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Abstract 
For a set   of real numbers, we introduce the concept of  -almost auto-
morphic functions valued in a Banach space. It generalizes in particular the 
space of  -almost automorphic functions. Considering the space of 
-almost automorphic functions, we give sufficient conditions of the existence 
and uniqueness of almost automorphic solutions of a differential equation 
with a piecewise constant argument of generalized type. This is done using 
the Banach fixed point theorem. 
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1. Introduction 

The almost periodic functions were introduced by Bohr in 1925 and described 
phenomena that are similar to the periodic oscillations which can be observed in 
many fields, such as celestial mechanics, nonlinear vibration, electromagnetic 
theory, plasma physics, and engineering. An important generalization of the al-
most periodicity is the concept of the almost automorphy introduced in the lite-
rature [1] [2] [3] [4] by Bochner. In [5], the author presents the theory of almost 
automorphic functions and their applications to differential equations.  

The study of differential equations with piecewise constant argument (EPCA) 
is an important subject because these equations have the structure of continuous 
dynamical systems in intervals of unit length. Therefore they combine the prop-
erties of both differential and difference equations. There have been many pa-
pers studying DEPCA, see for instance [6]-[11] and the references therein.  
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Some papers deal with the existence of asymptotically ω-periodic solutions 
(see for instance [12]), S-asymptotically ω-periodic solutions of DEPCA (see 
[13]). Other articles deal with the existence of almost automorphic solutions of 
EPCA (see [14] [15]). In this paper, we study the existence of almost automor-
phic solutions of the following differential equation with the piecewise constant 
argument of generalized (DEPCAG) type (see [16] [17] [18]):  

( ) ( ) ( )( ) ( )( )( ), ,x t A t x t f t x t tϕ ϕ′ = + ∈              (1) 

where ϕ  is a step function, : q qA ×→   is continuous in \   and  
: q qf × →    is continuous. More precisely, there exists a strictly increasing 

sequence of real numbers ,it i∈ , such that it
+
−→ ∞  as i +

−→ ∞  and on each 
interval [ [1,i it t + , ( )tϕ  is constant:  

( ) 1, .n n nt g t t tϕ += ≤ <  

In order to give sufficient conditions of existence and uniqueness of almost 
automorphic solutions of Equation (1), we introduce the concept of  -almost 
automorphic functions that generalizes the one of  -almost automorphic ([19]) 
ones, where   is a subset of  . In this paper, in order to study the almost au-
tomorphic solutions of (1), we will not consider almost automorphic sequence, 
but we will use the theory of fixed point.  

The paper is organized as follows. In Section 2, we recall definitions and 
properties of almost automorphic functions and introduce the concept of 
-almost automorphic functions. In Section 3, we also study the existence and 
uniqueness of almost automorphic solutions of Equation (1) considering the 
concept of  -almost automorphic functions and using the Banach fixed point 
Theorem.  

2. Almost Automorphic Functions with Respect to a Set 

Let   denote a subset of  . For every non zero real number r we consider the 
function :rϕ →   such that for every ( ),t s ∈ ×  :  

( ) ( ) .r rt s t rsϕ ϕ+ = +                       (2) 

In particular for all s∈  we have:  

( ) ( )0 .r rs rsϕ ϕ= +  

Definition 2.1. A subset A of   is said to be r-stable if it is invariant under 
the homothety of ratio r and center 0.  

We give an example of such a set   and an associated function rϕ .  
Example 2.1. Let   be a discrete subgroup of  , then α=   for some 

(non negative) real α , and   is obviously r-stable for all non zero integer r. 
Set ( ) [ ]r t rt cϕ α α= +  where [ ].  is the integer part function and c is a con-
stant; then it is easily seen that (2) is satisfied.  

Proposition 2.1. The function rϕ  satisfies the following properties:  
1) ( ),t s∀ ∈ ×  , ( ) ( )r rt s t rsϕ ϕ− = − .  
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2) ( )1 2, , , p
ps s s∀ ∈  , ( )1 2, , , p

pm m m∀ ∈  :  

( ) ( ) ( )1 1 1 1 0 .r p p p p rm s m s r m s m sϕ ϕ+ + = + + + 
 

Proof. Substituting t s−  for t in (2), gives (1); and (2) is obtained by induc-
tion from ( ) ( )r p p r p pt m s t m rsϕ ϕ+ = +  where 1 1 1 1p pt m s m s− −= + +  and no-
ticing that ( ) ( )1 1 1 1 0r rm s m rsϕ ϕ= + .  

In all the sequel   denotes a real or complex Banach space.  
Definition 2.2. A function :f →   is said to be  -continuous if it is 

continuous in \  , which is referred as an  -continuous function.  
The set of all  -continuous functions :f →   will be denoted by  
( ),C    and the set of those that are bounded by ( ),bC   . Clearly  
( ),bC    is a closed subspace of the Banach space ( ),bC    of bounded 

continuous functions and then it is also a Banach space.  
Definition 2.3. A bounded  -continuous function :f →   is said to be 

almost automorphic with respect to the set   if for every real sequence s' va-
lued in  , there are a subsequence s and a function :g →   such that for all 
t∈ :  

( ) ( )lim nn
f t s g t

→∞
+ =  and ( ) ( )lim nn

g t s f t
→∞

− = .             (3) 

Such a function f is called  -almost automorphic and if the above limits are 
uniform, it is called  -almost periodic.  

The set of all  -almost automorphic (resp. almost periodic) functions will be 
denoted by ( ),AA    (resp. ( ),AP   ). Clearly ( ),AA    is a subspace 
of the Banach space ( ),bC   ; we have the following:  

Theorem 2.2. The space ( ),AA    is a Banach space.  
Proof. We have just to show that ( ),AA    is a closed set in the Banach 

space ( ),bC   . For this purpose we use a diagonal process. Let ( )pf  denote 
a sequence in ( ),AA    which converges to a function f in ( ),bC    and 
let s' be any sequence of elements of  . It follows from Definition 2.3 that there 
exists a subsequence s1 of s' and a function g1 such that (3) holds when we re-
place s and g with s1 and g1 respectively. Then, by induction, we can build a se-
quence ( )ks  extracted from 1ks − , where 1ks −  is a subsequence of s', and a se-
quence of functions kg  such that:  

( ) ( )lim k
k n kn

f t s g t
→∞

+ =  and ( ) ( )lim k
k n kn

g t s f t
→∞

− = . 

Let t∈  and take 0ε > . For *, , ,p q k n∈ , we have:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) .

k k k
p q p p n p n q n

k
q n q

g t g t g t f t s f t s f t s

f t s g t

− ≤ − + + + − +

+ + −
 

Since ( )kf  converges to f in ( ),bC   , there is *
0q ∈  such that:  

( ) ( ) 0, , , .
3p qf u f u p q q uε

− ≤ ∀ ≥ ∀ ∈  

Therefore, if 0,p q q≥ , k p q= +  and *n∈ , it follows that:  
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( ) ( ) ( ) ( ) ( ) ( ) .
3

k k
p q p p n q n qg t g t g t f t s f t s g t ε

− ≤ − + + + − +  

The condition k p q= +  implies that ( )max ,k p q≥ ; then ks  is a subse-
quence of both ps  and qs . Then, ( )( )k

p nf t s+  and ( )( )k
q nf t s+  converge to 

( )pg t  and ( )qg t  respectively as n →+∞ . Consequently there exists *
0n ∈  

depending on p and q such that:  

( ) ( ) ( ) ( )( )max ,
3

k k
p p n q n qg t f t s f t s g t ε

− + + − ≤ , 

if 0n n≥ . Thus, given t∈  and 0ε > , we have found *
0q ∈  such that 

( ) ( )p qg t g t ε− ≤  if ( ) 0max ,p q q≥ . This means that ( )( )kg t  is a Cauchy 
sequence of real numbers. Thus ( )kg  converges to a bounded measurable func-
tion g. On the other hand, if *n∈  and t∈ , we can write:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) .

n n n
n n n n n

n
n n n

f t s g t f t s f t s g t g t

f t s g t

+ − ≤ + − + + −

+ + −
. 

For each *k∈ , ( ) ( )k
k n kf t s g t+ −  converges to 0 as n →+∞ , it follows 

that the diagonal sequence ( ) ( )n
n n nf t s g t+ −  also converges to 0. Since the se-

quence ( )kf  converges uniformly to f and ( )kg t  converges to ( )g t , it fol-
lows that ( ) ( )0lim n

n nf t s g t→ + = . It remains to show that ( )( )n
ng t s−  con-

verges to ( )f t . It is sufficient to prove that the sequence ( )kg  converges un-
iformly since we can deal as before where we proved that ( ) ( )lim n

n nf t s g t→+∞ + = . 
To do that, we keep the above notation with ,p q∈  and k p q= + . Then, 
from (3) we have:  

( ) ( ) ( ) ( )lim .k k
p n q n p qn

g t s g t s f t f t
→∞

 − − − = −   

Let 0ε > . Using the uniform convergence of the sequence ( )kf , we get 

0q ∈  such that ( ) ( )
2p qf t f t ε

− ≤  for ( ) 0min ,p q q≥  and all t∈ . From 

the definition of the limit, there is 0n ∈  depending on p and q such that:  

( ) ( ) ( ) ( ) 0, .
2

k k
p n q n p qg t s g t s f t f t n nε

− − − ≤ − + ≥  

It follows that:  

( ) ( ) 0, , .k k
p n q ng t s g t s n n tε− − − ≤ ∀ ≥ ∀ ∈              (4) 

Now replacing t by k
nt s+  in (4) yields ( ) ( )p qg t g t ε− ≤  for  

( ) 0min ,p q q≥  and all t∈ . The uniform convergence of ( )kg  is thus es-
tablished. Then f belongs to ( ),AA    proving the theorem.   

Proposition 2.3. Let   be r-stable and ( ),r Cϕ ∈   . If ( ),f AA∈    
(resp. ( ),AP   ), then ( ),rf AAϕ ∈     (resp. ( ),AP   ). If  

( ),f AA∈    (resp. ( ),AP   ) and ( )\rϕ∩ =∅   , the same conclu-
sion holds.  

Proof. We keep the notation of Definition 2.3. For the given sequence s' we 
consider the sequence rs'. Then we get an associate subsequence rs together with 
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a function g. It follows from (3) and the properties of the function rϕ  that 
( ) ( )( )r n r nf t s f t rsϕ ϕ+ = +

 converges to ( )rg tϕ  and  
( ) ( )( )r n r ng t s g t rsϕ ϕ− = −

 converges to ( )rf tϕ . These convergences are 
uniform if it is the case in (3). This proves the first part of the Proposition; the 
second part can be deduced straightforwardly.   

We associate to the subset   the following property:  
(P1) There is a bounded set 0K  in   such that all real t can be written as 

t α ξ= +  where 0Kα ∈  and ξ ∈ .  
Then we have the following:  
Proposition 2.4. Let   satisfy (P1) and let f be an  -almost automorphic 

(resp.  -almost periodic) function. If f is uniformly continuous, then f is almost 
automorphic (resp. almost periodic).  

Proof. As above we use the notation of Definition 2.3. Since 0K  is a compact 
set we may assume that n n ns α ξ= +  for each *n∈  with 0n Kα ∈ , nξ ∈  
and limn nα α→∞ = . Then we have:  

( ) ( )
( ) ( ) ( ) ( ) .

n

n n n n

f t s g t

f t f t f t g t

α

α ξ α ξ α ξ α

+ − +

≤ + + − + + + + + − +
 

The uniform continuity of f shows that the first term on the right side tends to 
zero. Since f is  -almost automorphic, it follows that the second term also con-
verges to zero. On the other hand, f being uniformly continuous, the same holds 
for g. Then writing:  

( ) ( ) ( )( ) ( ) ( ) ( )n n n n ng t s f t g t g t g t f tα ξ α α ξ ξ+ − − ≤ − + − − − + − −  

shows that ( )( )ng t sα+ −  converges to ( )f t  which proves that f is almost 
automorphic. The almost periodic case follows straightforwardly.   

Remark 2.1. We note that =   satisfies the condition (P1): it suffices to 
take [ [0 0,1K = , since for every real number x, [ ] [ [0,1x x− ∈ .  

Definition 2.4. A continuous function :f × →    is said to be almost 
automorphic in t∈  for each x∈ , if for every sequence of real numbers 
( )ns′ , there exists a subsequence ( )ns  such that for each t∈  and x∈ ,  

( ) ( )lim , ,nn
f t s x g t x

→∞
+ =  and ( ) ( )lim , ,nn

g t s x f t x
→∞

− = . 

Then we have the following result.  
Theorem 2.5. ([5], Theorem 2.2.5) If f is almost automorphic in t∈  for 

each x∈  and if f is Lipschitzian in x uniformly in t, then g satisfies the same 
Lipschitz condition in x uniformly in t.  

Using the above theorem we obtain:  
Theorem 2.6. Let :f × →    be almost automorphic in t∈  for each 

x∈ . Assume that f satisfies a Lipschitz condition in x uniformly in t∈ . Let 
also :φ →   be almost automorphic. Then the function :F →   de-
fined by ( ) ( )( )( ), rF t f t tφ ϕ=  is  -almost automorphic.  

Proof. Let ( )ns′  be a sequence of  . Using Proposition 2.3, we can extract a 
subsequence ns  such that:  
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1) ( ) ( )lim , ,n nf t s x g t x→∞ + =  for each t∈  and x∈ ,  
2) ( ) ( )lim , ,n ng t s x f t x→∞ − =  for each t∈  and x∈ ,  
3) ( ) ( )limn nt s tφ→∞ + = Φ  for each t∈ ,  
4) ( ) ( )limn nt s tφ→∞ Φ − =  for each t∈ ,  
5) ( )( ) ( )( )limn r n rt s tφ ϕ ϕ→∞ + = Φ  for each t∈ ,  
6) ( )( ) ( )( )limn r n rt s tϕ φ ϕ→∞ Φ − =  for each t∈ .  
Consider the function :G →   defined by ( ) ( )( )( ), rG t g t tϕ= Φ . From 

the Lipchitz condition on f, there exists a constant 0L >  such that:  

( ) ( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

( )( ) ( )( )
( )( )( ) ( )( )( )

, ,

, ,

, ,

, , .

n n r n r

n r n n r

n r r

r n r

n r r

F t s G t f t s t s g t t

f t s t s f t s t

f t s t g t t

L t s t

f t s t g t t

φ ϕ ϕ

φ ϕ ϕ

ϕ ϕ

φ ϕ ϕ

ϕ ϕ

+ − = + + − Φ

≤ + + − + Φ

+ + Φ − Φ

≤ + −Φ

+ + Φ − Φ

 

We deduce from (1) and (5) that  
( ) ( )lim .nn

F t s G t
→∞

+ =  

Similarly, we have:  

( ) ( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )

( )( ) ( )( )
( )( )( ) ( )( )( )

, ,

, ,

, ( ,

, , .

n n r n r

n r n n r

n r r

r n r

n r r

G t s F t g t s t s f t t

g t s t s g t s t

g t s t f t t

L t s t

g t s t f t t

φ ϕ ϕ

φ ϕ ϕ

ϕ ϕ

φ ϕ ϕ

ϕ ϕ

− − = − − − Φ

≤ − − − − Φ

+ − Φ − Φ

≤ − −Φ

+ − Φ − Φ

 

Then we deduce from (2) and (6) that  
( ) ( )lim .nn

G t s F t
→∞

− =  

Now, we show that the function ( ) ( )( )( ), rF t f t tφ ϕ=  is bounded. Since f is 

almost automorphic in t, then ( ) ( ),0 sup ,0tf f t∈∞
⋅ = < +∞



. Then we have  

( )( )( ) ( )( )( ) ( ) ( )( ) ( ), , ,0 ,0 .r r rf t t f t t f t L t f tφ ϕ φ ϕ φ ϕ= − ≤ +  

We deduce that for every t∈   

( )( )( ) ( ), ,0 .rf t t L fφ ϕ φ
∞ ∞

≤ + ⋅  

 
Remark 2.2. Let :f × →    satisfy the conditions of the previous theo-

rem. We have that the function :G →   defined by ( ) ( )( )( ), rG t g t tφ ϕ=  
is bounded.  

3. A Differential Equation with a General Piecewise Constant  
Argument 

We consider the differential Equation (1) where ϕ  is a step function,  
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: q qA ×→   is continuous in \   and : q qf × →    is continuous. Thus, 
in the sequel q=  . Moreover, in addition to (P1), we consider the two fol-
lowing conditions:  

(P2) ( ),t s∀ ∈ ×  , ( ) ( )t s t sϕ ϕ+ = +  and ( )t tϕ ≤ .  
(P3) :f × →    is almost automorphic in t∈  for each x∈  and f 

satisfies a Lipschitz condition in x uniformly in t∈ .  
We give a consequence of (P1) that will be useful for the sequel.  
Proposition 3.1. Assume that (P1) is satisfied, then there exists a bounded set 

1K  in   such that: t∀ ∈ , ( ) 1t t Kϕ− ∈ .  
Proof. Assume that (P1) is satisfied. For each t∈  there exists ( ) 0, s Kα ∈ × , 

such that t sα= + . Hence, we have ( ) ( ) ( )t s sϕ ϕ α ϕ α= + = +  and then:  

( ) ( ).t tϕ α ϕ α− = −  

Since ϕ  is a step function, it is bounded on each bounded subset of  . 
Therefore,  

( ){ }1 0:K Kα ϕ α α= − ∈  

is a bounded set such that ( ) 1t t Kϕ− ∈  for all t∈ . The proposition is thus 
proved.   

Definition 3.1. A solution of (1) is a function ( )x t  defined on   for which 
the following conditions hold:  

1) ( )x t  is continuous on  .  
2) The derivative ( )x t′  exists at each point t∈ , with possible exception at 

the points ,it i∈ , where one-sided derivatives exist.  
3) The Equation (1) is satisfied on each interval [ [1,i it t + , i∈ .  
Theorem 3.2. Let f satisfy (P2) and (P3). Then the solution of (1) satisfies:  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )= d , d .
t t

t t
x t x t A s x s s f s x s s

ϕ ϕ
ϕ ϕ ϕ+ +∫ ∫  

Proof. Considering the integral of  

( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )

1 11 1 1 1

1 1

,

,

p p

p p pp p p

x t a t x t a t x t f t x t

x t a t x t a t x t f t x t

ϕ ϕ ϕ

ϕ ϕ ϕ

 ′ = + + +


 ′ = + + +







, 

on ( ) ,t tϕ   , we obtain: 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )

1 1 11 1

1 1

1 1 1

d

d , d

d

d , d

t

t

t t
p pt t

t
p pt

t t
pp p pt t

x t x t a s x s s

a t x s s f s x s s

x t x t a s x s s

a t x s s f s x s s

ϕ

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

 = + +



+ +




= + +

 + +

∫

∫ ∫

∫

∫ ∫







 

 
Lemma 3.3. Assume that (P2) and (P3) are satisfied and that ( )A t  is an 
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-almost automorphic operator. Then  

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )d , d
t t

t t
t t A s s s f s s s

ϕ ϕ
φ φ ϕ φ ϕ φ ϕ∧ = + +∫ ∫ , 

maps ( )AA   into itself.  
Proof. Let ( )ns′  be a sequence of elements of  . We have from (P2) that 
( ) ( )t s t sϕ ϕ+ = +  and ( ) ( )t s t sϕ ϕ− = −  for ( ),t s ∈ ×  . Then, there ex-

ists a subsequence ( )ns  of ( )ns′  such that:  
1) ( ) ( )limn nt s tφ→∞ + = Φ  for each t∈ ,  
2) ( ) ( )limn nt s t→∞ Φ − = Φ  for each t∈ ,  
3) ( )( ) ( )( )limn nt s tφ ϕ ϕ→∞ + = Φ  for each t∈ ,  
4) ( )( ) ( )( )limn nt s tϕ φ ϕ→∞ Φ − =  for each t∈ ,  
5) ( ) ( )limn nA t s B t→∞ + =  for each t∈ ,  
6) ( ) ( )limn nB t s A t→∞ − =  for each t∈ ,  
7) ( )( )( ) ( )( )( )lim , ,n n nf t s t s g t tφ ϕ ϕ→∞ + + = Φ  for each t∈ ,  

8) ( )( )( ) ( )( )( )lim , ,n n ng t s t s f t tϕ φ ϕ→∞ − Φ − =  for each t∈ .  

We put  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )d , d ,
t t

t t
F t t A s s s f s s s

ϕ ϕ
φ ϕ φ ϕ φ ϕ= + +∫ ∫  

and  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )d , d .
t t

t t
V t t B s s s g s s s

ϕ ϕ
ϕ ϕ ϕ= Φ + Φ + Φ∫ ∫  

Then, we have  

( ) ( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

d d

, d , d

n

n

n

n

n

n

t s t

t s t

t s t

t s t

F t s V t

t s t

A B

f g

ϕ ϕ

ϕ ϕ

φ ϕ ϕ

σ φ ϕ σ σ σ ϕ σ σ

σ φ ϕ σ σ σ φ ϕ σ σ

+

+

+

+

+ −

≤ + −Φ

+ − Φ

+ −

∫ ∫

∫ ∫

. 

Using a change of variable and (P2), we find  

( ) ( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( )( )( )

d d

, , d

n

n

t t
n nt t

t
n nt

F t s V t

t s t

A s s B

f s s g

ϕ ϕ

ϕ

φ ϕ ϕ

σ φ ϕ σ σ σ ϕ σ σ

σ φ ϕ σ σ φ ϕ σ σ

+ −

≤ + −Φ

+ + + − Φ

 + + + − 

∫ ∫

∫

, 

which can be written as  

( ) ( )

( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( )( ) ( )( )( )

d

, , d .

n

t
n n nt

n

t
n nt

F t s V t

t s t A s B s

B s

f s s g

ϕ

ϕ

φ ϕ ϕ σ σ φ ϕ σ

σ φ ϕ σ ϕ σ σ

σ φ ϕ σ σ φ ϕ σ σ

+ −

≤ + −Φ + + − +

+ + −Φ 

 + + + − 

∫

∫
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Now, using ( )t tϕ ≤ , we can write  

( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )( ) ( )( )( )

d

d

, , d .

n

t
n nt

t
nt

t
n nt

F t s V t

t s t A s B

s B

f s s g

ϕ

ϕ

ϕ

φ ϕ ϕ σ σ φ σ

φ σ σ σ

σ φ ϕ σ σ φ ϕ σ σ

∞

∞

+ −

≤ + −Φ + + −

+ + −Φ

+ + + −

∫

∫

∫

 

Hence, using the Lebesgue Dominated convergence theorem, we deduce that  

( ) ( )lim 0.nn
F t s V t

→∞
+ − =  

Similarly, taking into account (P2), we get  

( ) ( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )
1

1 1

d d

, d , d

n

n

n

n

n

n

t s t

t s t

t s t

t s t

V t s F t

t s t

B A

g f

ϕ ϕ

ϕ ϕ

ϕ φ ϕ

σ φ ϕ σ σ σ ϕ σ σ

σ φ ϕ σ σ σ φ ϕ σ σ

−

−

−

−

− −

≤ Φ − −

+ − Φ

+ −

∫ ∫

∫ ∫

 

( ) ( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( )( )( )

d d

, , d

n

n

t t
n nt t

t
n nt

V t s F t

t s t

B s s A

g s s f

ϕ ϕ

ϕ

ϕ φ ϕ

σ ϕ σ σ σ φ ϕ σ σ

σ φ ϕ σ σ φ ϕ σ σ

− −

≤ Φ − −

+ − Φ − −

 + − − − 

∫ ∫

∫

 

( ) ( )

( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( )( ) ( )( )( )

d

, , d .

n

t
n n nt

n

t
n nt

V t s F t

t s t B s A s

A s

g s s f

ϕ

ϕ

ϕ φ ϕ σ σ ϕ σ

σ ϕ σ φ ϕ σ σ

σ φ ϕ σ σ φ ϕ σ σ

− −

≤ Φ − − + − − Φ −

+ Φ − − 

 + − − − 

∫

∫

 

Since ( )t tϕ ≤ , it follows that  

( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )( ) ( )( )( )

d

d

, , d .

n

t
n nt

t
nt

t
n nt

V t s F t

t s t B t s A

s A

g s s f

ϕ

ϕ

ϕ

ϕ φ ϕ σ σ

σ φ σ σ

σ ϕ σ σ φ ϕ σ σ

∞

∞

− −

≤ Φ − − + − − Φ

+ Φ − −

+ − Φ − −

∫

∫

∫

 

Hence, using the Lebesgue Dominated convergence theorem, we deduce that  

( ) ( )lim 0.nn
V t s F t

→∞
− − =  

 
We set ( )1 1supM K= , where 1K  is the bounded subset of   introduced in 
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Proposition 3.1. Note that, if ( )t tϕ ≤ , then 1 0M ≥ .  
Theorem 3.4. Assume that (P1), (P2) and (P3) are satisfied and that 

( )y yϕ→  is constant on the interval ( ) ,t tϕ   . If  

( ) ( ) 1d 1,
t

t
I A s s M L

ϕ
+ + <∫  

then (1) has a unique  -almost automorphic solution which is also the unique 
almost automorphic solution of (1).  

Proof. First Step  
We define the nonlinear operator Γ by the expression  

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )d , d .
t t

t t
t t A s s s f s s s

ϕ ϕ
φ φ ϕ φ ϕ φ ϕΓ = + +∫ ∫  

According to Theorem 2.6, the function ( )( )( ),t f t tφ ϕ  belongs to 
( ),AA   . According to Lemma 3.3 the operator Γ maps ( ),AA    into it-

self. Since ( ) 1t t Mϕ− ≤  for all t∈ , we have:  

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )

( ) ( )( )( ) ( )( )( )

( ) ( )

( ) ( )( ) ( )( )

d

, , d

d

, , d

d

d

t

t

t

t

t

t

t

t

t

t

t

t

t t I A s s t t

f s s f s s s

I A s s t t

f s s f s s s

I A s s

L s s s

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

φ ψ φ ϕ ψ ϕ

φ ϕ ψ ϕ

φ ϕ ψ ϕ

φ ϕ ψ ϕ

φ ψ

φ ϕ ψ ϕ

∞

Γ − Γ = + −

+ −

≤ + −

+ −

≤ + −

+ −

∫

∫

∫

∫

∫

∫  

( )( ) ( )( ) ( ) ( ) 1d .
t

t
t t I A s s M L

ϕ
φ ψ φ ψ

∞
 Γ − Γ ≤ + + − 
 ∫  

This proves that Γ is a contraction. We conclude that Γ has a unique fixed 
point in ( ),AA   . We denote by z the unique  -almost automorphic solu-
tion of (1).  

Second Step  
We show that z is an almost automorphic solution of (1). Since z is  -almost 

automorphic, using Proposition 2.3, it suffices to prove that z is uniformly con-
tinuous. Consider the set { }: :iD t i= ∈  of possible points of discontinuity of 
z′ . We have  

( ) ( ) ( )( ) ( )( )( ), ,z t A t z t f t z tϕ ϕ′ = +  

and then  

( ) ( ) ( )( ) ( )( )( ) ( ) ( ), ,0 ,0z t A t z t f t z t f t f tϕ ϕ′ ≤ + − +  

for all \t D∈ . If we set  

( ),0 ,M A z L z f
∞ ∞ ∞ ∞

= + + ⋅  

it follows that ( )z t M′ ≤  for all \t D∈ . Therefore, since z is continuous 
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and D is countable, the mean value Theorem (see [20], Theorem 8.5.2) asserts 
that  

( ) ( ) ( )2 1 2 1z t z t M t t− ≤ − , 

for all 1 2,t t ∈  with 1 2t t< . This means that z is lipschitzian and then un-
iformly continuous. Thus, z is an almost automorphic function.  

The function z is necessarily the unique almost automorphic solution of (1). 
In fact, an almost automorphic function is also  -almost automorphic and (1) 
has a unique such solution. The theorem is thus proved.   

Corollary 3.5. Let ( )A t  be a  -almost automorphic operator and assume 
that (P3) is satisfied. If  

[ ] ( )d 1,
t

t
I A s s L+ + <∫  

then the following equation:  

( ) ( ) [ ]( ) [ ]( )( ), d ,x t A t x t f t x t t t′ = + ∈  

has a unique  -almost automorphic solution which is also his unique almost 
automorphic solution.  

Proof. We have ( )t t tϕ = ≤ , [ [0 1 0,1K K= =  and 1 1M = .  
Corollary 3.6. Suppose that ( )A t  is a hα  -almost automorphic operator 

and that (P3) is satisfied. If  

( )d 1,
t

t h
h

I A s s hL
α

α
α 

  

+ + <∫  

then the following equation:  

( ) ( ) , d , ,t tx t A t x h f t x h t t
h h
α α

α α
       ′ = + ∈              

  

has a unique hα  -almost automorphic solution which is also its unique almost 
automorphic solution.  

Proof. We have that ( ) tt h
h

ϕ α
α
 =   

. Then ϕ  is constant on each interval 

( ), 1n h n hα α +   where n∈ . We observe also that  

( )

( ) .

t hn tt hn h n h
h h

t h hn t hn
h

αϕ α α α
α α

α α ϕ α
α

+   + = = +      
 = + = +  

 

If ( ), 1t n h n hα α ∈ +   where n∈ , then ( )t hnϕ α= , ( )t tϕ ≤   
( ) [ ]0,t t hϕ α− ∈  and 0M hα= . All real t can be written as t β ζ= +  where 
[ ]0, hβ α∈  and hζ α∈  .   
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