Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_{8}(X, 5)$

Nino Tsinaridze
Department of Mathematics, Faculty of Exact Sciences and Education, Batumi Shota Rustaveli State University, Batumi, Georgia
Email: n.tsinaridze@bsu.edu.ge

How to cite this paper: Tsinaridze, N. (2024) Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_{8}(X, 5)$. Applied
Mathematics, 15, 169-197.
https://doi.org/10.4236/am.2024.152010

Received: February 6, 2024
Accepted: February 26, 2024
Published: February 29, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class $\Sigma_{8}(X, 5)$. Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.

Keywords

Semigroup, Semilattice, Binary Relation

1. Introduction

Let $X \neq \varnothing, D$ is an X-semilattice of unions which is closed with respect to the set-theoretic union of elements from D, f be an arbitrary mapping of the set X in the set D. To each mapping f we put into correspondence a binary relation α_{f} on the set X that satisfies the condition $\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x))$. The set of all such α_{f} is denoted by $B_{X}(D)$. It is easy to prove that $B_{X}(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by an X-semilattice of unions D.

We denote by \varnothing an empty subset of the set X or an empty binary relation. The condition $(x, y) \in \alpha$ will be written in the form $x \alpha y$.

Let $x, y \in X, \quad Y \subseteq X, \alpha \in B_{X}(D), \breve{D}=\bigcup_{Y \in D} Y$ and $T \in D$. We denote by the symbols $y \alpha, Y \alpha, V(D, \alpha), X^{*}$ and $V\left(X^{*}, \alpha\right)$ the following sets:

$$
\begin{aligned}
y \alpha & =\{x \in X \mid y \alpha x\}, Y \alpha=\bigcup_{y \in Y} y \alpha, V(D, \alpha)=\{Y \alpha \mid Y \in D\}, \\
X^{*} & =\{Y \mid \varnothing \neq Y \subseteq X\}, V\left(X^{*}, \alpha\right)=\{Y \alpha \mid \varnothing \neq Y \subseteq X\} \\
D_{T} & =\{Z \in D \mid T \subseteq Z\}, \quad Y_{T}^{\alpha}=\{y \in X \mid y \alpha=T\} .
\end{aligned}
$$

Theorem 1.1. Let $D=\left\{\breve{D}, Z_{1}, Z_{2}, \cdots, Z_{m-1}\right\}$ be some finite X-semilattice of unions and $C(D)=\left\{P_{0}, P_{1}, P_{2}, \cdots, P_{m-1}\right\}$ be the family of sets of pairwise nonintersecting subsets of the set X (the set \varnothing can be repeated several times). If φ is a mapping of the semilattice D on the family of sets $C(D)$ which satisfies the conditions

$$
\varphi=\left(\begin{array}{lllll}
\breve{D} & Z_{1} & Z_{2} & \cdots & Z_{m-1} \\
P_{0} & P_{1} & P_{2} & \cdots & P_{m-1}
\end{array}\right)
$$

and $\hat{D}_{z}=D \backslash D_{Z}$, then the following equalities are valid:

$$
\begin{aligned}
& \breve{D}=P_{0} \cup P_{1} \cup P_{2} \cup \cdots \cup P_{m-1}, \\
& Z_{i}=P_{0} \cup \bigcup_{T \in \hat{D}_{Z_{i}}} \varphi(T) .
\end{aligned}
$$

In the sequel these equalities will be called formal. The parameters P_{i} $(0<i \leq m-1)$ there exist such parameters that cannot be empty sets for D. Such sets P_{i} are called bases sources, where sets $P_{j}(0 \leq j \leq m-1)$, which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a bases source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [1] Theorem 1.1, [2] [3] chapter 11).

Definition 1.1. The representation $\alpha=\bigcup_{T \in D}\left(Y_{T}^{\alpha} \times T\right)$ of binary relation α is called quasinormal, if $\bigcup_{T \in D} Y_{T}^{\alpha}=X$ and $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha}=\varnothing$ for any $T, T^{\prime} \in D, T \neq T^{\prime}$ (see [1] Definition 1.2, [2], [3] chapter 1.1).

Definition 1.2. Let $\alpha, \beta \subseteq X \times X$. Their product $\delta=\alpha \circ \beta$ is defined as follows: $x \delta y \quad(x, y \in X)$ if there exists an element $z \in X$ such that $x \alpha z \beta y$ (see [1] Definition 1.3, [1], chapter 1.3).

Definition 1.3. We say that an element α of the semigroup $B_{X}(D)$ is external if $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$ (see [1] Definition 1.1, [2] [3] Definition 1.15.1).

It is well known, that if B is all external elements of the semigroup $B_{X}(D)$ and B^{\prime} is any generated set for the $B_{X}(D)$, then $B \subseteq B^{\prime}$ (see [2] [3] Lemma 1.15.1).

2. Result

Let $\Sigma_{8}(X, 5)$ be a class of all X-semilattices of unions, whose every element is isomorphic to an X-semilattice of unions $D=\left\{T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$, which satisfies
the condition:

$$
\begin{aligned}
& T_{4} \subset T_{2} \subset T_{0}, T_{3} \subset T_{1} \subset T_{0}, T_{4} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing \\
& T_{2} \backslash T_{1} \neq \varnothing, T_{1} \backslash T_{2} \neq \varnothing, T_{2} \backslash T_{3} \neq \varnothing, T_{3} \backslash T_{2} \neq \varnothing \\
& T_{4} \backslash T_{1} \neq \varnothing, T_{1} \backslash T_{4} \neq \varnothing, T_{4} \cup T_{3}=T_{4} \cup T_{1}=T_{3} \cup T_{2}=T_{1} \cup T_{2}=T_{0} .
\end{aligned}
$$

(see Figure 1). It is easy to see that $\tilde{D}=\left\{T_{4}, T_{3}, T_{2}, T_{1}\right\}$ is irreducible generating set of the semilattice D.

Let $C(D)=\left\{P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right\}$ is a family of sets, where $\varphi=\left(\begin{array}{lllll}T_{0} & T_{1} & T_{2} & T_{3} & T_{4} \\ P_{0} & P_{1} & P_{2} & P_{3} & P_{4}\end{array}\right)$ is a mapping of the semilattice D onto the family of sets $C(D)$ and $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$ are pairwise disjoint subsets of the set X. Then the formal equalities of the semilattice D have a form:

$$
\begin{align*}
& T_{0}=P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4}, \\
& T_{1}=P_{0} \cup P_{2} \cup P_{3} \cup P_{4}, \\
& T_{2}=P_{0} \cup P_{1} \cup P_{3} \cup P_{4}, \tag{2.1}\\
& T_{3}=P_{0} \cup P_{2} \cup P_{4}, \\
& T_{4}=P_{0} \cup P_{1} \cup P_{3} .
\end{align*}
$$

Here the element P_{0} is source of completeness and the elements $P_{4}, P_{3}, P_{2}, P_{1}$ are basis sources of the semilattice D. Therefore $|X| \geq 4$ since $\left|P_{4}\right| \geq 1,\left|P_{3}\right| \geq 1$, $\left|P_{2}\right| \geq 1,\left|P_{1}\right| \geq 1 \quad$ (see Theorem 1.1).

From the formal Equalities (2.1) immediately follows

$$
\begin{align*}
& P_{4}=T_{2} \backslash T_{4}, P_{3}=\left(T_{2} \cap T_{1}\right) \backslash T_{3}, \tag{2.2}\\
& P_{2}=T_{3} \backslash T_{2}=T_{0} \backslash T_{2}, P_{1}=T_{4} \backslash T_{1}, P_{0}=T_{4} \cap T_{3} .
\end{align*}
$$

2.1. Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_{8}(X, 5)$,
 When $T_{4} \cap T_{3} \neq \varnothing$

In the sequel, we denoted all semilattices $D=\left\{T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ of the class $\Sigma_{8}(X, 5)$ by symbol $\Sigma_{8.0}(X, 5)$, for which $T_{4} \cap T_{3} \neq \varnothing$. Of the last inequality from the formal Equalities (2.1) of a semilattise D follows that $T_{4} \cap T_{3}=P_{0} \neq \varnothing$, i.e. $|X| \geq 5$.

Figure 1. Diagram of the semilattice D.

We denoted by symbols $\mathfrak{A}_{4}, \mathfrak{A}_{3}, \mathfrak{A}_{2}, \mathfrak{A}_{1}$ the following sets:

$$
\begin{aligned}
& \mathfrak{A}_{4}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\}\right\}, \\
& \mathfrak{A}_{3}=\left\{\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{0}\right\},\left\{T_{3}, T_{1}, T_{0}\right\},\left\{T_{2}, T_{1}, T_{0}\right\}\right\}, \\
& \mathfrak{A}_{2}=\left\{\left\{T_{4}, T_{2}\right\},\left\{T_{4}, T_{0}\right\},\left\{T_{3}, T_{1}\right\},\left\{T_{3}, T_{0}\right\},\left\{T_{2}, T_{0}\right\}\left\{T_{1}, T_{0}\right\}\right\}, \\
& \mathfrak{A}_{1}=\left\{\left\{T_{4}\right\},\left\{T_{3}\right\},\left\{T_{2}\right\},\left\{T_{1}\right\},\left\{T_{0}\right\}\right\} .
\end{aligned}
$$

Lemma 2.1.1. Let $D \in \Sigma_{8.0}(X, 5)$. Then the following statements are true:
a) Let $T_{3}, T_{4} \in V(D, \alpha)$, then α is external element of the semigroup $B_{X}(D)$;
b) Let $Z \in\left\{T_{2}, T_{1}\right\}, Z^{\prime} \in\left\{T_{4}, T_{3}\right\}$. If $Z^{\prime} \not \subset Z$ and $Z, Z^{\prime} \in V(D, \alpha)$, then α is external element of the semigroup $B_{X}(D)$;
c) Let $Z, Z^{\prime} \in\left\{T_{2}, T_{1}\right\}$ and $Z \neq Z^{\prime}$. If $V(D, \alpha)=\left\{T_{2}, T_{1}, T_{0}\right\}$, then α is external element of the semigroup $B_{X}(D)$.

Proof. Let $\alpha=\delta \circ \beta$ for some $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$. If quasinormal representation of binary relation δ has a form

$$
\delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right),
$$

then
$\alpha=\delta \circ \beta=\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)$.
From the formal Equalities (1) of the semilattice D we obtain that:

$$
\begin{align*}
& T_{0} \beta=P_{0} \beta \cup P_{1} \beta \cup P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta, \\
& T_{1} \beta=P_{0} \beta \cup P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta, \\
& T_{2} \beta=P_{0} \beta \cup P_{1} \beta \cup P_{3} \beta \cup P_{4} \beta, \tag{2.1.2}\\
& T_{3} \beta=P_{0} \beta \cup P_{2} \beta \cup P_{4} \beta, \\
& T_{4} \beta=P_{0} \beta \cup P_{1} \beta \cup P_{3} \beta .
\end{align*}
$$

where $P_{k} \beta \neq \varnothing$ for any $P_{k} \neq \varnothing \quad(k=0,1,2,3,4)$ and $\beta \in B_{X}(D)$. Indeed, by preposition $P_{k} \neq \varnothing$ for any $k=0,1,2,3,4$ and $\beta \neq \varnothing$ since $\varnothing \notin D$. Let $y \in P_{k}$ for some $y \in X$. Then $y \in T_{0}, \beta=\alpha_{f}$ for some $f: X \rightarrow D$ and $\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x)) \supseteq\{y\} \times f(y)$, i.e. there exists an element $t \in f(y)$ for which $y \alpha_{f} t$ and $y \beta t$. Of this and by definition of a set $P_{k} \beta$ we obtain that $t \in P_{k} \beta$ since $y \in P_{k}, y \beta t$. Thus, we have that $P_{k} \beta \neq \varnothing$, i.e. $P_{k} \beta \in D$ for any $k=0,1,2,3,4$.

Now, let $T_{i} \beta=Z$ and $T_{j} \beta=Z^{\prime}$ for some $0 \leq i \neq j \leq 4$ and $Z \neq Z^{\prime}$, $Z, Z^{\prime} \in\left\{T_{4}, T_{3}\right\}$, then from the Equalities (2.2) follows that $Z=P_{0} \beta=Z^{\prime}$ since Z and Z^{\prime} are minimal elements of the semilattice D. The equality $Z=Z^{\prime}$ contradicts the inequality $Z \neq Z^{\prime}$.

The statement a) of the Lemma 2.1.1 is proved.
Let $T_{i} \beta=Z^{\prime}$, where $Z^{\prime} \in\left\{T_{4}, T_{3}\right\}$ and $T_{j} \beta=Z$, where $Z \in\left\{T_{2}, T_{1}\right\}$ for some $0 \leq i \neq j \leq 4$. If $0 \leq i \leq 4$, then from the formal equalities of a semilattice D we obtain that

$$
\begin{aligned}
& T_{0} \beta=P_{0} \beta \cup P_{1} \beta \cup P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta=P_{0} \beta=P_{1} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{1} \beta=P_{0} \beta \cup P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta=P_{0} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{2} \beta=P_{0} \beta \cup P_{1} \beta \cup P_{3} \beta \cup P_{4} \beta=P_{0} \beta=P_{1} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{3} \beta=P_{0} \beta \cup P_{2} \beta \cup P_{4} \beta=P_{0} \beta=P_{2} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{4} \beta=P_{0} \beta \cup P_{1} \beta \cup P_{3} \beta=P_{0} \beta=P_{1} \beta=P_{3} \beta=Z^{\prime} .
\end{aligned}
$$

since Z^{\prime} is minimal element of the semilattice D. Now, let $i \neq j$.

1) If $T_{0} \beta=P_{0} \beta=P_{1} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}$ and $j=1,2,3,4$, then we have

$$
Z=T_{1} \beta=T_{2} \beta=T_{3} \beta=T_{4} \beta=Z^{\prime},
$$

which contradicts the inequality $Z \neq Z^{\prime}$.
2) If $T_{1} \beta=P_{0} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}$ and $j=0,2,3,4$, then we have

$$
Z=T_{0} \beta=T_{2} \beta=T_{4} \beta=Z^{\prime} \cup P_{1} \beta, \text { where } P_{1} \beta \in D
$$

Last equalities are impossible, since $Z \neq Z^{\prime} \cup T$ for any $T \in D$ and $Z \neq Z^{\prime}$ by definition of a semilattice D.
3) If $T_{2} \beta=P_{0} \beta=P_{1} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}$ and $j=0,1,3,4$, then we have

$$
Z=T_{0} \beta=T_{2} \beta=T_{4} \beta=Z^{\prime} \cup P_{1} \beta, \text { where } P_{1} \beta \in D
$$

Last equalities are impossible since $Z \neq Z^{\prime} \cup T$ for any $T \in D$ and $Z \neq Z^{\prime}$ by definition of a semilattice D.
4) If $T_{3} \beta=P_{0} \beta=P_{2} \beta=P_{4} \beta=Z^{\prime}$ and $j=0,1,2,4$, then we have

$$
\begin{aligned}
& Z=T_{0} \beta=T_{2} \beta=T_{4} \beta=Z^{\prime} \cup P_{1} \beta \cup P_{3} \beta \\
& \mathrm{Z}=T_{1} \beta=Z^{\prime} \cup P_{3} \beta, \text { where } P_{1} \beta, P_{3} \beta \in D
\end{aligned}
$$

Last equalities are impossible since $Z \neq Z^{\prime} \cup T \cup T^{\prime}$ and $Z \neq Z^{\prime} \cup T$ for any $T, T^{\prime} \in D$, by definition of a semilattice D.
5) If $T_{4} \beta=P_{0} \beta=P_{1} \beta=P_{3} \beta=Z^{\prime}$ and $j=0,1,2,3$, then we have

$$
\begin{aligned}
& Z=T_{0} \beta=T_{1} \beta=T_{3} \beta=Z^{\prime} \cup P_{2} \beta \cup P_{4} \beta, \\
& Z=T_{2} \beta=Z^{\prime} \cup P_{4} \beta, \text { where } P_{2} \beta, P_{4} \beta \in D
\end{aligned}
$$

Last equalities are impossible since $Z \neq Z^{\prime} \cup T \cup T^{\prime}$ and $Z \neq Z^{\prime} \cup T$ for any $T, T^{\prime} \in D$, by definition of a semilattice D.

The statement b) of the Lemma 2.1 .1 is proved.
Let $Z, Z^{\prime} \in\left\{T_{2}, T_{1}\right\}, T_{i} \beta=Z, T_{j} \beta=Z^{\prime}$ and $Z \neq Z^{\prime}$. If $T_{i} \beta=Z$ where $0 \leq i \neq j \leq 4$, we consider the following cases:
6) $i=0, j=1,2,3,4$. Then from the Equality (2.1.2) follows that $Z \subset Z^{\prime}$, which contradicts the definition of a semilattice D;
7) $i=1, j=0,2,3,4$.

If $i=1, j=0,3$. Then from the Equality (2.1.2) follows that $Z^{\prime} \subset Z$, or $Z \subset Z^{\prime}$ which contradicts the definition of a semilattice D,

If $i=1, j=2,4$. Then from the Equality (1.4) follows that

$$
\left\{\begin{array}{l}
T_{1} \beta=\left(P_{0} \beta \cup P_{3} \beta \cup P_{4} \beta\right) \cup P_{2} \beta, \\
T_{2} \beta=\left(P_{0} \beta \cup P_{3} \beta \cup P_{4} \beta\right) \cup P_{1} \beta,
\end{array}\right.
$$

where $P_{0} \beta \cup P_{3} \beta \cup P_{4} \beta, P_{2} \beta, P_{1} \beta \in D$, i.e. there exists such elements $T, T^{\prime}, T^{\prime \prime} \in D$, for which $Z=T \cup T^{\prime}$ and $Z^{\prime}=T \cup T^{\prime \prime}$. But such element $T \in D$
don't exist by definition of a semilattice D.
8) $i=2, j=0,1,3,4$.

If $i=2, j=0,4$. Then from the Equality (2.1.2) follows that $Z^{\prime} \subset Z$, or $Z \subset Z^{\prime}$ which contradicts the definition of a semilattice D;

If $i=2, j=1,3$. In this case analogously for the case 7) we may prove that $Z=T \cup T^{\prime}$ and $Z^{\prime}=T \cup T^{\prime \prime}$. But such element $T \in D$ don't exist by definition of a semilattice D.
9) $i=3, j=0,1,2,4$.

If $i=3, j=0,1$. Then from the Equality (2.1.2) follows that $Z^{\prime} \subset Z$, which contradicts the definition of a semilattice D;

If $i=3, j=2,4$. Then from the Equality (2.1.2) follows that

$$
\left\{\begin{array}{l}
T_{2} \beta=P_{0} \beta \cup\left(P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta\right), \\
T_{2} \beta=P_{0} \beta \cup\left(P_{1} \beta \cup P_{3} \beta\right),
\end{array}\right.
$$

where $P_{0} \beta, P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta, P_{1} \beta \cup P_{3} \beta \in D$, i.e. there exist such elements $T, T^{\prime}, T^{\prime \prime} \in D$, for which $Z=T \cup T^{\prime}$ and $Z^{\prime}=T \cup T^{\prime \prime}$. But such element $T \in D$ don't exist by definition of a semilattice D.
10) $i=4, j=0,1,2,3$.

If $i=4, j=0,2$. Then from the Equality (2.1.2) follows that $Z \subset Z^{\prime}$ which contradicts the definition of a semilattice D;

If $i=4, j=1,3$. Then from the Equality (2.1.2) follows that

$$
\left\{\begin{array}{l}
T_{1} \beta=P_{0} \beta \cup\left(P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta\right), \\
T_{3} \beta=P_{0} \beta \cup\left(P_{2} \beta \cup P_{4} \beta\right),
\end{array}\right.
$$

where $P_{0} \beta, P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta, P_{2} \beta \cup P_{4} \beta \in D$, i.e. there exist such elements $T, T^{\prime}, T^{\prime \prime} \in D$, for which $Z=T \cup T^{\prime}$ and $Z^{\prime}=T \cup T^{\prime \prime}$. But such element $T \in D$ do not exist by definition of a semilattice D.

The statement c) of the Lemma 2.1.1 is proved.
Lemma 2.1.1 is proved.
Let $D \in \Sigma_{8.0}(X, 5)$. By symbols $\mathfrak{A}_{0}, B\left(\mathfrak{A}_{0}\right)$ and B_{0} we denoted the following sets:

$$
\begin{aligned}
& \mathfrak{A}_{0}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\},\right. \\
& \\
& \left.\quad\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\},\left\{T_{2}, T_{1}, T_{0}\right\}\right\}, \\
& B\left(\mathfrak{A}_{0}\right)=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{0}\right\} ; B_{0}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} .
\end{aligned}
$$

Remark, that the sets B_{0} and $B\left(\mathfrak{A}_{0}\right)$ are external elements for the semigroup $B_{X}(D)$.

Lemma 2.1.2. Let $D \in \Sigma_{8.0}(X, 5)$. Then the following statements are true:
a) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
b) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{3}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;

Proof. 1). Let quasinormal representation of binary relations δ and β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{4} \times T_{4}\right) \cup\left(\left(T_{2} \backslash T_{4}\right) \times T_{2}\right) \cup\left(\left(T_{0} \backslash T_{2}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$,

$$
\begin{aligned}
& T_{4} \cup\left(T_{2} \backslash T_{4}\right) \cup\left(T_{0} \backslash T_{2}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{0} \cup P_{1} \cup P_{3}\right) \cup P_{4} \cup P_{2} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X,
\end{aligned}
$$

(see Equalities (2.1) and (2.2)), then $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{4} \beta=T_{4}, T_{2} \beta=\left(P_{0} \cup P_{1} \cup P_{3} \cup P_{4}\right) \beta=T_{4} \cup T_{2}=T_{2}, \\
& T_{1} \beta=\left(P_{0} \cup P_{2} \cup P_{3} \cup P_{4}\right) \beta=T_{4} \cup T_{1}=T_{0}, T_{0} \beta=T_{0} . \\
& \alpha=\delta \circ \beta=\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& \quad=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{0}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
& \quad=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{4}^{\alpha}, Y_{2}^{\delta}=Y_{2}^{\alpha}$ and $Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{1}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1 \quad\left(\left|Y_{0}^{\delta}\right| \geq 0 \quad\right.$ by preposition).

The statement a) of the lemma 2.1.2 is proved.
2) Let quasinormal representation of binary relations δ and β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{3} \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{1}\right) \times T_{2}\right) \cup\left(\left(T_{1} \backslash T_{3}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$,

$$
\begin{aligned}
& T_{3} \cup\left(T_{0} \backslash T_{1}\right) \cup\left(T_{1} \backslash T_{3}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{0} \cup P_{2} \cup P_{4}\right) \cup P_{1} \cup P_{3} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X,
\end{aligned}
$$

(see Equalities (2.1) and (2.2)), then $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{4} \beta=T_{3}, T_{2} \beta=\left(P_{0} \cup P_{1} \cup P_{3} \cup P_{4}\right) \beta=T_{3} \cup T_{2} \cup T_{1}=T_{0}, \\
& T_{1} \beta=\left(P_{0} \cup P_{2} \cup P_{3} \cup P_{4}\right) \beta=T_{3} \cup T_{1}=T_{0}, T_{0} \beta=T_{0} . \\
& \alpha=\delta \circ \beta=\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& \quad=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{0}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
& \quad=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{3}^{\alpha}, Y_{1}^{\delta}=Y_{1}^{\alpha}$ and $Y_{2}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since
$\left|Y_{2}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1 \quad\left(\left|Y_{0}^{\delta}\right| \geq 0 \quad\right.$ by preposition $)$.
The statement b) of the lemma 2.1.2 is proved.
Lemma 2.1.2 is proved.
Lemma 2.1.3. Let $D \in \Sigma_{8.0}(X, 5)$. Then the following statements are true:
a) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right)
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
b) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
c) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right),
$$

where $Y_{3}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
d) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{3}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
e) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
f) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
g) If quasinormal representation of a binary relation α has a form $\alpha=X \times T_{2}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
h) If quasinormal representation of a binary relation α has a form $\alpha=X \times T_{1}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
i) If quasinormal representation of a binary relation α has a form $\alpha=X \times T_{0}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$.
Proof. 1) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{4} \times T_{4}\right) \cup\left(\left(T_{0} \backslash T_{4}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{1}^{\delta} \notin\{\varnothing\}$.

$$
\begin{aligned}
& T_{4} \cup\left(T_{0} \backslash T_{4}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{0} \cup P_{1} \cup P_{3}\right) \cup\left(P_{2} \cup P_{4}\right) \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X .
\end{aligned}
$$

Then from the statement a) of the Lemma 2.1.2 follows that β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right), \delta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{4} \beta=T_{4}, T_{1} \beta=T_{4} \cup T_{2}=T_{2}, T_{0} \beta=T_{2} . \\
& \begin{aligned}
\delta \circ \beta & =\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{2}\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{2}\right)=\alpha,
\end{aligned}
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{4}^{\alpha}, Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{2}^{\alpha}$. Last equalities are possible since $\left|Y_{1}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$ ($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).

The statement a) of the lemma 2.1.3 is proved.
2) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{4} \times T_{4}\right) \cup\left(\left(T_{0} \backslash T_{4}\right) \times T_{3}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{1}^{\delta} \notin\{\varnothing\}$.

$$
\begin{aligned}
& T_{4} \cup\left(T_{0} \backslash T_{4}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{0} \cup P_{1} \cup P_{3}\right) \cup\left(P_{2} \cup P_{4}\right) \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X
\end{aligned}
$$

Then from $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
T_{4} \beta & =T_{4}, T_{1} \beta=T_{4} \cup T_{3}=T_{0}, T_{0} \beta=T_{0} . \\
\delta \circ \beta & =\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{0}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{4}^{\alpha}, \quad Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{1}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$ ($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).

The statement b) of the lemma 2.1.3 is proved.
3) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{3} \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{3}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{2}^{\delta} \notin\{\varnothing\}$.

$$
\begin{aligned}
& T_{3} \cup\left(T_{0} \backslash T_{3}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{0} \cup P_{2} \cup P_{4}\right) \cup\left(P_{1} \cup P_{3}\right) \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X
\end{aligned}
$$

Then from the statement b) of the Lemma 2.1.2 follows that β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right), \delta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{3} \beta= T_{3}, T_{2} \beta=T_{3} \cup T_{1}=T_{1}, T_{0} \beta=T_{1} . \\
& \begin{aligned}
\delta \circ \beta & =\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{1}\right) \\
& =\left(Y_{3}^{\delta} \times Z_{3}\right) \cup\left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{1}\right)=\alpha,
\end{aligned}
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{3}^{\alpha}, Y_{2}^{\delta} \cup Y_{0}^{\delta}=Y_{1}^{\alpha}$. Last equalities are possible since $\left|Y_{2}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$ ($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).

The statement c) of the lemma 2.1.3 is proved.
4) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{3} \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{3}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{3}^{\delta}, Y_{2}^{\delta} \notin\{\varnothing\}$. Then $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{3} \beta= T_{3}, T_{2} \beta=T_{3} \cup T_{2}=T_{0}, T_{0} \beta=T_{0} . \\
& \delta \circ \beta=\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
&=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{0}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
&=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{3}^{\alpha}, Y_{2}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{2}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$ ($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).

The statement d) of the lemma 2.1.3 is proved.
5) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(\left(\left(T_{2} \cap T_{1}\right) \backslash T_{3}\right) \times T_{4}\right) \cup\left(\left(T_{2} \backslash T_{1}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
\begin{aligned}
& \left(\left(T_{2} \cap T_{1}\right) \backslash T_{3}\right) \cup\left(T_{2} \backslash T_{1}\right) \cup\left(X \backslash T_{4}\right) \\
& =\left(P_{0} \cup P_{3}\right) \cup P_{1} \cup\left(X \backslash T_{4}\right)=T_{4} \cup\left(X \backslash T_{4}\right)=X .
\end{aligned}
$$

(See Equalities (2.1) and (2.2)). Then from the statement b) of the Lemma 2.1.3 follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement a) of the Lemma 2.1.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{4} \beta=\left(P_{0} \cup P_{1} \cup P_{3}\right) \beta=T_{4} \cup T_{2}=T_{2}, T_{0} \beta=T_{0} . \\
& \delta \circ \beta=\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{4}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{2}^{\alpha}, \quad Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{4}^{\delta}\right| \geq 1 \quad\left|Y_{0}^{\delta}\right| \geq 1$.
The statement e) of the lemma 2.1.3 is proved.
6) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(\left(\left(T_{2} \cap T_{1}\right) \backslash T_{4}\right) \times T_{3}\right) \cup\left(\left(T_{1} \backslash T_{2}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{3}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{3}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
\begin{aligned}
& \left(\left(T_{2} \cap T_{1}\right) \backslash T_{4}\right) \cup\left(T_{1} \backslash T_{2}\right) \cup\left(X \backslash T_{3}\right) \\
& =\left(P_{0} \cup P_{4}\right) \cup P_{2} \cup\left(X \backslash T_{3}\right)=T_{3} \cup\left(X \backslash T_{3}\right)=X .
\end{aligned}
$$

(See Equalities (2.1) and (2.2)). Then from the statement d) of the Lemma 2.1.3 follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement b) of the Lemma 2.1.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{3} \beta=\left(P_{0} \cup P_{2} \cup P_{4}\right) \beta=T_{3} \cup T_{1}=T_{1}, T_{0} \beta=T_{0} \\
& \delta \circ \beta=\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{3}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{1}^{\alpha}, \quad Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{4}^{\delta}\right| \geq 1 \quad\left|Y_{0}^{\delta}\right| \geq 1$.
The statement e) of the lemma 2.1.3 is proved.
7) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{1} \times T_{4}\right) \cup\left(\left(T_{2} \backslash T_{1}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{2}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
\begin{aligned}
& T_{1} \cup\left(T_{2} \backslash T_{1}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{0} \cup P_{2} \cup P_{3} \cup P_{4}\right) \cup P_{1} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X
\end{aligned}
$$

(see Equalities (2.1) and (2.2)). Then from the statement e) of the Lemma 2.1.3 follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement a) of the Lemma 2.1.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{2} \beta=T_{4} \cup T_{2}=T_{2}, T_{0} \beta=T_{2} \\
& \delta \circ \beta=\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{2}\right)=X \times T_{2}=\alpha
\end{aligned}
$$

since representation of a binary relation δ is quasinormal.
The statement g) of the lemma 2.1.3 is proved.
8) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{2} \times T_{3}\right) \cup\left(\left(T_{1} \backslash T_{2}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
\begin{aligned}
& T_{2} \cup\left(T_{1} \backslash T_{2}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{0} \cup P_{1} \cup P_{3} \cup P_{4}\right) \cup P_{2} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X
\end{aligned}
$$

(see Equalities (2.1) and (2.2)). Then from the statement f) of the Lemma 2.1.3
follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement b) of the Lemma 2.1.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{1} \beta=T_{3} \cup T_{1}=T_{1}, T_{0} \beta=T_{1} \\
& \delta \circ \beta=\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{1}\right)=X \times T_{1}=\alpha,
\end{aligned}
$$

since representation of a binary relation δ is quasinormal.
The statement h) of the lemma 2.1.3 is proved.
9) Let quasinormal representation of a binary relation δ has a form

$$
\delta=\left(T_{4} \times T_{1}\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0}\right)
$$

then

$$
\begin{aligned}
& T_{1} \delta=\left(P_{0} \cup P_{2} \cup P_{3} \cup P_{4}\right) \delta=T_{4} \cup T_{0}=T_{0}, T_{0} \delta=T_{0} \\
& \delta \circ \delta=\left(T_{4} \times T_{1} \delta\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0} \delta\right)=\left(T_{4} \times T_{0}\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0}\right)=X \backslash T_{0}=\alpha
\end{aligned}
$$

since representation of a binary relation δ is quasinormal.
The statement i) of the lemma 2.1.3 is proved.
Lemma 2.1.3 is proved.
Lemma 2..4. Let $D \in \Sigma_{8.0}(X, 5)$. Then the following statements are true:
a) If $\left|X \backslash T_{0}\right| \geq 1$ and $Z \in\left\{T_{4}, T_{3}\right\}$, then binary relation $\alpha=X \times Z$ is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
b) If $X=T_{0}$ and $Z \in\left\{T_{4}, T_{3}\right\}$, then binary relation $\alpha=X \times Z$ is external element for the semigroup $B_{X}(D)$.

Proof. 1) Let quasinormal representation of a binary relation δ has a form

$$
\delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right)
$$

where $Y_{4}^{\delta}, Y_{3}^{\delta} \notin\{\varnothing\}$, then $\delta \in B\left(\mathfrak{A}_{0}\right) \backslash\{\alpha\}$. If quasinormal representation of a binary relation β has a form $\beta=\left(T_{0} \times Z\right) \cup \bigcup_{t^{\prime} \in X \backslash T_{0}}\left(\left\{t^{\prime}\right\} \times f\left(t^{\prime}\right)\right)$, where f is any mapping of the set $X \backslash T_{0}$ in the set $\left\{T_{4}, T_{3}\right\} \backslash\{Z\}$. It is easy to see, that $\beta \neq \alpha$ and two elements of the set $\left\{T_{4}, T_{3}\right\}$ belong to the semilattice $V(D, \beta)$, i.e. $\delta \in B\left(\mathfrak{A}_{0}\right) \backslash\{\alpha\}$. In this case we have

$$
\begin{aligned}
T_{4} \beta & =T_{3} \beta=T_{0} \beta=Z ; \\
\delta \circ \beta & =\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{4}^{\delta} \times Z\right) \cup\left(Y_{3}^{\delta} \times Z\right) \cup\left(Y_{0}^{\delta} \times Z\right) \\
& =\left(\left(Y_{4}^{\delta} \cup Y_{3}^{\delta} \cup Y_{0}^{\delta}\right) \times Z\right)=X \times Z=\alpha,
\end{aligned}
$$

since the representation of a binary relation δ is quasinormal. Thus, element α is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$.

The statement a) of the lemma 2.1.4 is proved.
2) Let $X=T_{0}, \alpha=X \times Z$, for some $Z \in\left\{T_{4}, T_{3}\right\}$ and $\alpha=\delta \circ \beta$ for some $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$. Then from the equality (2.1.1) and (2.1.2) we obtain that

$$
T_{4} \beta=T_{3} \beta=T_{2} \beta=T_{1} \beta=T_{0} \beta=Z, P_{0} \beta=P_{1} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z,
$$

since Z is minimal element of the semilattice D.
Now, let subquasinormal representations $\bar{\beta}$ of a binary relation β has a form

$$
\bar{\beta}=\left(\left(P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4}\right) \times Z\right) \cup \bigcup_{t^{\prime} \in X \backslash T_{0}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}\left(t^{\prime}\right)\right),
$$

where $\bar{\beta}_{1}=\left(\begin{array}{lllll}P_{0} & P_{1} & P_{2} & P_{3} & P_{4} \\ Z & Z & Z & Z & Z\end{array}\right)$ is normal mapping. But complement mapping $\bar{\beta}_{2}$ is empty, since $X \backslash T_{0}=\varnothing$, i.e. in the given case, subquasinormal representation $\bar{\beta}$ of a binary relation β is defined uniquely. So, we have that $\beta=\bar{\beta}=X \times Z=\alpha$, which contradicts the condition $\beta \notin B_{X}(D) \backslash\{\alpha\}$.

Therefore, if $X=T_{0}$ and $\alpha=X \times Z$, for some $Z \in\left\{T_{4}, T_{3}\right\}$, then α is external element of the semigroup $B_{X}(D)$.

The statement b) of the lemma 2.1.4 is proved.
Lemma 2.1.4 is proved.
Theorem 2.1.1. Let $D \in \Sigma_{8.0}(X, 5)$ and

$$
\begin{aligned}
& \mathfrak{A}_{0}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\},\right. \\
&\left.\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\},\left\{T_{2}, T_{1}, T_{0}\right\}\right\}, \\
& B\left(\mathfrak{A}_{0}\right)=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{0}\right\} ; B_{0}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} .
\end{aligned}
$$

Then the following statements are true:
a) If $\left|X \backslash T_{0}\right| \geq 1$, then $S_{0}=B_{0} \cup B\left(\mathfrak{A}_{\mathrm{o}}\right)$ is irreducible generating set for the semigroup $B_{X}(D)$;
b) If $X=T_{0}$, then $S_{1}=B_{0} \cup B\left(\mathfrak{A}_{0}\right) \cup\left\{X \times T_{4}, X \times T_{3}\right\}$ is irreducible generating set for the semigroup $B_{X}(D)$.
Proof. Let $D \in \Sigma_{8.0}(X, 5)$ and $\left|X \backslash T_{0}\right| \geq 1$. First, we proved that every element of the semigroup $B_{X}(D)$ is generating by elements of the set S_{0}. Indeed, let α be arbitrary element of the semigroup $B_{X}(D)$. Then quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $\quad Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha} \cup Y_{0}^{\alpha}=X \quad$ and $\quad Y_{i}^{\alpha} \cap Y_{j}^{\alpha}=\varnothing \quad(0 \leq i \neq j \leq 4)$. For the $\left|V\left(X^{*}, \alpha\right)\right|$ we consider the following cases:

1) $\left|V\left(X^{*}, \alpha\right)\right|=5$. Then $\alpha \in B_{0}$ and $B_{0} \subset S_{0}$ by definition of a set S_{0}.
2) $\left|V\left(X^{*}, \alpha\right)\right|=4$. Then
$V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{4}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\}\right\} \subset \mathfrak{A}_{0}$
i.e. $\alpha \in B\left(\mathfrak{A}_{0}\right)$ and $B\left(\mathfrak{A}_{0}\right) \subset S_{0}$ by definition of a set S_{0}.
3) $\left|V\left(X^{*}, \alpha\right)\right|=3$. Then we have

$$
\begin{aligned}
V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{3}= & \left\{\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{0}\right\},\right. \\
& \left.\left\{T_{3}, T_{1}, T_{0}\right\},\left\{T_{2}, T_{1}, T_{0}\right\}\right\} .
\end{aligned}
$$

By definition of a set \mathfrak{A}_{0} we have
$\left\{\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\},\left\{T_{2}, T_{1}, T_{0}\right\}\right\} \subset \mathfrak{A}_{0}$, i.e. in this case $\alpha \in B\left(\mathfrak{A}_{0}\right)$ and $B\left(\mathfrak{A}_{0}\right) \subset S_{0}$ by definition of a set S_{0}.

If $V\left(X^{*}, \alpha\right) \in\left\{\left\{T_{4}, T_{2}, T_{0}\right\},\left\{T_{3}, T_{1}, T_{0}\right\}\right\}$, then from the statement a) and b) of the Lemma 2.1.2 element α is generating by elements $B\left(\mathfrak{A}_{0}\right)$ and $B\left(\mathfrak{A}_{0}\right) \subset S_{0}$ by definition of a set S_{0}.
4) $\left|V\left(X^{*}, \alpha\right)\right|=2$. Then we have

$$
V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{2}=\left\{\left\{T_{4}, T_{2}\right\},\left\{T_{4}, T_{0}\right\},\left\{T_{3}, T_{1}\right\},\left\{T_{3}, T_{0}\right\},\left\{T_{2}, T_{0}\right\}\left\{T_{1}, T_{0}\right\}\right\} .
$$

Then from the statement a)-f) of the Lemma 2.1.3 element α is generating by elements $B\left(\mathfrak{A}_{0}\right)$ and $B\left(\mathfrak{A}_{0}\right) \subset S_{0}$ by definition of a set S_{0}.
5) $\left|V\left(X^{*}, \alpha\right)\right|=1$. Then we have $V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{1}=\left\{\left\{T_{4}\right\},\left\{T_{3}\right\},\left\{T_{2}\right\},\left\{T_{1}\right\},\left\{T_{0}\right\}\right\}$.

If $V\left(X^{*}, \alpha\right) \in\left\{\left\{T_{2}\right\},\left\{T_{1}\right\},\left\{T_{0}\right\}\right\}$, then from the statements g$), \mathrm{h}$) and i) of the Lemma 2.1.3 element α is generating by elements $B\left(\mathfrak{A}_{0}\right)$ and $B\left(\mathfrak{A}_{0}\right) \subset S_{0}$ by definition of a set S_{0}.

If $V\left(X^{*}, \alpha\right) \in\left\{\left\{T_{4}\right\},\left\{T_{3}\right\}\right\}$, then from the statement a) of the Lemma 2.1.4 element α is generating by elements $B\left(\mathfrak{A}_{0}\right)$ and $B\left(\mathfrak{A}_{0}\right) \subset S_{0}$ by definition of a set S_{0}.

Thus, we have that S_{0} is generating set for the semigroup $B_{X}(D)$.
If $\left|X \backslash T_{0}\right| \geq 1$, then the set S_{0} is irreducible generating set for the semigroup $B_{X}(D)$ since S_{0} is a set external elements of the semigroup $B_{X}(D)$.

The statement a) of the Theorem 2.1.1 is proved.
Now, let $D \in \Sigma_{8.0}(X, 5)$ and $X=\breve{D}$. First, we proved that every element of the semigroup $B_{X}(D)$ is generating by elements of the set S_{1}. The cases 1), $2), 3$) and 4) are proved analogously of the cases 1), 2), 3) and 4) given above and consider case, when

$$
V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{1}=\left\{\left\{T_{4}\right\},\left\{T_{3}\right\},\left\{T_{2}\right\},\left\{T_{1}\right\},\left\{T_{0}\right\}\right\} .
$$

If $V\left(X^{*}, \alpha\right) \in\left\{\left\{T_{2}\right\},\left\{T_{1}\right\},\left\{T_{0}\right\}\right\}$, then from the statements g$\left.), \mathrm{h}\right)$ and i) of the Lemma 2.1.3 element α is generating by elements $B\left(\mathfrak{A}_{0}\right)$ and $B\left(\mathfrak{A}_{0}\right) \subset S_{1}$ by definition of a set S_{1}.

If $V\left(X^{*}, \alpha\right) \in\left\{\left\{T_{4}\right\},\left\{T_{3}\right\}\right\}$, then $\alpha \in S_{1}$ by definition of a set S_{1}.
Thus, we have that S_{1} is generating set for the semigroup $B_{X}(D)$.
If $X=T_{0}$, then the set S_{1} is irreducible generating set for the semigroup $B_{X}(D)$ since S_{1} is a set external elements of the semigroup $B_{X}(D)$.

The statement b) of the Theorem 2.1.1 is proved.
Theorem 2.1.1 is proved.

Theorem 2.1.2. Let $n \geq 6, D=\left\{T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \Sigma_{8.0}(X, 5)$ and

$$
\begin{aligned}
& \mathfrak{A}_{0}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\},\right. \\
&\left.\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\},\left\{T_{2}, T_{1}, T_{0}\right\}\right\}, \\
& B\left(\mathfrak{A}_{0}\right)=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{0}\right\} ; B_{0}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} .
\end{aligned}
$$

Then the following statements are true:
a) If $\left|X \backslash T_{0}\right| \geq 1$, then the number $\left|S_{0}\right|$ elements of the set $S_{0}=B_{0} \cup B\left(\mathfrak{A}_{0}\right)$ is equal to

$$
\left|S_{0}\right|=5^{n}-2 \cdot 3^{n}+1
$$

b) If $X=T_{0}$, then the number $\left|S_{1}\right|$ elements of the set $S_{1}=B_{0} \cup B\left(\mathfrak{A}_{0}\right) \cup\left\{X \times T_{4}, X \times T_{3}\right\} \quad$ is equal to

$$
\left|S_{1}\right|=5^{n}-2 \cdot 3^{n}+3 .
$$

Proof. Let number of a set X is equal to $n \geq 6$, i.e. $|X|=n \geq 6$. Let $S_{n}=\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n!}\right\}$ is a group all one to one mapping of a set $M=\{1,2, \cdots, n\}$ on the set M and $\varphi_{i_{1}}, \varphi_{i_{2}}, \cdots, \varphi_{i_{m}}(m \leq n)$ are arbitrary elements of the group $S_{n}, \quad Y_{\varphi_{1}}, Y_{\varphi_{2}}, \cdots, Y_{\varphi_{m}}$ are arbitrary partitioning of a set X. By symbol k_{n}^{m} we denote the number elements of a set $\left\{Y_{\varphi_{1}}, Y_{\varphi_{2}}, \cdots, Y_{\varphi_{m}}\right\}$. It is well known, that

$$
k_{n}^{m}=\sum_{i=1}^{m} \frac{(-1)^{m+i}}{(i-1)!\cdot(m-i)!} \cdot i^{n-1} .
$$

If $m=2,3,4,5$, then we have

$$
\begin{aligned}
& k_{n}^{2}=2^{n-1}-1, k_{n}^{3}=\frac{1}{2} \cdot 3^{n-1}-2^{n-1}+\frac{1}{2}, k_{n}^{4}=\frac{1}{6} \cdot 4^{n-1}-\frac{1}{2} \cdot 3^{n-1}+\frac{1}{2} \cdot 2^{n-1}-\frac{1}{6}, \\
& k_{n}^{5}=\frac{1}{24} \cdot 5^{n-1}-\frac{1}{6} \cdot 4^{n-1}+\frac{1}{4} \cdot 3^{n-1}-\frac{1}{6} \cdot 2^{n-1}+\frac{1}{24} .
\end{aligned}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}$ are any two elements partitioning of a set X and $\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right)$, where $Z_{1}, Z_{2} \in D$ and $Z_{1} \neq Z_{2}$. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
2 \cdot k_{n}^{2}=2^{n}-2 . \tag{2.1.3}
\end{equation*}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}, Y_{\varphi_{3}}$ are any tree elements partitioning of a set X and

$$
\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right) \cup\left(Y_{\varphi_{3}} \times Z_{3}\right),
$$

where Z_{1}, Z_{2}, Z_{3} are pairwise different elements of a given semilattice D. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
6 \cdot k_{n}^{3}=3^{n}-3 \cdot 2^{n}+3 \tag{2.1.4}
\end{equation*}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}, Y_{\varphi_{3}}, Y_{\varphi_{4}}$ are any four elements partitioning of a set X and

$$
\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right) \cup\left(Y_{\varphi_{3}} \times Z_{3}\right) \cup\left(Y_{\varphi_{4}} \times Z_{4}\right)
$$

where $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are pairwise different elements of a given semilattice D. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
24 \cdot k_{n}^{4}=4^{n}-4 \cdot 3^{n}+3 \cdot 2^{n+1}-4 \tag{2.1.5}
\end{equation*}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}, Y_{\varphi_{3}}, Y_{\varphi_{4}}, Y_{\varphi_{5}}$ are any four elements partitioning of a set X and

$$
\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right) \cup\left(Y_{\varphi_{3}} \times Z_{3}\right) \cup\left(Y_{\varphi_{4}} \times Z_{4}\right) \cup\left(Y_{\varphi_{5}} \times Z_{5}\right),
$$

where $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ are pairwise different elements of a given semilattice D. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
120 \cdot k_{n}^{5}=5^{n}-5 \cdot 4^{n}+10 \cdot 3^{n}-10 \cdot 2^{n}+5 \tag{2.1.6}
\end{equation*}
$$

If $\alpha \in B_{0}$, then quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or a system $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha}$ are partitioning of the set X.

If the system $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}$, or a system $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha}$ are partitioning of the set X. Of this and from the equalities (2.1.4), (2.1.5) and (2.1.6) follows that

$$
\begin{aligned}
\left|B_{0}\right| & =\left(5^{n}-5 \cdot 4^{n}+10 \cdot 3^{n}-10 \cdot 2^{n}+5\right)+\left(4^{n}-4 \cdot 3^{n}+6 \cdot 2^{n}-4\right) \\
& =5^{n}-4 \cdot 4^{n}+6 \cdot 3^{n}-4 \cdot 2^{n}+1
\end{aligned}
$$

If $\alpha \in B\left(\mathfrak{A}_{0}\right)$, then by definition of a set $B\left(\mathfrak{A}_{0}\right)$ the quasinormal representation of a binary relation α has a form:

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{4}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{3}^{\alpha}, Y_{2}^{\alpha} \notin\{\varnothing\}$, or $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{2}^{\alpha}, Y_{1}^{\alpha} \in\{\varnothing\}$, or $Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \in\{\varnothing\}$ are partitioning of the set X respectively.

Of this and from the equality (2.1.3), (2.1.4) and (2.1.5) follows that

$$
\begin{aligned}
\left|B\left(\mathfrak{A}_{0}\right)\right| & =4 \cdot\left(2^{n}-2\right)+8 \cdot\left(3^{n}-3 \cdot 2^{n}+3\right)+4 \cdot\left(4^{n}-4 \cdot 3^{n}+6 \cdot 2^{n}-4\right) \\
& =4 \cdot 4^{n}-8 \cdot 3^{n}+4 \cdot 2^{n}
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\left|S_{0}\right| & =\left|B_{0} \cup B\left(\mathfrak{A}_{0}\right)\right|=\left(5^{n}-4 \cdot 4^{n}+6 \cdot 3^{n}-4 \cdot 2^{n}+1\right)+\left(4 \cdot 4^{n}-8 \cdot 3^{n}+4 \cdot 2^{n}\right) \\
& =5^{n}-2 \cdot 3^{n}+1, \\
\left|S_{1}\right| & =\left|B_{0} \cup B\left(\mathfrak{A}_{0}\right) \cup\left\{X \times T_{4}, X \times T_{3}\right\}\right|=5^{n}-2 \cdot 3^{n}+3
\end{aligned}
$$

Since
$B_{0} \cap B\left(\mathfrak{A}_{0}\right)=B_{0} \cap\left\{X \times T_{4}, X \times T_{3}, X \times T_{2}\right\}=B\left(\mathfrak{A}_{0}\right) \cap\left\{X \times T_{4}, X \times T_{3}, X \times T_{2}\right\}=\varnothing$.
Theorem 2.1.2 is proved.

2.2. Generating Sets of the Complete Semigroup of Binary Relations Defined by Semilattices of the Class $\Sigma_{8}(X, 5)$,
 When $T_{4} \cap T_{3}=\varnothing$

In the sequel, we denoted all semilattices $D=\left\{T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ of the class $\Sigma_{8}(X, 5)$ by symbol $\Sigma_{8.1}(X, 5)$ for which $T_{4} \cap T_{3}=\varnothing$. Of the last equality from the formal equalities of a semilattise D follows that $T_{4} \cap T_{3}=P_{0}=\varnothing$, i.e. $|X| \geq 4$ since $P_{4} \neq \varnothing, \quad P_{3} \neq \varnothing, \quad P_{2} \neq \varnothing, \quad P_{1} \neq \varnothing$.

In this case, the formal equalities of the semilattice D have a form:

$$
\begin{align*}
& T_{0}=P_{1} \cup P_{2} \cup P_{3} \cup P_{4}, \\
& T_{1}=P_{2} \cup P_{3} \cup P_{4}, \\
& T_{2}=P_{1} \cup P_{3} \cup P_{4}, \tag{2.2.1}\\
& T_{3}=P_{2} \cup P_{4}, \\
& T_{4}=P_{1} \cup P_{3} .
\end{align*}
$$

From the formal equalities of the semilattise D immediately follows, that:

$$
\begin{equation*}
P_{4}=T_{2} \backslash T_{4}, P_{3}=T_{1} \backslash T_{3}, P_{2}=T_{1} \backslash T_{2}, P_{1}=T_{2} \backslash T_{1} . \tag{2.2.2}
\end{equation*}
$$

In this case we suppose that $D \in \Sigma_{8.1}(X, 5)$.
By symbols $\mathfrak{A}_{4}, \mathfrak{A}_{3}, \mathfrak{A}_{2}$ and \mathfrak{A}_{1} we denoted the following sets:

$$
\begin{aligned}
& \mathfrak{A}_{4}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\}\right\}, \\
& \mathfrak{A}_{3}=\left\{\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{0}\right\},\left\{T_{3}, T_{1}, T_{0}\right\},\left\{T_{2}, T_{1}, T_{0}\right\}\right\}, \\
& \mathfrak{A}_{2}=\left\{\left\{T_{4}, T_{2}\right\},\left\{T_{4}, T_{0}\right\},\left\{T_{3}, T_{1}\right\},\left\{T_{3}, T_{0}\right\},\left\{T_{2}, T_{0}\right\}\left\{T_{1}, T_{0}\right\}\right\}, \\
& \mathfrak{A}_{1}=\left\{\left\{T_{4}\right\},\left\{T_{3}\right\},\left\{T_{2}\right\},\left\{T_{1}\right\},\left\{T_{0}\right\}\right\} .
\end{aligned}
$$

Lemma 2.2.1. Let $D \in \Sigma_{8.1}(X, 5)$. Then the following statements are true:
a) Let $Z, Z^{\prime} \in\left\{T_{4}, T_{3}, T_{2}\right\}, Z \neq Z^{\prime}$. If $Z, Z^{\prime} \in V(D, \alpha)$, then α is external element of the semigroup $B_{X}(D)$;
b) Let $Z \in\left\{T_{2}, T_{1}\right\}, Z^{\prime} \in\left\{T_{4}, T_{3}\right\}$. If $Z \not \subset Z^{\prime}$ and $Z, Z^{\prime} \in V(D, \alpha)$, then α is external element of the semigroup $B_{X}(D)$.

Proof. Let $\alpha=\delta \circ \beta$ for some $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$. If quasinormal representation of binary relation δ has a form

$$
\delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right),
$$

then

$$
\begin{equation*}
\alpha=\delta \circ \beta=\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) . \tag{2.2.3}
\end{equation*}
$$

From the formal equalities (2.2.1) of the semilattice D we obtain that:

$$
\begin{align*}
& T_{0} \beta=P_{1} \beta \cup P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta, \\
& T_{1} \beta=P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta, \\
& T_{2} \beta=P_{1} \beta \cup P_{3} \beta \cup P_{4} \beta, \tag{2.2.4}\\
& T_{3} \beta=P_{2} \beta \cup P_{4} \beta, \\
& T_{4} \beta=P_{1} \beta \cup P_{3} \beta,
\end{align*}
$$

where $P_{i} \beta \neq \varnothing$ for any $P_{i} \neq \varnothing \quad(i=1,2,3,4)$ and $\beta \in B_{X}(D)$. Indeed, by preposition $P_{i} \neq \varnothing$ for any $i=1,2,3,4$ and $\beta \neq \varnothing$ since $\varnothing \notin D$. Let $y \in P_{i}$ for some $y \in X$, then $y \in \breve{D}, \beta=\alpha_{f}$ for some $f: X \rightarrow D$ and $\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x)) \supseteq\{y\} \times f(y)$, i.e. there exists an element $z \in f(y)$ for which $y \alpha_{f} z$ and $y \beta z$. Of this and by definition of a set $P_{i} \beta$ we obtain that $z \in P_{i} \beta$ since $y \in P_{i}, y \beta z$. Thus, we have $P_{i} \beta \neq \varnothing$, i.e. $P_{i} \beta \in D$ for any $i=1,2,3,4$.

Now, let $T_{i} \beta=Z$ and $T_{j} \beta=Z^{\prime}$ for some $0 \leq i \neq j \leq 4$ and $Z \neq Z^{\prime}$, $Z, Z^{\prime} \in\left\{T_{4}, T_{3}\right\}$, then from the Equalities (2.2.4) follows that $Z=P_{0} \beta=Z^{\prime}$ since Z and Z^{\prime} are minimal elements of the semilattice D. The equality $Z=Z^{\prime}$ contradicts the inequality $Z \neq Z^{\prime}$.

The statement a) of the Lemma 2.2 .1 is proved.
Let $T_{i} \beta=Z^{\prime}$, where $Z^{\prime} \in\left\{T_{4}, T_{3}\right\}$ and $T_{j} \beta=Z, Z \in\left\{T_{2}, T_{1}\right\}$ for some $0 \leq i \neq j \leq 4$. If $0 \leq i \leq 4$, then from the formal equalities of a semilattice D we obtain that

$$
\begin{aligned}
& T_{0} \beta=P_{1} \beta \cup P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta=P_{1} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{1} \beta=P_{2} \beta \cup P_{3} \beta \cup P_{4} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{2} \beta=P_{1} \beta \cup P_{3} \beta \cup P_{4} \beta=P_{1} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{3} \beta=P_{2} \beta \cup P_{4} \beta=P_{2} \beta=P_{4} \beta=Z^{\prime}, \\
& T_{4} \beta=P_{1} \beta \cup P_{3} \beta=P_{1} \beta=P_{3} \beta=Z^{\prime},
\end{aligned}
$$

since Z^{\prime} is minimal element of the semilattice D.
Now, let $i \neq j$.

1) If $T_{0} \beta=P_{1} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}$ and $j=1,2,3,4$, then we have

$$
Z=T_{1} \beta=T_{2} \beta=T_{3} \beta=T_{4} \beta=Z^{\prime}
$$

which contradicts the inequality $Z \neq Z^{\prime}$.
2) If $T_{1} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}$ and $j=0,2,3,4$, then we have

$$
\begin{aligned}
& Z=T_{0} \beta=T_{2} \beta=T_{4} \beta=Z^{\prime} \cup P_{1} \beta, \text { where } P_{1} \beta \in D ; \\
& Z=T_{3} \beta=Z^{\prime} .
\end{aligned}
$$

Last equalities are impossible since $Z \neq Z^{\prime} \cup T$ for any $T \in D$ and $Z \neq Z^{\prime}$ by definition of a semilattice D.
3) If $T_{2} \beta=P_{1} \beta=P_{3} \beta=P_{4} \beta=Z^{\prime}$ and $j=0,1,3,4$, then we have

$$
\begin{aligned}
& Z=T_{0} \beta=T_{2} \beta=T_{4} \beta=Z^{\prime} \cup P_{1} \beta, \text { where } P_{1} \beta \in D \\
& Z=T_{3} \beta=Z^{\prime} .
\end{aligned}
$$

Last equalities are impossible since for any $T \in D$ and $Z \neq Z^{\prime}$ by definition of a semilattice D.
4) If $T_{3} \beta=P_{2} \beta=P_{4} \beta=Z^{\prime}$ and $j=0,1,2,4$, then we have

$$
\begin{aligned}
& Z=T_{0} \beta=T_{2} \beta=T_{4} \beta=Z^{\prime} \cup P_{1} \beta \cup P_{3} \beta, \\
& Z=T_{1} \beta=Z^{\prime} \cup P_{3} \beta, \text { where } P_{1} \beta, P_{3} \beta \in D .
\end{aligned}
$$

Last equalities are impossible since $Z \neq Z^{\prime} \cup T \cup T^{\prime}$ and $Z \neq Z^{\prime} \cup T$ for any $T, T^{\prime} \in D$, by definition of a semilattice D.
5) If $T_{4} \beta=P_{1} \beta=P_{3} \beta=Z^{\prime}$ and $j=0,1,2,3$, then we have

$$
\begin{aligned}
& Z=T_{0} \beta=T_{1} \beta=T_{3} \beta=Z^{\prime} \cup P_{2} \beta \cup P_{4} \beta, \\
& Z=T_{2} \beta=Z^{\prime} \cup P_{4} \beta, \text { where } P_{2} \beta, P_{4} \beta \in D .
\end{aligned}
$$

Last equalities are impossible since $Z \neq Z^{\prime} \cup T \cup T^{\prime}$ and $Z \neq Z^{\prime} \cup T$ for any $T, T^{\prime} \in D$, by definition of a semilattice D.

The statement b) of the Lemma 2.2.1 is proved.
Lemma 2.2.1 is proved.
Let $D \in \Sigma_{8.1}(X, 5)$. We denoted the following sets by symbols $\mathfrak{A}_{0}, B\left(\mathfrak{A}_{0}\right)$ and B_{0} :

$$
\begin{aligned}
& \mathfrak{A}_{0}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\},\right. \\
&\left.\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\}\right\}, \\
& B\left(\mathfrak{A}_{0}\right)=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{0}\right\} ; B_{0}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} .
\end{aligned}
$$

Remark, that the sets B_{0} and $B\left(\mathfrak{A}_{0}\right)$ are external elements for the semigroup $B_{X}(D)$.

Lemma 2.2.2. Let $D \in \Sigma_{8.1}(X, 5)$. Then the following statements are true:
a) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
b) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{3}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
c) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B_{0} \cup B\left(\mathfrak{A}_{0}\right)$.
Proof. 1). Let quasinormal representation of binary relations δ and β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{4} \times T_{4}\right) \cup\left(\left(T_{2} \backslash T_{4}\right) \times T_{2}\right) \cup\left(\left(T_{0} \backslash T_{2}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$,

$$
\begin{aligned}
& T_{4} \cup\left(T_{2} \backslash T_{4}\right) \cup\left(T_{0} \backslash T_{2}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{1} \cup P_{3}\right) \cup P_{4} \cup P_{2} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X,
\end{aligned}
$$

(see Equalities (2.2.1) and (2.2.2)), then $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{4} \beta=T_{4}, T_{2} \beta=\left(P_{1} \cup P_{3} \cup P_{4}\right) \beta=T_{4} \cup T_{2}=T_{2}, \\
& T_{1} \beta=\left(P_{2} \cup P_{3} \cup P_{4}\right) \beta=T_{4} \cup T_{1}=T_{0}, T_{0} \beta=T_{0} . \\
& \alpha=\delta \circ \beta=\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& \quad=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{0}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
& \quad=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{4}^{\alpha}, Y_{2}^{\delta}=Y_{2}^{\alpha}$ and $Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{1}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1 \quad\left(\left|Y_{0}^{\delta}\right| \geq 0 \quad\right.$ by preposition).

The statement a) of the lemma 2.2.2 is proved.
2) Let quasinormal representation of binary relations δ and β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{3} \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{1}\right) \times T_{2}\right) \cup\left(\left(T_{1} \backslash T_{3}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$,

$$
\begin{aligned}
& T_{3} \cup\left(T_{0} \backslash T_{1}\right) \cup\left(T_{1} \backslash T_{3}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{2} \cup P_{4}\right) \cup P_{1} \cup P_{3} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X,
\end{aligned}
$$

(see Equalities (2.2.1) and (2.2.2)), then $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{4} \beta=T_{3}, T_{2} \beta=\left(P_{1} \cup P_{3} \cup P_{4}\right) \beta=T_{3} \cup T_{2} \cup T_{1}=T_{0}, \\
& T_{1} \beta=\left(P_{2} \cup P_{3} \cup P_{4}\right) \beta=T_{3} \cup T_{1}=T_{0}, T_{0} \beta=T_{0} . \\
& \alpha=\delta \circ \beta=\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& \quad=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{0}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
& \quad=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{3}^{\alpha}, Y_{1}^{\delta}=Y_{1}^{\alpha}$ and $Y_{2}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{2}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1 \quad\left(\left|Y_{0}^{\delta}\right| \geq 0 \quad\right.$ by preposition $)$.

The statement b) of the lemma 2.2.2 is proved.
3) Let quasinormal representation of binary relations δ and β have a form

$$
\begin{aligned}
\delta= & \left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
\beta= & \left(\left(T_{2} \backslash T_{1}\right) \times T_{4}\right) \cup\left(\left(T_{1} \backslash T_{2}\right) \times T_{3}\right) \cup\left(\left(T_{1} \backslash T_{3}\right) \times T_{2}\right) \\
& \cup\left(\left(T_{2} \backslash T_{4}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha} \notin\{\varnothing\}$,

$$
\begin{aligned}
& \left(T_{2} \backslash T_{1}\right) \cup\left(T_{1} \backslash T_{2}\right) \cup\left(T_{1} \backslash T_{3}\right) \cup\left(T_{2} \backslash T_{4}\right) \cup\left(X \backslash T_{0}\right) \\
& =P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X,
\end{aligned}
$$

(see Equalities (2.2.1) and (2.2.2)), then $\delta \in B\left(\mathfrak{A}_{0}\right), \quad \beta \in B_{0}$ and

$$
\begin{aligned}
& T_{4} \beta=\left(P_{1} \cup P_{3}\right) \beta=T_{4} \cup T_{2}=T_{2}, \\
& T_{3} \beta=\left(P_{2} \cup P_{4}\right) \beta=T_{3} \cup T_{1}=T_{1}, T_{0} \beta=T_{2} \cup T_{1}=T_{0}, \\
& \alpha=\delta \circ \beta=\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& \quad=\left(Y_{4}^{\delta} \times T_{2}\right) \cup\left(Y_{3}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{2}^{\alpha}, Y_{3}^{\delta}=Y_{1}^{\alpha}$ and $Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{4}^{\delta}\right| \geq 1$, $\left|Y_{3}^{\delta}\right| \geq 1$ and $\left|Y_{0}^{\delta}\right| \geq 0$.

The statement c) of the lemma 2.2.2 is proved.
Lemma 2.2.2 is proved.
Lemma 2.2.3. Let $D \in \Sigma_{8.1}(X, 5)$. Then the following statements are true:
a) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right)
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
b) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{4}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
c) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right),
$$

where $Y_{3}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
d) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{3}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
e) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
f) If quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
g) If quasinormal representation of a binary relation α has a form $\alpha=X \times T_{2}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
h) If quasinormal representation of a binary relation α has a form $\alpha=X \times T_{1}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
i) If quasinormal representation of a binary relation α has a form $\alpha=X \times T_{0}$, then α is generating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$.
Proof. 1) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{4} \times T_{4}\right) \cup\left(\left(T_{0} \backslash T_{4}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{1}^{\delta} \notin\{\varnothing\}$.

$$
\begin{aligned}
& T_{4} \cup\left(T_{0} \backslash T_{4}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{1} \cup P_{3}\right) \cup\left(P_{2} \cup P_{4}\right) \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X .
\end{aligned}
$$

Then from the statement a) of the Lemma 2.2.2 follows that β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right), \delta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
T_{4} \beta & =T_{4}, T_{1} \beta=T_{4} \cup T_{2}=T_{2}, T_{0} \beta=T_{2} . \\
\delta \circ \beta & =\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{2}\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{2}\right)=\alpha,
\end{aligned}
$$

If $Y_{4}^{\delta}=Y_{4}^{\alpha}, Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{2}^{\alpha}$. Last equalities are possible since $\left|Y_{1}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$ ($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).

The statement a) of the lemma 2.2.3 is proved.
2) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{4} \times T_{4}\right) \cup\left(\left(T_{0} \backslash T_{4}\right) \times T_{3}\right) \cup\left((X \backslash T) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{1}^{\delta} \notin\{\varnothing\}$.

$$
\begin{aligned}
& T_{4} \cup\left(T_{0} \backslash T_{4}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{1} \cup P_{3}\right) \cup\left(P_{2} \cup P_{4}\right) \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X .
\end{aligned}
$$

Then from $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
T_{4} \beta & =T_{4}, T_{1} \beta=T_{4} \cup T_{3}=T_{0}, T_{0} \beta=T_{0} . \\
\delta \circ \beta & =\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{1}^{\delta} \times T_{0}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
& =\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{4}^{\alpha}, Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{1}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$
($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).
The statement b) of the lemma 2.2.3 is proved.
3) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{3} \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{3}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{2}^{\delta} \notin\{\varnothing\}$.

$$
\begin{aligned}
& T_{3} \cup\left(T_{0} \backslash T_{3}\right) \cup\left(X \backslash T_{0}\right) \\
& =\left(P_{2} \cup P_{4}\right) \cup\left(P_{1} \cup P_{3}\right) \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X .
\end{aligned}
$$

Then from the statement b) of the Lemma 2.2.2 follows that β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right), \delta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
T_{3} \beta & =T_{3}, T_{2} \beta=T_{3} \cup T_{1}=T_{1}, T_{0} \beta=T_{1} . \\
\delta \circ \beta & =\left(Y_{2}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{1}\right) \\
& =\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{1}\right)=\alpha,
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{3}^{\alpha}, Y_{2}^{\delta} \cup Y_{0}^{\delta}=Y_{1}^{\alpha}$. Last equalities are possible since $\left|Y_{2}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$ ($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).

The statement c) of the lemma 2.2.3 is proved.
4) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{3} \times T_{3}\right) \cup\left(\left(T_{0} \backslash T_{3}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{3}^{\delta}, Y_{2}^{\delta} \notin\{\varnothing\}$. Then $\delta, \beta \in B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{3} \beta= T_{3}, T_{2} \beta=T_{3} \cup T_{2}=T_{0}, T_{0} \beta=T_{0} . \\
& \begin{aligned}
\delta \circ \beta & =\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{2}^{\delta} \times T_{0}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right) \\
& =\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(\left(Y_{2}^{\delta} \cup Y_{0}^{\delta}\right) \times T_{0}\right)=\alpha,
\end{aligned}
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{3}^{\alpha}, Y_{2}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{2}^{\delta} \cup Y_{0}^{\delta}\right| \geq 1$ ($\left|Y_{0}^{\delta}\right| \geq 0$ by preposition).

The statement d) of the lemma 2.2.3 is proved.
5) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(\left(\left(T_{2} \cap T_{1}\right) \backslash T_{3}\right) \times T_{4}\right) \cup\left(\left(T_{2} \backslash T_{1}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{4}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
\left(\left(T_{2} \cap T_{1}\right) \backslash T_{3}\right) \cup\left(T_{2} \backslash T_{1}\right) \cup\left(X \backslash T_{4}\right)=P_{3} \cup P_{1} \cup\left(X \backslash T_{4}\right)=T_{4} \cup\left(X \backslash T_{4}\right)=X
$$

(See Equalities (2.2.1) and (2.2.2)). Then from the statement b) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement a) of the Lemma 2.2.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{4} \beta=\left(P_{1} \cup P_{3}\right) \beta=T_{4} \cup T_{2}=T_{2}, T_{0} \beta=T_{0} . \\
& \delta \circ \beta=\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{4}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{4}^{\delta}=Y_{2}^{\alpha}, \quad Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{4}^{\delta}\right| \geq 1 \quad\left|Y_{0}^{\delta}\right| \geq 1$.
The statement e) of the lemma 2.2.3 is proved.
6) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(\left(\left(T_{2} \cap T_{1}\right) \backslash T_{4}\right) \times T_{3}\right) \cup\left(\left(T_{1} \backslash T_{2}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{3}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{3}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
\left(\left(T_{2} \cap T_{1}\right) \backslash T_{4}\right) \cup\left(T_{1} \backslash T_{2}\right) \cup\left(X \backslash T_{3}\right)=P_{4} \cup P_{2} \cup\left(X \backslash T_{3}\right)=T_{3} \cup\left(X \backslash T_{3}\right)=X
$$

(see Equalities (2.2.1) and (2.2.2)). Then from the statement d) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement b) of the Lemma 2.2.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{3} \beta=\left(P_{2} \cup P_{4}\right) \beta=T_{3} \cup T_{1}=T_{1}, T_{0} \beta=T_{0} \\
& \delta \circ \beta=\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{3}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right)=\alpha,
\end{aligned}
$$

if $Y_{3}^{\delta}=Y_{1}^{\alpha}, \quad Y_{0}^{\delta}=Y_{0}^{\alpha}$. Last equalities are possible since $\left|Y_{4}^{\delta}\right| \geq 1 \quad\left|Y_{0}^{\delta}\right| \geq 1$.
The statement e) of the lemma 2.2.3 is proved.
7) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{1} \times T_{4}\right) \cup\left(\left(T_{2} \backslash T_{1}\right) \times T_{2}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{2}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
T_{1} \cup\left(T_{2} \backslash T_{1}\right) \cup\left(X \backslash T_{0}\right)=\left(P_{2} \cup P_{3} \cup P_{4}\right) \cup P_{1} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X
$$

(see Equalities (2.2.1) and (2.2.2)). Then from the statement e) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement a) of the Lemma 2.2.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{2} \beta=T_{4} \cup T_{2}=T_{2}, T_{0} \beta=T_{2} \\
& \delta \circ \beta=\left(Y_{2}^{\delta} \times T_{2} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{2}^{\delta} \times T_{2}\right) \cup\left(Y_{0}^{\delta} \times T_{2}\right)=X \times T_{2}=\alpha
\end{aligned}
$$

since representation of a binary relation δ is quasinormal.
The statement g) of the lemma 2.2.3 is proved.
8) Let quasinormal representation of a binary relations δ, β have a form

$$
\begin{aligned}
& \delta=\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right), \\
& \beta=\left(T_{2} \times T_{3}\right) \cup\left(\left(T_{1} \backslash T_{2}\right) \times T_{1}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right),
\end{aligned}
$$

where $Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$,

$$
T_{2} \cup\left(T_{1} \backslash T_{2}\right) \cup\left(X \backslash T_{0}\right)=\left(P_{1} \cup P_{3} \cup P_{4}\right) \cup P_{2} \cup\left(X \backslash T_{0}\right)=T_{0} \cup\left(X \backslash T_{0}\right)=X
$$

(see Equalities (2.2.1) and (2.2.2)). Then from the statement f) of the Lemma 2.2.3 follows that δ is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and from the statement b) of the Lemma 2.2.2 element β is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$ and

$$
\begin{aligned}
& T_{1} \beta=T_{3} \cup T_{1}=T_{1}, T_{0} \beta=T_{1} \\
& \delta \circ \beta=\left(Y_{1}^{\delta} \times T_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right)=\left(Y_{1}^{\delta} \times T_{1}\right) \cup\left(Y_{0}^{\delta} \times T_{1}\right)=X \times T_{1}=\alpha,
\end{aligned}
$$

since representation of a binary relation δ is quasinormal.
The statement h) of the lemma 2.2.3 is proved.
9) Let quasinormal representation of a binary relation δ has a form

$$
\delta=\left(T_{4} \times T_{1}\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0}\right),
$$

then

$$
\begin{aligned}
& T_{1} \delta=\left(P_{2} \cup P_{3} \cup P_{4}\right) \delta=T_{4} \cup T_{0}=T_{0}, T_{0} \delta=T_{0} \\
& \delta \circ \delta=\left(T_{4} \times T_{1} \delta\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0} \delta\right)=\left(T_{4} \times T_{0}\right) \cup\left(\left(X \backslash T_{4}\right) \times T_{0}\right)=X \backslash T_{0}=\alpha
\end{aligned}
$$

since representation of a binary relation δ is quasinormal.
The statement i) of the lemma 2.2.3 is proved.
Lemma 2.2.3 is proved.
Lemma 2.2.4. Let $D \in \Sigma_{8.1}(X, 5)$. Then the following statements are true.
a) If $\left|X \backslash T_{0}\right| \geq 1$ and $Z \in\left\{T_{4}, T_{3}\right\}$, then binary relation $\alpha=X \times Z$ is gene-
rating by elements of the elements of set $B\left(\mathfrak{A}_{0}\right)$;
b) If $X=T_{0}$ and $Z \in\left\{T_{4}, T_{3}\right\}$, then binary relation $\alpha=X \times Z$ is external element for the semigroup $B_{X}(D)$.

Proof. 1) Let quasinormal representation of a binary relation δ has a form

$$
\delta=\left(Y_{4}^{\delta} \times T_{4}\right) \cup\left(Y_{3}^{\delta} \times T_{3}\right) \cup\left(Y_{0}^{\delta} \times T_{0}\right)
$$

where $Y_{4}^{\delta}, Y_{3}^{\delta} \notin\{\varnothing\}$, then $\delta \in B\left(\mathfrak{A}_{0}\right) \backslash\{\alpha\}$. If quasinormal representation of a binary relation β has a form $\beta=\left(T_{0} \times T\right) \cup \bigcup_{t^{\prime} \in X \backslash T_{0}}\left(\left\{t^{\prime}\right\} \times f\left(t^{\prime}\right)\right)$, where f is any mapping of the set $X \backslash T_{0}$ in the set $\left\{T_{4}, T_{3}\right\} \backslash\{Z\}$. It is easy to see, that $\beta \neq \alpha$ and two elements of the set $\left\{T_{4}, T_{3}\right\}$ belong to the semilattice $V(D, \beta)$, i.e. $\delta \in B\left(\mathfrak{A}_{0}\right) \backslash\{\alpha\}$. In this case we have

$$
\begin{aligned}
T_{4} \beta= & T_{3} \beta=T_{0} \beta=Z ; \\
\delta \circ \beta & =\left(Y_{4}^{\delta} \times T_{4} \beta\right) \cup\left(Y_{3}^{\delta} \times T_{3} \beta\right) \cup\left(Y_{0}^{\delta} \times T_{0} \beta\right) \\
& =\left(Y_{4}^{\delta} \times Z\right) \cup\left(Y_{3}^{\delta} \times Z\right) \cup\left(Y_{0}^{\delta} \times Z\right) \\
& =\left(\left(Y_{4}^{\delta} \cup Y_{3}^{\delta} \cup Y_{0}^{\delta}\right) \times Z\right)=X \times Z=\alpha,
\end{aligned}
$$

since the representation of a binary relation δ is quasinormal. Thus, element α is generating by elements of the set $B\left(\mathfrak{A}_{0}\right)$.

The statement a) of the lemma 2.2.4 is proved.
2) Let $X=T_{0}, \alpha=X \times Z$, for some $Z \in\left\{T_{4}, T_{3}\right\}$ and $\alpha=\delta \circ \beta$ for some $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$. Then from the Equalities (2.2.3) and (2.2.4) we obtain that

$$
T_{4} \beta=T_{3} \beta=T_{2} \beta=T_{1} \beta=T_{0} \beta=Z, P_{1} \beta=P_{2} \beta=P_{3} \beta=P_{4} \beta=Z
$$

since Z is minimal element of the semilattice D.
Now, let subquasinormal representations $\bar{\beta}$ of a binary relation β has a form

$$
\bar{\beta}=\left(\left(P_{1} \cup P_{2} \cup P_{3} \cup P_{4}\right) \times Z\right) \cup \bigcup_{t^{\prime} \in X \backslash T_{0}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}\left(t^{\prime}\right)\right),
$$

where $\bar{\beta}_{1}=\left(\begin{array}{ccccc}P_{0} & P_{1} & P_{2} & P_{3} & P_{4} \\ \varnothing & Z & Z & Z & Z\end{array}\right)$ is normal mapping. But complement mapping $\bar{\beta}_{2}$ is empty, since $X \backslash T_{0}=\varnothing$, i.e. in the given case, subquasinormal representation $\bar{\beta}$ of a binary relation β is defined uniquely. So, we have that $\beta=\bar{\beta}=X \times Z=\alpha$, which contradicts the condition $\beta \notin B_{X}(D) \backslash\{\alpha\}$.

Therefore, if $X=T_{0}$ and $\alpha=X \times Z$, for some $Z \in\left\{T_{4}, T_{3}\right\}$, then α is external element of the semigroup $B_{X}(D)$.

The statement b) of the lemma 2.2.4 is proved.
lemma 2.2.4 is proved.
Theorem 2.2.1. Let $D \in \Sigma_{8.1}(X, 5)$ and

$$
\begin{aligned}
& \mathfrak{A}_{0}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\},\right. \\
&\left.\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\}\right\}, \\
& B\left(\mathfrak{A}_{0}\right)=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{0}\right\} ; B_{0}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} .
\end{aligned}
$$

Then the following statements are true:
a) If $\left|X \backslash T_{0}\right| \geq 1$, then $S_{0}=B_{0} \cup B\left(\mathfrak{A}_{0}\right)$ is irreducible generating set for the semigroup.
b) If $X=T_{0}$, then $S_{1}=B_{0} \cup B\left(\mathfrak{A}_{0}\right) \cup\left\{X \times T_{4}, X \times T_{3}\right\}$ is irreducible generating set for the semigroup $B_{X}(D)$.

Proof. The theorem 2.2.1 we may prove analogously of the theorems 2.1.1.
Theorem 2.2.2. Let $n \geq 6, D=\left\{T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \Sigma_{8.1}(X, 5)$ and

$$
\begin{aligned}
& \mathfrak{A}_{0}=\left\{\left\{T_{4}, T_{3}, T_{2}, T_{0}\right\},\left\{T_{4}, T_{3}, T_{1}, T_{0}\right\},\left\{T_{4}, T_{2}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{1}, T_{0}\right\},\right. \\
&\left.\left\{T_{4}, T_{3}, T_{0}\right\},\left\{T_{4}, T_{1}, T_{0}\right\},\left\{T_{3}, T_{2}, T_{0}\right\}\right\}, \\
& B\left(\mathfrak{A}_{0}\right)=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right) \in \mathfrak{A}_{0}\right\} ; B_{0}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} .
\end{aligned}
$$

Then the following statements are true:
a) If $\left|X \backslash T_{0}\right| \geq 1$, then the number $\left|S_{0}\right|$ elements of the set $S_{0}=B_{0} \cup B\left(\mathfrak{A}_{0}\right)$ is equal to

$$
\left|S_{0}\right|=5^{n}-3 \cdot 3^{n}+2 \cdot 2^{n}+2 .
$$

b) If $X=T_{0}$, then the number $\left|S_{1}\right|$ elements of the set
$S_{1}=B_{0} \cup B\left(\mathfrak{A}_{0}\right) \cup\left\{X \times T_{4}, X \times T_{3}\right\} \quad$ is equal to

$$
\left|S_{1}\right|=5^{n}-3 \cdot 3^{n}+2 \cdot 2^{n}+4 .
$$

Proof. Let number of a set X is equal to $n \geq 6$, i.e. $|X|=n \geq 6$. Let $S_{n}=\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n!}\right\}$ is a group all one to one mapping of a set $M=\{1,2, \cdots, n\}$ on the set M and $\varphi_{i_{1}}, \varphi_{i_{2}}, \cdots, \varphi_{i_{m}}(m \leq n)$ are arbitrary elements of the group $S_{n}, \quad Y_{\varphi_{1}}, Y_{\varphi_{2}}, \cdots, Y_{\varphi_{m}}$ are arbitrary partitioning of a set X. By symbol k_{n}^{m} we denote the number elements of a set $\left\{Y_{\varphi_{1}}, Y_{\varphi_{2}}, \cdots, Y_{\varphi_{m}}\right\}$. It is well known, that

$$
k_{n}^{m}=\sum_{i=1}^{m} \frac{(-1)^{m+i}}{(i-1)!\cdot(m-i)!} \cdot i^{n-1} .
$$

If $m=2,3,4,5$, then we have

$$
\begin{aligned}
& k_{n}^{2}=2^{n-1}-1, k_{n}^{3}=\frac{1}{2} \cdot 3^{n-1}-2^{n-1}+\frac{1}{2}, k_{n}^{4}=\frac{1}{6} \cdot 4^{n-1}-\frac{1}{2} \cdot 3^{n-1}+\frac{1}{2} \cdot 2^{n-1}-\frac{1}{6}, \\
& k_{n}^{5}=\frac{1}{24} \cdot 5^{n-1}-\frac{1}{6} \cdot 4^{n-1}+\frac{1}{4} \cdot 3^{n-1}-\frac{1}{6} \cdot 2^{n-1}+\frac{1}{24} .
\end{aligned}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}$ are any two elements partitioning of a set X and $\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right)$, where $Z_{1}, Z_{2} \in D$ and $Z_{1} \neq Z_{2}$. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
2 \cdot k_{n}^{2}=2^{n}-2 . \tag{2.2.5}
\end{equation*}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}, Y_{\varphi_{3}}$ are any tree elements partitioning of a set X and

$$
\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right) \cup\left(Y_{\varphi_{3}} \times Z_{3}\right),
$$

where Z_{1}, Z_{2}, Z_{3} are pairwise different elements of a given semilattice D. Then
number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
6 \cdot k_{n}^{3}=3^{n}-3 \cdot 2^{n}+3 \tag{2.2.6}
\end{equation*}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}, Y_{\varphi_{3}}, Y_{\varphi_{4}}$ are any four elements partitioning of a set X and

$$
\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right) \cup\left(Y_{\varphi_{3}} \times Z_{3}\right) \cup\left(Y_{\varphi_{4}} \times Z_{4}\right)
$$

where $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are pairwise different elements of a given semilattice D. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
24 \cdot k_{n}^{4}=4^{n}-4 \cdot 3^{n}+3 \cdot 2^{n+1}-4 \tag{2.2.7}
\end{equation*}
$$

If $Y_{\varphi_{1}}, Y_{\varphi_{2}}, Y_{\varphi_{3}}, Y_{\varphi_{4}}, Y_{\varphi_{5}}$ are any four elements partitioning of a set X and

$$
\bar{\beta}=\left(Y_{\varphi_{1}} \times Z_{1}\right) \cup\left(Y_{\varphi_{2}} \times Z_{2}\right) \cup\left(Y_{\varphi_{3}} \times Z_{3}\right) \cup\left(Y_{\varphi_{4}} \times Z_{4}\right) \cup\left(Y_{\varphi_{5}} \times Z_{5}\right)
$$

where $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ are pairwise different elements of a given semilattice D. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_{X}(D)$ is equal to

$$
\begin{equation*}
120 \cdot k_{n}^{5}=5^{n}-5 \cdot 4^{n}+10 \cdot 3^{n}-10 \cdot 2^{n}+5 \tag{2.2.8}
\end{equation*}
$$

If $\alpha \in B_{0}$, then quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or a system $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha}$ are partitioning of the set X.

If the system $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}$, or a system $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha}$ are partitioning of the set X. Of this from the Equalities (2.2.7) and (2.2.8) follows that

$$
\begin{aligned}
\left|B_{0}\right| & =\left(5^{n}-5 \cdot 4^{n}+10 \cdot 3^{n}-10 \cdot 2^{n}+5\right)+\left(4^{n}-4 \cdot 3^{n}+6 \cdot 2^{n}-4\right) \\
& =5^{n}-4 \cdot 4^{n}+6 \cdot 3^{n}-4 \cdot 2^{n}+1
\end{aligned}
$$

If $\alpha \in B\left(\mathfrak{A}_{0}\right)$, then by definition of a set $B\left(\mathfrak{A}_{0}\right)$ the quasinormal representation of a binary relation α has a form:

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{4}^{\alpha}, Y_{3}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right),
$$

where $Y_{4}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$, or $Y_{4}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively;

$$
\alpha=\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{3}^{\alpha}, Y_{2}^{\alpha} \notin\{\varnothing\}$, or $Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ are partitioning of the set X respectively.

Of this and from the Equality (2.2.5), (2.2.6) and (2.2.7) follows that

$$
\begin{aligned}
\left|B\left(\mathfrak{A}_{0}\right)\right| & =3 \cdot\left(2^{n}-2\right)+7 \cdot\left(3^{n}-3 \cdot 2^{n}+3\right)+4 \cdot\left(4^{n}-4 \cdot 3^{n}+6 \cdot 2^{n}-4\right) \\
& =4 \cdot 4^{n}-9 \cdot 3^{n}+6 \cdot 2^{n}+1 .
\end{aligned}
$$

So, we have that:

$$
\begin{aligned}
\left|S_{0}\right| & =\left|B_{0} \cup B\left(\mathfrak{A}_{0}\right)\right| \\
& =\left(5^{n}-4 \cdot 4^{n}+6 \cdot 3^{n}-4 \cdot 2^{n}+1\right)+\left(4 \cdot 4^{n}-9 \cdot 3^{n}+6 \cdot 2^{n}+1\right) \\
& =5^{n}-3 \cdot 3^{n}+2 \cdot 2^{n}+2, \\
\left|S_{1}\right| & =\left|B_{0} \cup B\left(\mathfrak{A}_{0}\right) \cup\left\{X \times T_{4}, X \times T_{3}\right\}\right|=5^{n}-3 \cdot 3^{n}+2 \cdot 2^{n}+4 .
\end{aligned}
$$

Since
$B_{0} \cap B\left(\mathfrak{A}_{0}\right)=B_{0} \cap\left\{X \times T_{4}, X \times T_{3}, X \times T_{2}\right\}=B\left(\mathfrak{A}_{0}\right) \cap\left\{X \times T_{4}, X \times T_{3}, X \times T_{2}\right\}=\varnothing$.
Theorem 2.2.2 is proved.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Diasamidze, Y., Givradze, O., Tsinaridze, N. and Tavdgiridze, G. (2018) Generated Sets of the Complete Semigroup Binary Relations Defined by Semilattices of the Class $\Sigma_{8}(X, n+k+1)$. Applied Mathematics, 9, 369-382. https://doi.org/10.4236/am.2018.94028
[2] Diasamidze, Y. and Makharadze, S. (2013) Complete Semigroups of Binary Relations. Kriter, Turkey, 1-519.
[3] Диасамидзе, Я.И. and Махарадзе, Ш.И. (2017) Полные полугруппы бинарных отношений. Lambert Academic Publishing, Saarbrucken, 1-692.

