V D β , i.e. 

( ) { }0 \Bδ α∈ A . In this case we have  

( ) ( ) ( )
( ) ( ) ( )
( )( )

4 3 0

4 4 3 3 0 0

4 3 0

4 3 0

;

,

T T T Z

Y T Y T Y T

Y Z Y Z Y Z

Y Y Y Z X Z

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= ∪ ∪ × = × =



 

since the representation of a binary relation δ  is quasinormal. Thus, element 
α  is generating by elements of the set ( )0B A . 

The statement a) of the lemma 2.1.4 is proved. 
2) Let 0X T= , X Zα = × , for some { }4 3,Z T T∈  and α δ β=   for some 

( ) { }, \XB Dδ β α∈ . Then from the equality (2.1.1) and (2.1.2) we obtain that 

4 3 2 1 0 0 1 2 3 4,  T T T T T Z P P P P P Zβ β β β β β β β β β= = = = = = = = = = , 
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since Z is minimal element of the semilattice D. 
Now, let subquasinormal representations β  of a binary relation β  has a 

form 

( )( ) { } ( )( )
0

0 1 2 3 4 2
\t X T

P P P P P Z t tβ β
′∈

′ ′= ∪ ∪ ∪ ∪ × ∪ ×


, 

where 0 1 2 3 4
1

       
          

P P P P P
Z Z Z Z Z

β
 

=  
 

 is normal mapping. But complement mapping 2β  

is empty, since 0\X T =∅ , i.e. in the given case, subquasinormal representation 

β  of a binary relation β  is defined uniquely. So, we have that  

X Zβ β α= = × = , which contradicts the condition ( ) { }\XB Dβ α∉ . 

Therefore, if 0X T=  and X Zα = × , for some { }4 3,Z T T∈ , then α  is ex-
ternal element of the semigroup ( )XB D . 

The statement b) of the lemma 2.1.4 is proved. 
Lemma 2.1.4 is proved. 
Theorem 2.1.1.  Let ( )8.0 ,5D X∈Σ  and  

{ }{ { } { } { }
{ } { } { } { }}

( ) ( ) ( ){ } ( ) ( ){ }

0 4 3 2 0 4 3 1 0 4 2 1 0 3 2 1 0

4 3 0 4 1 0 3 2 0 2 1 0

0 0 0

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , ,

| , ;  | , .X X

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T

B B D V X B B D V X Dα α α α∗ ∗

=

= ∈ ∈ = ∈ =

A

A A

 

Then the following statements are true: 
a) If 0\ 1X T ≥ , then ( )0 0S B B= ∪ 0A  is irreducible generating set for the 

semigroup ( )XB D ; 
b) If 0X T= , then ( ) { }1 0 4 3,S B B X T X T= ∪ ∪ × ×0A  is irreducible genera-

ting set for the semigroup ( )XB D . 

Proof. Let ( )8.0 ,5D X∈Σ  and 0\ 1X T ≥ . First, we proved that every element 

of the semigroup ( )XB D  is generating by elements of the set 0S . Indeed, let 

α  be arbitrary element of the semigroup ( )XB D . Then quasinormal repre-

sentation of a binary relation α  has a form 

( ) ( ) ( ) ( ) ( )4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y Tα α α α αα = × ∪ × ∪ × ∪ × ∪ × , 

where 4 3 2 1 0Y Y Y Y Y Xα α α α α∪ ∪ ∪ ∪ =  and i jY Yα α∩ =∅  ( )0 4i j≤ ≠ ≤ . For 

the ( ),V X α∗  we consider the following cases: 

1) ( ), 5V X α∗ = . Then 0Bα ∈  and 0 0B S⊂  by definition of a set 0S .  

2) ( ), 4V X α∗ = . Then  

( ) { } { } { } { }{ }4 4 3 2 0 4 3 1 0 4 2 1 0 3 2 1 0 0, , , , , , , , , , , , , , , ,V X T T T T T T T T T T T T T T T Tα∗ ∈ = ⊂A A  

i.e. ( )0Bα ∈ A  and ( )0 0B S⊂A  by definition of a set 0S . 

3) ( ), 3V X α∗ = . Then we have  
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( ) { }{ { } { } { }
{ } { }}

3 4 3 0 4 1 0 3 2 0 4 2 0

3 1 0 2 1 0

, , , , , , , , , , , , ,

, , , , , .

V X T T T T T T T T T T T T

T T T T T T

α∗ ∈ =A
 

By definition of a set 0A  we have  

{ } { } { } { }{ }4 3 0 4 1 0 3 2 0 2 1 0 0, , , , , , , , , , ,T T T T T T T T T T T T ⊂ A , i.e. in this case ( )0Bα ∈ A  

and ( )0 0B S⊂A  by definition of a set 0S . 

If ( ) { } { }{ }4 2 0 3 1 0, , , , , ,V X T T T T T Tα∗ ∈ , then from the statement a) and b) of 

the Lemma 2.1.2 element α  is generating by elements ( )0B A  and ( )0 0B S⊂A  
by definition of a set 0S . 

4) ( ), 2V X α∗ = . Then we have  

( ) { } { } { } { } { }{ }{ }2 4 2 4 0 3 1 3 0 2 0 1 0, , , , , , , , , , ,V X T T T T T T T T T T T Tα∗ ∈ =A . 

Then from the statement a)-f) of the Lemma 2.1.3 element α  is generating 
by elements ( )0B A  and ( )0 0B S⊂A  by definition of a set 0S . 

5) ( ), 1V X α∗ = . Then we have ( ) { } { } { } { } { }{ }1 4 3 2 1 0, , , , ,V X T T T T Tα∗ ∈ =A .  

If ( ) { } { } { }{ }2 1 0, , ,V X T T Tα∗ ∈ , then from the statements g), h) and i) of the 

Lemma 2.1.3 element α  is generating by elements ( )0B A  and ( )0 0B S⊂A  

by definition of a set 0S . 

If ( ) { } { }{ }4 3, ,V X T Tα∗ ∈ , then from the statement a) of the Lemma 2.1.4 

element α  is generating by elements ( )0B A  and ( )0 0B S⊂A  by definition 

of a set 0S . 
Thus, we have that 0S  is generating set for the semigroup ( )XB D . 
If 0\ 1X T ≥ , then the set 0S  is irreducible generating set for the semigroup 

( )XB D  since 0S  is a set external elements of the semigroup ( )XB D . 

The statement a) of the Theorem 2.1.1 is proved. 
Now, let ( )8.0 ,5D X∈Σ  and X D=



. First, we proved that every element of 

the semigroup ( )XB D  is generating by elements of the set 1S . The cases 1), 

2), 3) and 4) are proved analogously of the cases 1), 2), 3) and 4) given above and 
consider case, when 

( ) { } { } { } { } { }{ }1 04 3 2 1, , , , ,T T T T TV X α∗ ∈ =A . 

If ( ) { } { } { }{ }2 1 0, , ,V X T T Tα∗ ∈ , then from the statements g), h) and i) of the 

Lemma 2.1.3 element α  is generating by elements ( )0B A  and ( )0 1B S⊂A  
by definition of a set 1S . 

If ( ) { } { }{ }4 3, ,V X T Tα∗ ∈ , then 1Sα ∈  by definition of a set 1S . 

Thus, we have that 1S  is generating set for the semigroup ( )XB D . 
If 0X T= , then the set 1S  is irreducible generating set for the semigroup 
( )XB D  since 1S  is a set external elements of the semigroup ( )XB D . 

The statement b) of the Theorem 2.1.1 is proved. 
Theorem 2.1.1 is proved. 
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Theorem 2.1.2. Let 6n ≥ , { } ( )4 3 2 1 .00 8, , , , ,5T T T T TD X= ∈Σ  and 

{ }{ { } { } { }
{ } { } { } { }}

( ) ( ) ( ){ } ( ) ( ){ }

0 00 4 3 2 4 3 1 4 2 1 3 2 1

4 3 4 1 3 2 2 1

0 0 0

0 0

0 0 0 0

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , ,

| , ;  | , .X XB

T T T T T T T T T T T T T T T T

T T T T T T

B D V X B B D V

T T T T T T

X Dα α α α∗ ∗

=

= ∈ ∈ = ∈ =

A

A A

 

Then the following statements are true: 
a) If 0\ 1X T ≥ , then the number 0S  elements of the set ( )0 0 0S B B= ∪ A  

is equal to 

0 5 2 3 1n nS = − ⋅ + . 

b) If 0X T= , then the number 1S  elements of the set  

( ) { }1 0 4 3,S B T TB X X= ∪ ∪ × ×0A  is equal to 

1 5 2 3 3n nS = − ⋅ + . 

Proof. Let number of a set X is equal to 6n ≥ , i.e. 6X n= ≥ . Let  
{ }1 2 !, , ,n nS ϕ ϕ ϕ= 

 is a group all one to one mapping of a set { }1,2, ,M n= 
 

on the set M and 
1 2
, , ,

mi i iϕ ϕ ϕ
 ( )m n≤  are arbitrary elements of the group 

nS , 
1 2
, , ,

m
Y Y Yϕ ϕ ϕ

 are arbitrary partitioning of a set X. By symbol m
nk  we 

denote the number elements of a set { }1 2
, , ,

m
Y Y Yϕ ϕ ϕ . It is well known, that  

( )
( ) ( )

1

1

1
1 ! !

m im
m n
n

i
k i

i m i

+
−

=

−
= ⋅

− ⋅ −∑ . 

If 2,3,4,5m = , then we have 

2 1 3 1 1 4 1 1 1

5 1 1 1 1

1 1 1 1 1 12 1,   3 2 ,   4 3 2 ,
2 2 6 2 2 6

1 1 1 1 15 4 3 2 .
24 6 4 6 24

n n n n n n
n n n

n n n n
n

k k k

k

− − − − − −

− − − −

= − = ⋅ − + = ⋅ − ⋅ + ⋅ −

= ⋅ − ⋅ + ⋅ − ⋅ +
 

If 
1 2
,Y Yϕ ϕ  are any two elements partitioning of a set X and  

( ) ( )1 21 2Y Z Y Zϕ ϕβ = × ∪ × , where 1 2,Z Z D∈  and 1 2Z Z≠ . Then number of 

different binary relations β  of a semigroup ( )XB D  is equal to  

22 2 2n
nk⋅ = − .                      (2.1.3) 

If 
1 2 3
, ,Y Y Yϕ ϕ ϕ  are any tree elements partitioning of a set X and 

( ) ( ) ( )1 2 31 2 3Y Z Y Z Y Zϕ ϕ ϕβ = × ∪ × ∪ × , 

where 1 2 3, ,Z Z Z  are pairwise different elements of a given semilattice D. Then 
number of different binary relations β  of a semigroup ( )XB D  is equal to  

36 3 3 2 3n n
nk⋅ = − ⋅ + .                   (2.1.4) 

If 
1 2 3 4
, , ,Y Y Y Yϕ ϕ ϕ ϕ  are any four elements partitioning of a set X and 

( ) ( ) ( ) ( )1 2 3 41 2 3 4Y Z Y Z Y Z Y Zϕ ϕ ϕ ϕβ = × ∪ × ∪ × ∪ × , 
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where 1 2 3 4, , ,Z Z Z Z  are pairwise different elements of a given semilattice D. 
Then number of different binary relations β  of a semigroup ( )XB D  is equal 
to  

4 124 4 4 3 3 2 4n n n
nk +⋅ = − ⋅ + ⋅ − .               (2.1.5) 

If 
1 2 3 4 5
, , , ,Y Y Y Y Yϕ ϕ ϕ ϕ ϕ  are any four elements partitioning of a set X and 

( ) ( ) ( ) ( ) ( )1 2 3 4 51 2 3 4 5Y Z Y Z Y Z Y Z Y Zϕ ϕ ϕ ϕ ϕβ = × ∪ × ∪ × ∪ × ∪ × , 

where 1 2 3 4 5, , , ,Z Z Z Z Z  are pairwise different elements of a given semilattice D. 
Then number of different binary relations β  of a semigroup ( )XB D  is equal 
to  

5120 5 5 4 10 3 10 2 5.n n n n
nk⋅ = − ⋅ + ⋅ − ⋅ +             (2.1.6) 

If 0Bα ∈ , then quasinormal representation of a binary relation α  has a 
form 

( ) ( ) ( ) ( ) ( )4 4 3 3 2 2 1 1 0 0Y Y Y Y YT T T T Tα α α α αα = × ∪ × ∪ × ∪ × ∪ × , 

where { }4 3 2 1, , ,Y Y Y Yα α α α ∉ ∅ , or a system 4 3 2 1 0, , , ,Y Y Y Y Yα α α α α  are partitioning of 
the set X. 

If the system 4 3 2 1, , ,Y Y Y Yα α α α , or a system 4 3 2 1 0, , , ,Y Y Y Y Yα α α α α  are partitioning 
of the set X. Of this and from the equalities (2.1.4), (2.1.5) and (2.1.6) follows 
that 

( ) ( )0 5 5 4 10 3 10 2 5 4 4 3 6 2 4

5 4 4 6 3 4 2 1.

n n n n n n n

n n n n

B = − ⋅ + ⋅ − ⋅ + + − ⋅ + ⋅ −

= − ⋅ + ⋅ − ⋅ +
 

If ( )0Bα ∈ A , then by definition of a set ( )0B A  the quasinormal represen-
tation of a binary relation α  has a form: 

( ) ( ) ( ) ( )4 4 3 3 2 02 0Y Y YT T T Y Tα α α αα = × ∪ × ∪ × ∪ × , 

where { }4 3 2, ,Y Y Yα α α ∉ ∅ , or { }4 3 2 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( ) ( )4 4 3 3 1 001Y Y YT T T Y Tα α α αα = × ∪ × ∪ × ∪ × , 

where { }4 3 1, ,Y Y Yα α α ∉ ∅ , or { }4 3 1 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( ) ( )4 4 2 2 1 01 0Y Y YT T T Y Tα α α αα = × ∪ × ∪ × ∪ × , 

where { }4 2 1, ,Y Y Yα α α ∉ ∅ , or { }4 2 1 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( ) ( )3 3 2 2 1 01 0Y Y YT T T Y Tα α α αα = × ∪ × ∪ × ∪ × , 

where { }3 2 1, ,Y Y Yα α α ∉ ∅ , or { }3 2 1 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( )4 4 3 3 0 0T T TY Y Yα α αα = × ∪ × ∪ × , 
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where { }4 3,Y Yα α ∉ ∅ , or { }4 3 0, ,Y Y Yα α α ∉ ∅  are partitioning of the set X respec-
tively; 

( ) ( ) ( )4 04 1 1 0T T TY Y Yα α αα = × ∪ × ∪ × , 

where { }4 1,Y Yα α ∉ ∅ , or { }4 1 0, ,Y Y Yα α α ∉ ∅  are partitioning of the set X respec-
tively; 

( ) ( ) ( )3 03 2 2 0T T TY Y Yα α αα = × ∪ × ∪ × , 

where { }3 2,Y Yα α ∉ ∅ , or { }3 2 0, ,Y Y Yα α α ∉ ∅  are partitioning of the set X respec-
tively; 

( ) ( ) ( )2 02 1 1 0T T TY Y Yα α αα = × ∪ × ∪ × , 

where { }2 1,Y Yα α ∈ ∅ , or { }2 1 0, ,Y Y Yα α α ∈ ∅  are partitioning of the set X respec-
tively. 

Of this and from the equality (2.1.3), (2.1.4) and (2.1.5) follows that  

( ) ( ) ( ) ( )0 4 2 2 8 3 3 2 3 4 4 4 3 6 2 4

4 4 8 3 4 2 .

n n n n n n

n n n

B = ⋅ − + ⋅ − ⋅ + + ⋅ − ⋅ + ⋅ −

= ⋅ − ⋅ + ⋅

A
 

So, we have   

( ) ( ) ( )

( ) { }

0 0 0

1 0 4 3

5 4 4 6 3 4 2 1 4 4 8 3 4 2

5 2 3 1,

, 5 2 3 3

n n n n n n n

n n

n n

S B B

S B TXTB X

= ∪ = − ⋅ + ⋅ − ⋅ + + ⋅ − ⋅ + ⋅

= − ⋅ +

= ∪ ∪ × × = − ⋅ +0

A

A

 

Since 

( ) { } ( ) { }0 0 0 4 3 2 0 4 3 2, , , ,T T T TB B B X X X B X X XT T∩ = ∩ × × × = ∩ × × × =∅A A . 

Theorem 2.1.2 is proved. 

2.2. Generating Sets of the Complete Semigroup of Binary 
Relations Defined by Semilattices of the Class ( )X8 ,5Σ ,  
When T T4 3∩ = ∅  

In the sequel, we denoted all semilattices { }4 3 2 1 0, , , ,T T T TD T=  of the class  

( )8 ,5XΣ  by symbol ( )8.1 ,5XΣ  for which 4 3T T∩ =∅ . Of the last equality 
from the formal equalities of a semilattise D follows that 4 3 0PT T∩ = =∅ , i.e. 

4X ≥  since 4P ≠ ∅ , 3P ≠ ∅ , 2P ≠ ∅ , 1P ≠ ∅ . 

In this case, the formal equalities of the semilattice D have a form: 

1 2 3 4

1 2 3 4

2 1 3 4

3 2 4

4 1 3

0 ,
,
,

,
.

P P P P
P P P
P P P
P P
P P

T
T
T
T
T

= ∪ ∪ ∪

= ∪ ∪

= ∪ ∪

= ∪

= ∪

                    (2.2.1) 

From the formal equalities of the semilattise D immediately follows, that: 
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4 2 4 3 1 3 2 1 2 1 2 1\ ,  \ ,  \ ,  \P P PT T T T T PT T T= = = = .         (2.2.2) 

In this case we suppose that ( )8.1 ,5D X∈Σ . 
By symbols 4 3 2, ,A A A  and 1A  we denoted the following sets: 

{ } { } { } { }{ }
{ } { } { } { } { } { }{ }
{ } { } { } { } { }{ }{ }
{ } { } { } { } { }{ }

4 4 3 2 4 3 1 4 2 1 3 2 1

3 4 3 4 1 3 2 4 2 3 1 2 1

2 4 2 4 3 1 3 2 1

0 0 0 0

0 0 0 0 0 0

0 0

1 4 3

0 0

2 01

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , ,

, , , , .

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T T T

T T T T T T T T T T T T

T T T T T

=

=

=

=

A

A

A

A

 

Lemma 2.2.1. Let ( )8.1 ,5D X∈Σ . Then the following statements are true: 
a) Let { }4 3 2, , ,Z Z T T T′∈ , Z Z ′≠ . If ( ), ,Z Z V D α′∈ , then α  is external 

element of the semigroup ( )XB D ; 
b) Let { }2 1,Z T T∈ , { }4 3,Z T T′∈ . If Z Z ′⊄  and ( ), ,Z Z V D α′∈ , then α  

is external element of the semigroup ( )XB D . 
Proof. Let α δ β=   for some ( ) { }, \XB Dδ β α∈ . If quasinormal represen-

tation of binary relation δ  has a form  

( ) ( ) ( ) ( ) ( )4 4 3 3 2 2 1 1 0 0 ,Y T Y T Y T Y T Y Tδ δ δ δ δδ = × ∪ × ∪ × ∪ × ∪ ×  

then 

( ) ( ) ( ) ( ) ( )4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y Tδ δ δ δ δα δ β β β β β β= = × ∪ × ∪ × ∪ × ∪ × .(2.2.3) 

From the formal equalities (2.2.1) of the semilattice D we obtain that:  

0 1 2 3 4

1 2 3 4

2 1 3 4

3 2 4

4 1 3

,
,
,

,
,

T P P P P
T P P P
T P P P
T P P
T P P

β β β β β
β β β β
β β β β
β β β
β β β

= ∪ ∪ ∪

= ∪ ∪

= ∪ ∪

= ∪

= ∪

                (2.2.4) 

where iPβ ≠ ∅  for any iP ≠ ∅  ( )1,2,3,4i =  and ( )XB Dβ ∈ . Indeed, by 
preposition iP ≠ ∅  for any 1,2,3,4i =  and β ≠ ∅  since D∅∉ . Let iy P∈  
for some y X∈ , then y D∈



, fβ α=  for some :f X D→  and 
 { } ( )( ) { } ( )f

x X
x f x y f yα

∈

= × ⊇ ×


, i.e. there exists an element ( )z f y∈  for 

which fy zα  and y zβ . Of this and by definition of a set iPβ  we obtain that 

iz Pβ∈  since iy P∈ , y zβ . Thus, we have iPβ ≠ ∅ , i.e. iP Dβ ∈  for any  
1,2,3,4i = . 

Now, let iT Zβ =  and jT Zβ ′=  for some 0 4i j≤ ≠ ≤  and Z Z ′≠ ,  
{ }4 3, ,Z Z T T′∈ , then from the Equalities (2.2.4) follows that 0Z P Zβ ′= =  since 

Z and Z ′  are minimal elements of the semilattice D. The equality Z Z ′=  con-
tradicts the inequality Z Z ′≠ . 

The statement a) of the Lemma 2.2.1 is proved. 
Let iT Zβ ′= , where { }4 3,Z T T′∈  and jT Zβ = , { }2 1,Z T T∈  for some  

0 4i j≤ ≠ ≤ . If 0 4i≤ ≤ , then from the formal equalities of a semilattice D we 
obtain that 
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0 1 2 3 4 1 2 3 4

1 2 3 4 2 3 4

2 1 3 4 1 3 4

3 2 4 2 4

4 1 3 1 3

,
,
,

,
,

T P P P P P P P P Z
T P P P P P P Z
T P P P P P P Z
T P P P P Z
T P P P P Z

β β β β β β β β β
β β β β β β β
β β β β β β β
β β β β β
β β β β β

′= ∪ ∪ ∪ = = = = =
′= ∪ ∪ = = = =
′= ∪ ∪ = = = =

′= ∪ = = =
′= ∪ = = =

 

since Z ′  is minimal element of the semilattice D.  
Now, let i j≠ . 
1) If 0 1 2 3 4T P P P P Zβ β β β β ′= = = = =  and 1,2,3,4j = , then we have  

1 2 3 4Z T T T T Zβ β β β ′= = = = = , 

which contradicts the inequality Z Z ′≠ . 
2) If 1 2 3 4T P P P Zβ β β β ′= = = =  and 0,2,3,4j = , then we have 

0 2 4 1 1

3

,  where ;
.

Z T T T Z P P D
Z T Z

β β β β β
β

′= = = = ∪ ∈
′= =

 

Last equalities are impossible since Z Z T′≠ ∪  for any T D∈  and Z Z ′≠  
by definition of a semilattice D.   

3) If 2 1 3 4T P P P Zβ β β β ′= = = =  and 0,1,3,4j = , then we have 

0 2 4 1 1

3

,  where ;
.

Z T T T Z P P D
Z T Z

β β β β β
β

′= = = = ∪ ∈
′= =

 

Last equalities are impossible since for any T D∈  and Z Z ′≠  by definition 
of a semilattice D.   

4) If 3 2 4T P P Zβ β β ′= = =  and 0,1,2,4j = , then we have 

0 2 4 1 3

1 3 1 3

,  
,  where , .

Z T T T Z P P
Z T Z P P P D

β β β β β
β β β β

′= = = = ∪ ∪
′= = ∪ ∈

 

Last equalities are impossible since Z Z T T′ ′≠ ∪ ∪  and Z Z T′≠ ∪  for any 
,T T D′∈ , by definition of a semilattice D.   
5) If 4 1 3T P P Zβ β β ′= = =  and 0,1,2,3j = , then we have 

0 1 3 2 4

2 4 2 4

,  
,  where , .

Z T T T Z P P
Z T Z P P P D

β β β β β
β β β β

′= = = = ∪ ∪
′= = ∪ ∈

 

Last equalities are impossible since Z Z T T′ ′≠ ∪ ∪  and Z Z T′≠ ∪  for any 
,T T D′∈ , by definition of a semilattice D.   
The statement b) of the Lemma 2.2.1 is proved. 
Lemma 2.2.1 is proved. 
Let ( )8.1 ,5D X∈Σ . We denoted the following sets by symbols 0A , ( )0B A  

and 0B :  

{ }{ { } { } { }
{ } { } { }}

( ) ( ) ( ){ } ( ) ( ){ }

0 4 3 2 0 4 3 1 0 4 2 1 0 3 2 1 0

4 3 0 4 1 0 3 2 0

0 0 0

, , , , , , , , , , , , , , , ,

, , , , , , , , ,

| , ;  | , .X X

T T T T T T T T T T T T T T T T

T T T T T T T T T

B B D V X B B D V X Dα α α α∗ ∗

=

= ∈ ∈ = ∈ =

A

A A

 

Remark, that the sets 0B  and ( )0B A  are external elements for the semi-
group ( )XB D . 
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Lemma 2.2.2. Let ( )8.1 ,5D X∈Σ . Then the following statements are true: 

a) If quasinormal representation of a binary relation α  has a form 

( ) ( ) ( )4 4 2 2 0 0 ,Y T Y T Y Tα α αα = × ∪ × ∪ ×  

where { }4 2 0, ,Y Y Yα α α ∉ ∅ , then α  is generating by elements of the elements of 
set ( )0B A ; 

b) If quasinormal representation of a binary relation α  has a form 

( ) ( ) ( )3 3 1 1 0 0 ,Y T Y T Y Tα α αα = × ∪ × ∪ ×  

where { }3 1 0, ,Y Y Yα α α ∉ ∅ , then α  is generating by elements of the elements of 
set ( )0B A ; 

c) If quasinormal representation of a binary relation α  has a form 

( ) ( ) ( )2 2 1 1 0 0 ,Y T Y T Y Tα α αα = × ∪ × ∪ ×  

where { }2 1,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0 0B B∪ A . 

Proof. 1). Let quasinormal representation of binary relations δ  and β  have 
a form  

( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )

4 4 2 2 1 1 0 0

4 4 2 4 2 0 2 1 0 0

,

\ \ \ ,

Y T Y T Y T Y T

T T T T T T T T X T T

δ δ δ δδ

β

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×
 

where { }4 2 1, ,Y Y Yα α α ∉ ∅ , 

( ) ( ) ( )
( ) ( ) ( )

4 2 4 0 2 0

1 3 4 2 0 0 0

\ \ \

\ \ ,

T T T T T X T

P P P P X T T X T X

∪ ∪ ∪

= ∪ ∪ ∪ ∪ = ∪ =
 

(see Equalities (2.2.1) and (2.2.2)), then ( )0, Bδ β ∈ A  and 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

4 4 2 1 3 4 4 2 2

1 2 3 4 4 1 0 0 0

4 4 2 2 1 1 0 0

4 4 2 2 1 0 0 0

4 4 2 2 1 0 0

,  ,

,  .

,

T T T P P P T T T

T P P P T T T T T

Y T Y T Y T Y T

Y T Y T Y T Y T

Y T Y T Y Y T

δ δ δ δ

δ δ δ δ

δ δ δ δ

β β β

β β β

α δ β β β β β

α

= = ∪ ∪ = ∪ =

= ∪ ∪ = ∪ = =

= = × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ ∪ × =

  

if 4 4Y Yδ α= , 2 2Y Yδ α=  and 1 0 0Y Y Yδ δ α∪ = . Last equalities are possible since  

1 0 1Y Yδ δ∪ ≥  ( 0 0Y δ ≥  by preposition). 

The statement a) of the lemma 2.2.2 is proved. 
2) Let quasinormal representation of binary relations δ  and β  have a 

form  

( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )

3 3 2 2 1 1 0 0

3 3 0 1 2 1 3 1 0 0

,

\ \ \ ,

Y T Y T Y T Y T

T T T T T T T T X T T

δ δ δ δδ

β

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×
 

where { }3 2 1, ,Y Y Yα α α ∉ ∅ ,  
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( ) ( ) ( )
( ) ( ) ( )

3 0 1 1 3 0

2 4 1 3 0 0 0

\ \ \

\ \ ,

T T T T T X T

P P P P X T T X T X

∪ ∪ ∪

= ∪ ∪ ∪ ∪ = ∪ =
 

(see Equalities (2.2.1) and (2.2.2)), then ( )0, Bδ β ∈ A  and 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

4 3 2 1 3 4 3 2 1 0

1 2 3 4 3 1 0 0 0

3 3 2 2 1 1 0 0

3 3 2 0 1 1 0 0

3 3 1 1 2 0 0

,  ,

,  .

,

T T T P P P T T T T

T P P P T T T T T

Y T Y T Y T Y T

Y T Y T Y T Y T

Y T Y T Y Y T

δ δ δ δ

δ δ δ δ

δ δ δ δ

β β β

β β β

α δ β β β β β

α

= = ∪ ∪ = ∪ ∪ =

= ∪ ∪ = ∪ = =

= = × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ ×

= × ∪ × ∪ ∪ × =

  

if 3 3Y Yδ α= , 1 1Y Yδ α=  and 2 0 0Y Y Yδ δ α∪ = . Last equalities are possible since 
 

2 0 1Y Yδ δ∪ ≥  ( 0 0Y δ ≥  by preposition). 

The statement b) of the lemma 2.2.2 is proved. 
3) Let quasinormal representation of binary relations δ  and β  have a 

form  

( ) ( ) ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( )

4 4 3 3 0 0

2 1 4 1 2 3 1 3 2

2 4 1 0 0

,

\ \ \

\ \ ,

Y T Y T Y T

T T T T T T T T T

T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×

∪ × ∪ ×

 

where { }4 3,Y Yα α ∉ ∅ ,  

( ) ( ) ( ) ( ) ( )
( ) ( )

2 1 1 2 1 3 2 4 0

1 2 3 4 0 0 0

\ \ \ \ \

\ \ ,

T T T T T T T T X T

P P P P X T T X T X

∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ = ∪ =
 

(see Equalities (2.2.1) and (2.2.2)), then ( )0Bδ ∈ A , 0Bβ ∈  and 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

4 1 3 4 2 2

3 2 4 3 1 1 0 2 1 0

4 4 3 3 0 0

4 2 3 1 0 0

,

, ,

,

T P P T T T

T P P T T T T T T T

Y T Y T Y T

Y T Y T Y T

δ δ δ

δ δ δ

β β

β β β

α δ β β β β

α

= ∪ = ∪ =

= ∪ = ∪ = = ∪ =

= = × ∪ × ∪ ×

= × ∪ × ∪ × =



  

if 4 2Y Yδ α= , 3 1Y Yδ α=  and 0 0Y Yδ α= . Last equalities are possible since 4 1Y δ ≥ , 

3 1Y δ ≥  and 0 0Y δ ≥ . 

The statement c) of the lemma 2.2.2 is proved. 
Lemma 2.2.2 is proved. 
Lemma 2.2.3. Let ( )8.1 ,5D X∈Σ . Then the following statements are true: 

a) If quasinormal representation of a binary relation α  has a form 

( ) ( )4 4 2 2 ,Y T Y Tα αα = × ∪ ×  

where { }4 2,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

b) If quasinormal representation of a binary relation α  has a form 

( ) ( )4 4 0 0 ,Y T Y Tα αα = × ∪ ×  
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where { }4 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

c) If quasinormal representation of a binary relation α  has a form  

( ) ( )3 3 1 1 ,Y T Y Tα αα = × ∪ ×  

where { }3 1,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

d) If quasinormal representation of a binary relation α  has a form  

( ) ( )3 3 0 0 ,Y T Y Tα αα = × ∪ ×  

where { }3 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

e) If quasinormal representation of a binary relation α  has a form  

( ) ( )2 2 0 0Y T Y Tα αα = × ∪ × , 

where { }2 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 

f) If quasinormal representation of a binary relation α  has a form  

( ) ( )1 1 0 0Y T Y Tα αα = × ∪ × , 

where { }1 0,Y Yα α ∉ ∅ , then α  is generating by elements of the elements of set 

( )0B A ; 
g) If quasinormal representation of a binary relation α  has a form  

2X Tα = × , then α  is generating by elements of the elements of set ( )0B A ; 
h) If quasinormal representation of a binary relation α  has a form  

1X Tα = × , then α  is generating by elements of the elements of set ( )0B A ; 
i) If quasinormal representation of a binary relation α  has a form  

0X Tα = × , then α  is generating by elements of the elements of set ( )0B A . 

Proof. 1) Let quasinormal representation of a binary relations δ , β  have a 
form 

( ) ( ) ( )
( ) ( )( ) ( )( )

4 4 1 1 0 0

4 4 0 4 2 0 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
 

where { }4 1,Y Yδ δ ∉ ∅ .  

( ) ( )
( ) ( ) ( ) ( )

4 0 4 0

1 3 2 4 0 0 0

\ \

\ \ .

T T T X T

P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ = ∪ =
 

Then from the statement a) of the Lemma 2.2.2 follows that β  is generating 
by elements of the set ( )0B A , ( )0Bδ ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

4 4 1 4 2 2 0 2

4 4 1 1 0 0

4 4 1 2 0 2

4 4 1 0 2

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y T Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =
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If 4 4Y Yδ α= , 1 0 2Y Y Yδ δ α∪ = . Last equalities are possible since 1 0 1Y Yδ δ∪ ≥   

( 0 0Y δ ≥  by preposition). 

The statement a) of the lemma 2.2.3 is proved. 
2) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( ) ( )
( ) ( )( ) ( )( )

4 4 1 1 0 0

4 4 0 4 3 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
 

where { }4 1,Y Yδ δ ∉ ∅ .  

( ) ( )
( ) ( ) ( ) ( )

4 0 4 0

1 3 2 4 0 0 0

\ \

\ \ .

T T T X T

P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ = ∪ =
 

Then from ( )0, Bδ β ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

4 4 1 4 3 0 0 0

4 4 1 1 0 0

4 4 1 0 0 0

4 4 1 0 0

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y T Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =



 

if 4 4Y Yδ α= , 1 0 0Y Y Yδ δ α∪ = . Last equalities are possible since 1 0 1Y Yδ δ∪ ≥   

( 0 0Y δ ≥  by preposition). 

The statement b) of the lemma 2.2.3 is proved. 
3) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( ) ( )
( ) ( )( ) ( )( )

3 3 2 2 0 0

3 3 0 3 1 0 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
 

where { }4 2,Y Yδ δ ∉ ∅ .  

( ) ( )
( ) ( ) ( ) ( )

3 0 3 0

2 4 1 3 0 0 0

\ \

\ \ .

T T T X T

P P P P X T T X T X

∪ ∪

= ∪ ∪ ∪ ∪ = ∪ =
 

Then from the statement b) of the Lemma 2.2.2 follows that β  is generating 
by elements of the set ( )0B A , ( )0Bδ ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

3 3 2 3 1 1 0 1

2 3 2 2 0 0

3 3 2 1 0 1

3 3 2 0 1

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y T Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =



 

if 3 3Y Yδ α= , 2 0 1Y Y Yδ δ α∪ = . Last equalities are possible since 2 0 1Y Yδ δ∪ ≥  

( 0 0Y δ ≥  by preposition). 

The statement c) of the lemma 2.2.3 is proved. 
4) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( ) ( )
( ) ( )( ) ( )( )

3 3 2 2 0 0

3 3 0 3 2 0 0

,

\ \ ,

Y T Y T Y T

T T T T T X T T

δ δ δδ

β

= × ∪ × ∪ ×

= × ∪ × ∪ ×
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where { }3 2,Y Yδ δ ∉ ∅ . Then ( )0, Bδ β ∈ A  and 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )

3 3 2 3 2 0 0 0

3 3 2 2 0 0

3 3 2 0 0 0

3 3 2 0 0

,  ,  .

,

T T T T T T T T

Y T Y T Y T

Y T Y T Y T

Y T Y Y T

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = ∪ = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= × ∪ ∪ × =



 

if 3 3Y Yδ α= , 2 0 0Y Y Yδ δ α∪ = . Last equalities are possible since 2 0 1Y Yδ δ∪ ≥   

( 0 0Y δ ≥  by preposition). 

The statement d) of the lemma 2.2.3 is proved. 
5) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( )( )( ) ( )( ) ( )( )
4 4 0 0

2 1 3 4 2 1 2 4 0

,

\ \ \ ,

Y T Y T

T T T T T T T X T T

δ δδ

β

= × ∪ ×

= ∩ × ∪ × ∪ ×
 

where { }4 0,Y Yδ δ ∉ ∅ , 

( )( ) ( ) ( ) ( ) ( )2 1 3 2 1 4 3 1 4 4 4\ \ \ \ \ .T T T T T X T P P X T T X T X∩ ∪ ∪ = ∪ ∪ = ∪ =  

(See Equalities (2.2.1) and (2.2.2)). Then from the statement b) of the Lemma 
2.2.3 follows that δ  is generating by elements of the set ( )0B A  and from the 
statement a) of the Lemma 2.2.2 element β  is generating by elements of the set 
( )0B A  and 

( )
( ) ( ) ( ) ( )

4 1 3 4 2 2 0 0

4 4 0 0 4 2 0 0

,  .

,

T P P T T T T T

Y T Y T Y T Y Tδ δ δ δ

β β β

δ β β β α

= ∪ = ∪ = =

= × ∪ × = × ∪ × =

 

if 4 2Y Yδ α= , 0 0Y Yδ α= . Last equalities are possible since 4 1Y δ ≥  0 1Y δ ≥ . 

The statement e) of the lemma 2.2.3 is proved. 
6) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( )( )( ) ( )( ) ( )( )
3 3 0 0

2 1 4 3 1 2 1 3 0

,

\ \ \ ,

Y T Y T

T T T T T T T X T T

δ δδ

β

= × ∪ ×

= ∩ × ∪ × ∪ ×
 

where { }3 0,Y Yδ δ ∉ ∅ , 

( )( ) ( ) ( ) ( ) ( )2 1 4 1 2 3 4 2 3 3 3\ \ \ \ \ .T T T T T X T P P X T T X T X∩ ∪ ∪ = ∪ ∪ = ∪ =  

(see Equalities (2.2.1) and (2.2.2)). Then from the statement d) of the Lemma 
2.2.3 follows that δ  is generating by elements of the set ( )0B A  and from the 
statement b) of the Lemma 2.2.2 element β  is generating by elements of the 
set ( )0B A  and 

( )
( ) ( ) ( ) ( )

3 2 4 3 1 1 0 0

3 3 0 0 3 1 0 0

,  .

,

T P P T T T T T

Y T Y T Y T Y Tδ δ δ δ

β β β

δ β β β α

= ∪ = ∪ = =

= × ∪ × = × ∪ × =

 

if 3 1Y Yδ α= , 0 0Y Yδ α= . Last equalities are possible since 4 1Y δ ≥  0 1Y δ ≥ . 

The statement e) of the lemma 2.2.3 is proved. 
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7) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( ) ( )( ) ( )( )

2 2 0 0

1 4 2 1 2 0 0

,

\ \ ,

Y T Y T

T T T T T X T T

δ δδ

β

= × ∪ ×

= × ∪ × ∪ ×
 

where { }2 0,Y Yδ δ ∉ ∅ ,  

( ) ( ) ( ) ( ) ( )1 2 1 0 2 3 4 1 0 0 0\ \ \ \T T T X T P P P P X T T X T X∪ ∪ = ∪ ∪ ∪ ∪ = ∪ =  

(see Equalities (2.2.1) and (2.2.2)). Then from the statement e) of the Lemma 
2.2.3 follows that δ  is generating by elements of the set ( )0B A  and from the 
statement a) of the Lemma 2.2.2 element β  is generating by elements of the set 
( )0B A  and 

( ) ( ) ( ) ( )
2 4 2 2 0 2

2 2 0 0 2 2 0 2 2

,

,

T T T T T T

Y T Y T Y T Y T X Tδ δ δ δ

β β

δ β β β α

= ∪ = =

= × ∪ × = × ∪ × = × =

 

since representation of a binary relation δ  is quasinormal.  
The statement g) of the lemma 2.2.3 is proved. 
8) Let quasinormal representation of a binary relations δ , β  have a form 

( ) ( )
( ) ( )( ) ( )( )

1 1 0 0

2 3 1 2 1 0 0

,

\ \ ,

Y T Y T

T T T T T X T T

δ δδ

β

= × ∪ ×

= × ∪ × ∪ ×
 

where { }1 0,Y Yδ δ ∉ ∅ ,  

( ) ( ) ( ) ( ) ( )2 1 2 0 1 3 4 2 0 0 0\ \ \ \T T T X T P P P P X T T X T X∪ ∪ = ∪ ∪ ∪ ∪ = ∪ =  

(see Equalities (2.2.1) and (2.2.2)). Then from the statement f) of the Lemma 
2.2.3 follows that δ  is generating by elements of the set ( )0B A  and from the 
statement b) of the Lemma 2.2.2 element β  is generating by elements of the 
set ( )0B A  and 

( ) ( ) ( ) ( )
1 3 1 1 0 1

1 1 0 0 1 1 0 1 1

,

,

T T T T T T

Y T Y T Y T Y T X Tδ δ δ δ

β β

δ β β β α

= ∪ = =

= × ∪ × = × ∪ × = × =

 

since representation of a binary relation δ  is quasinormal.  
The statement h) of the lemma 2.2.3 is proved. 
9) Let quasinormal representation of a binary relation δ  has a form 

( ) ( )( )4 1 4 0\ ,T T X T Tδ = × ∪ ×  

then  

( )
( ) ( )( ) ( ) ( )( )

1 2 3 4 4 0 0 0 0

4 1 4 0 4 0 4 0 0

,  

\ \ \

T P P P T T T T T

T T X T T T T X T T X T

δ δ δ

δ δ δ δ α

= ∪ ∪ = ∪ = =

= × ∪ × = × ∪ × = =

 

since representation of a binary relation δ  is quasinormal.  
The statement i) of the lemma 2.2.3 is proved. 
Lemma 2.2.3 is proved. 
Lemma 2.2.4.  Let ( )8.1 ,5D X∈Σ . Then the following statements are true: 
a) If 0\ 1X T ≥  and { }4 3,Z T T∈ , then binary relation X Zα = ×  is gene-
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rating by elements of the elements of set ( )0B A ; 
b) If 0X T=  and { }4 3,Z T T∈ , then binary relation X Zα = ×  is external 

element for the semigroup ( )XB D .  

Proof. 1) Let quasinormal representation of a binary relation δ  has a form 

( ) ( ) ( )4 4 3 3 0 0Y T Y T Y Tδ δ δδ = × ∪ × ∪ × , 

where { }4 3,Y Yδ δ ∉ ∅ , then ( ) { }0 \Bδ α∈ A . If quasinormal representation of a 

binary relation β  has a form ( ) { } ( )( )
0

0
\t X T

T T t f tβ
′∈

′ ′= × ∪ ×


, where f is any 

mapping of the set 0\X T  in the set { } { }4 3, \T T Z . It is easy to see, that β α≠  
and two elements of the set { }4 3,T T  belong to the semilattice ( ),V D β , i.e. 

( ) { }0 \Bδ α∈ A . In this case we have 

( ) ( ) ( )
( ) ( ) ( )
( )( )

4 3 0

4 4 3 3 0 0

4 3 0

4 3 0

;

,

T T T Z

Y T Y T Y T

Y Z Y Z Y Z

Y Y Y Z X Z

δ δ δ

δ δ δ

δ δ δ

β β β

δ β β β β

α

= = =

= × ∪ × ∪ ×

= × ∪ × ∪ ×

= ∪ ∪ × = × =



 

since the representation of a binary relation δ  is quasinormal. Thus, element 
α  is generating by elements of the set ( )0B A . 

The statement a) of the lemma 2.2.4 is proved. 
2) Let 0X T= , X Zα = × , for some { }4 3,Z T T∈  and α δ β=   for some 

( ) { }, \XB Dδ β α∈ . Then from the Equalities (2.2.3) and (2.2.4) we obtain that 

4 3 2 1 0 1 2 3 4,  T T T T T Z P P P P Zβ β β β β β β β β= = = = = = = = = , 

since Z is minimal element of the semilattice D. 
Now, let subquasinormal representations β  of a binary relation β  has a 

form 

( )( ) { } ( )( )
0

1 2 3 4 2
\t X T

P P P P Z t tβ β
′∈

′ ′= ∪ ∪ ∪ × ∪ ×


, 

where 0 1 2 3 4
1

       
         

P P P P P
Z Z Z Z

β
 

=  ∅ 
 is normal mapping. But complement mapping 

2β  is empty, since 0\X T =∅ , i.e. in the given case, subquasinormal represen-
tation β  of a binary relation β  is defined uniquely. So, we have that  

X Zβ β α= = × = , which contradicts the condition ( ) { }\XB Dβ α∉ . 
Therefore, if 0X T=  and X Zα = × , for some { }4 3,Z T T∈ , then α  is ex-

ternal element of the semigroup ( )XB D . 

The statement b) of the lemma 2.2.4 is proved. 
lemma 2.2.4 is proved. 
Theorem 2.2.1.  Let ( )8.1 ,5D X∈Σ  and  

{ }{ { } { } { }
{ } { } { }}

( ) ( ) ( ){ } ( ) ( ){ }

0 4 3 2 0 4 3 1 0 4 2 1 0 3 2 1 0

4 3 0 4 1 0 3 2 0

0 0 0

, , , , , , , , , , , , , , , ,

, , , , , , , , ,

| , ;  | , .X X

T T T T T T T T T T T T T T T T

T T T T T T T T T

B B D V X B B D V X Dα α α α∗ ∗

=

= ∈ ∈ = ∈ =

A

A A
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Then the following statements are true: 
a) If 0\ 1X T ≥ , then ( )0 0S B B= ∪ 0A  is irreducible generating set for the 

semigroup.  
b) If 0X T= , then ( ) { }1 0 4 3,S B B X T X T= ∪ ∪ × ×0A  is irreducible genera-

ting set for the semigroup ( )XB D . 

Proof. The theorem 2.2.1 we may prove analogously of the theorems 2.1.1.  
Theorem 2.2.2. Let 6n ≥ , { } ( )4 3 2 1 0 8.1, , , , ,5D T T T T T X= ∈Σ  and 

{ }{ { } { } { }
{ } { } { }}

( ) ( ) ( ){ } ( ) ( ){ }

0 4 3 2 0 4 3 1 0 4 2 1 0 3 2 1 0

4 3 0 4 1 0 3 2 0

0 0 0

, , , , , , , , , , , , , , , ,

, , , , , , , , ,

| , ;  | , .X X

T T T T T T T T T T T T T T T T

T T T T T T T T T

B B D V X B B D V X Dα α α α∗ ∗

=

= ∈ ∈ = ∈ =

A

A A

 

Then the following statements are true: 
a) If 0\ 1X T ≥ , then the number 0S  elements of the set ( )0 0 0S B B= ∪ A  

is equal to 

0 5 3 3 2 2 2n n nS = − ⋅ + ⋅ + . 

b) If 0X T= , then the number 1S  elements of the set  

( ) { }1 0 4 3,S B B X T X T= ∪ ∪ × ×0A  is equal to 

1 5 3 3 2 2 4n n nS = − ⋅ + ⋅ + . 

Proof.  Let number of a set X is equal to 6n ≥ , i.e. 6X n= ≥ . Let  
{ }1 2 !, , ,n nS ϕ ϕ ϕ= 

 is a group all one to one mapping of a set { }1,2, ,M n= 
 

on the set M and 
1 2
, , ,

mi i iϕ ϕ ϕ
 ( )m n≤  are arbitrary elements of the group 

nS , 
1 2
, , ,

m
Y Y Yϕ ϕ ϕ

 are arbitrary partitioning of a set X. By symbol m
nk  we 

denote the number elements of a set { }1 2
, , ,

m
Y Y Yϕ ϕ ϕ . It is well known, that  

( )
( ) ( )

1

1

1
1 ! !

m im
m n
n

i
k i

i m i

+
−

=

−
= ⋅

− ⋅ −∑ . 

If 2,3,4,5m = , then we have 

2 1 3 1 1 4 1 1 1

5 1 1 1 1

1 1 1 1 1 12 1,   3 2 ,   4 3 2 ,
2 2 6 2 2 6

1 1 1 1 15 4 3 2 .
24 6 4 6 24

n n n n n n
n n n

n n n n
n

k k k

k

− − − − − −

− − − −

= − = ⋅ − + = ⋅ − ⋅ + ⋅ −

= ⋅ − ⋅ + ⋅ − ⋅ +
 

If 
1 2
,Y Yϕ ϕ  are any two elements partitioning of a set X and 

 
( ) ( )1 21 2Y Z Y Zϕ ϕβ = × ∪ × , where 1 2,Z Z D∈  and 1 2Z Z≠ . Then number of 

different binary relations β  of a semigroup ( )XB D  is equal to  

22 2 2n
nk⋅ = − .                      (2.2.5) 

If 
1 2 3
, ,Y Y Yϕ ϕ ϕ  are any tree elements partitioning of a set X and 

( ) ( ) ( )1 2 31 2 3Y Z Y Z Y Zϕ ϕ ϕβ = × ∪ × ∪ × , 

where 1 2 3, ,Z Z Z  are pairwise different elements of a given semilattice D. Then 
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number of different binary relations β  of a semigroup ( )XB D  is equal to  

36 3 3 2 3n n
nk⋅ = − ⋅ + .                   (2.2.6) 

If 
1 2 3 4
, , ,Y Y Y Yϕ ϕ ϕ ϕ  are any four elements partitioning of a set X and 

( ) ( ) ( ) ( )1 2 3 41 2 3 4Y Z Y Z Y Z Y Zϕ ϕ ϕ ϕβ = × ∪ × ∪ × ∪ × , 

where 1 2 3 4, , ,Z Z Z Z  are pairwise different elements of a given semilattice D. 
Then number of different binary relations β  of a semigroup ( )XB D  is equal 
to  

4 124 4 4 3 3 2 4n n n
nk +⋅ = − ⋅ + ⋅ − .               (2.2.7) 

If 
1 2 3 4 5
, , , ,Y Y Y Y Yϕ ϕ ϕ ϕ ϕ  are any four elements partitioning of a set X and 

( ) ( ) ( ) ( ) ( )1 2 3 4 51 2 3 4 5Y Z Y Z Y Z Y Z Y Zϕ ϕ ϕ ϕ ϕβ = × ∪ × ∪ × ∪ × ∪ × , 

where 1 2 3 4 5, , , ,Z Z Z Z Z  are pairwise different elements of a given semilattice D. 
Then number of different binary relations β  of a semigroup ( )XB D  is equal 
to  

5120 5 5 4 10 3 10 2 5.n n n n
nk⋅ = − ⋅ + ⋅ − ⋅ +             (2.2.8) 

If 0Bα ∈ , then quasinormal representation of a binary relation α  has a 
form 

( ) ( ) ( ) ( ) ( )4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y Tα α α α αα = × ∪ × ∪ × ∪ × ∪ × , 

where { }4 3 2 1, , ,Y Y Y Yα α α α ∉ ∅ , or a system 4 3 2 1 0, , , ,Y Y Y Y Yα α α α α  are partitioning of 
the set X. 

If the system 4 3 2 1, , ,Y Y Y Yα α α α , or a system 4 3 2 1 0, , , ,Y Y Y Y Yα α α α α  are partitioning 
of the set X. Of this from the Equalities (2.2.7) and (2.2.8) follows that 

( ) ( )0 5 5 4 10 3 10 2 5 4 4 3 6 2 4

5 4 4 6 3 4 2 1.

n n n n n n n

n n n n

B = − ⋅ + ⋅ − ⋅ + + − ⋅ + ⋅ −

= − ⋅ + ⋅ − ⋅ +
 

If ( )0Bα ∈ A , then by definition of a set ( )0B A  the quasinormal represen-
tation of a binary relation α  has a form: 

( ) ( ) ( ) ( )4 4 3 3 2 2 0 0Y T Y T Y T Y Tα α α αα = × ∪ × ∪ × ∪ × , 

where { }4 3 2, ,Y Y Yα α α ∉ ∅ , or { }4 3 2 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( ) ( )4 4 3 3 1 1 0 0Y T Y T Y T Y Tα α α αα = × ∪ × ∪ × ∪ × , 

where { }4 3 1, ,Y Y Yα α α ∉ ∅ , or { }4 3 1 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( ) ( )4 4 2 2 1 1 0 0Y T Y T Y T Y Tα α α αα = × ∪ × ∪ × ∪ × , 

where { }4 2 1, ,Y Y Yα α α ∉ ∅ , or { }4 2 1 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( ) ( )3 3 2 2 1 1 0 0Y T Y T Y T Y Tα α α αα = × ∪ × ∪ × ∪ × , 
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where { }3 2 1, ,Y Y Yα α α ∉ ∅ , or { }3 2 1 0, , ,Y Y Y Yα α α α ∉ ∅  are partitioning of the set X 
respectively; 

( ) ( ) ( )4 4 3 3 0 0Y T Y T Y Tα α αα = × ∪ × ∪ × , 

where { }4 3,Y Yα α ∉ ∅ , or { }4 3 0, ,Y Y Yα α α ∉ ∅  are partitioning of the set X respec-
tively; 

( ) ( ) ( )4 4 1 1 0 0Y T Y T Y Tα α αα = × ∪ × ∪ × , 

where { }4 1,Y Yα α ∉ ∅ , or { }4 1 0, ,Y Y Yα α α ∉ ∅  are partitioning of the set X respec-
tively; 

( ) ( ) ( )3 3 2 2 0 0Y T Y T Y Tα α αα = × ∪ × ∪ × , 

where { }3 2,Y Yα α ∉ ∅ , or { }3 2 0, ,Y Y Yα α α ∉ ∅  are partitioning of the set X respec-
tively. 

Of this and from the Equality (2.2.5), (2.2.6) and (2.2.7) follows that  

( ) ( ) ( ) ( )0 3 2 2 7 3 3 2 3 4 4 4 3 6 2 4

4 4 9 3 6 2 1.

n n n n n n

n n n

B = ⋅ − + ⋅ − ⋅ + + ⋅ − ⋅ + ⋅ −

= ⋅ − ⋅ + ⋅ +

A
 

So, we have that:   

( )
( ) ( )

( ) { }

0 0 0

1 0 4 3

5 4 4 6 3 4 2 1 4 4 9 3 6 2 1

5 3 3 2 2 2,

, 5 3 3 2 2 4.

n n n n n n n

n n n

n n n

S B B

S B B X T X T

= ∪

= − ⋅ + ⋅ − ⋅ + + ⋅ − ⋅ + ⋅ +

= − ⋅ + ⋅ +

= ∪ ∪ × × = − ⋅ + ⋅ +0

A

A

 

Since  

( ) { } ( ) { }0 0 0 4 3 2 0 4 3 2, , , ,B B B X T X T X T B X T X T X T∩ = ∩ × × × = ∩ × × × =∅A A . 

Theorem 2.2.2 is proved. 
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