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Abstract 
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer 
(1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers 
weighted by powers of the Fermat quotients to the next Fermat quotient 
power, namely to the third power of the Fermat quotient. Using this result 
and the Gessel identity (2005) combined with our past work (2021), we are 
able to relate residues of some truncated convolutions of Bernoulli numbers 
with some Ernvall-Metsänkyla residues to residues of some full convolutions 
of the same kind. We also establish some congruences concerning other re-
lated weighted sums of powers of integers when these sums are weighted by 
some analogs of the Teichmüller characters. 
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1. Introduction 
1.1. Scope and Summary 
1.1.1. Scope 
In the past century, convolutions involving Bernoulli numbers have drawn much 
attention. One motivation is that such convolutions arise in quantum field 
theory and string theory, see for instance [1]. However, truncated convolutions 
involving Bernoulli numbers are not as broadly studied, though they appear in 
particular in combinatorial number theory relating for instance to congruences 
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of unsigned Stirling numbers of the first kind on p letters with odd indices mod-
ulo p3. For such congruences, only the even indices had been tackled by Glaisher 
in his pioneering work [2] around the turn of the twentieth century. In [3], we 
relate the residue modulo p of such truncated convolutions to the residue of 
some full convolutions. These congruences shortly after become in [4] an im-
portant tool for generalizing Wilson’s theorem to the modulus p4 pushing Z-H. 
Sun’s expansion of [5] one p power further. These truncated convolutions ap-
pear independently in the late 1970s in Miki’s work on his way to proving a cel-
ebrated identity involving binomial convolutions of Bernoulli numbers. Our 
work of [3] combined with Miki’s work of [6] implies a generalization in some 
cases of the famous Kummer congruences to the modulus p2 in terms of a sum 
of powers of integers weighted by the squared Fermat quotients that was origi-
nally due to Ernvall and Metsänkyla in [7]. Sums of powers of integers weighted 
by the Fermat quotients had already been studied earlier by the authors of [8] 
and had led to a criterion for finding irregular primes. Such a result became of 
importance as Kummer in 1850 had shown that Fermat’s last theorem holds 
when the exponent is a regular prime. As part of our work, we find novel con-
gruences involving sums of powers of integers weighted by cubes of Fermat quo-
tients. By computing the residues of such sums in two different ways, we are able 
to relate residues of truncated convolutions of divided Bernoulli numbers with 
Ernvall-Metsänkyla residues to residues of full convolutions of the same kind. 
These novel congruences could open the path to important applications in num-
ber theory in the same way as similar congruences involving only divided Ber-
noulli numbers as already mentioned before had served as a crucial ingredient in 
the generalization of Wilson’s theorem to the modulus p4. We further prove sim-
ilar congruences involving this time convolutions and truncated convolutions of 
ordinary Bernoulli numbers with Ernvall-Metsänkyla residues. This is a much 
harder computational problem where Gessel’s identity, a generalization of Mi-
ki’s identity, is used in order to reduce a differential term of cubic convolu-
tions of divided Bernoulli numbers arising from multiple harmonic sums modulo 
p4.  

1.1.2. Detailed Summary 
In 1991, Reijo Ernvall and Tauno Metsänkyla generalized the Kummer congru-
ences by relating modulo p2 the difference 1p t t− + −   to a sum of t-th powers 
of the first ( )1p −  integers weighted by the squared Fermat quotients. They did 
so for the range 4 3t p≤ ≤ − , when t is even. In their honor, we will call the 
p-residue of ( )1p t t p− + −   the Ernvall-Metsänkyla residue. In this paper, we 
set a prime 11p ≥  and we restrict further the range for the even t. We namely 
impose 6 5t p≤ ≤ − . We let n be the integer so that 1 2t p n= − − . Hence  
4 2 7n p≤ ≤ − . The main result of the paper offers a congruence modulo p re-
lating a truncated convolution of order ( )2 1 2p n− −  of Bernoulli numbers 
with Ervall-Metsänkyla residues to the full convolution of order 1 2p n− − . The 
latter congruence also involves a full convolution where the ordinary Bernoulli 
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numbers are replaced with the divided Bernoulli numbers. This result can be 
viewed as a generalization of Theorem 1 point (i) of [3] which offers a similar 
result when dealing with convolutions of divided Bernoulli numbers. One of the 
three proofs presented in [3] uses the famous Miki identity which relates convo-
lutions of divided Bernoulli numbers to binomial convolutions of divided Ber-
noulli numbers. The current proof is based on Ira Gessel’s identity, namely a ge-
neralization of Hiroo Miki’s identity to cubic convolutions, and on our past work  
on the multiple harmonic sums 

{ }2 1; 1ns p= −
  modulo p4, amongst other things.  

Another important tool consists of generalizing congruences proven throughout 
the twentieth century and which are due to Friedmann-Tamarkine [8], Lehmer 
[9], Miki [6] and Ernvall-Metsänkyla [7] in chronological order, on sums that 
are discussed right below and which involve the Fermat quotients in base a with 
1 1a p≤ ≤ − . The latter generalization is interesting in its own sake. Though many 
mathematicians have been studying congruences concerning Bernoulli numbers 
and the Fermat quotients, their results tend to be sparse in time, like testified by 
the (non exhaustive) list below. 

Since the beginning of the twentieth century, mathematicians have been 
working with sums of some fixed power of the first ( )1p −  integers involving 
the Fermat quotients or the squared Fermat quotients as their weights. However, 
sums of some fixed power of integers have been studied since way earlier. In fact, 
the pioneer for the study of such sums is Johann Faulhaber of Ulm (1580-1635) 
whose computations by hand in the early 17th century [10] drew the attention 
and the admiration of many mathematicians in the subsequent centuries. Two 
centuries after Faulhaber, in 1834, Carl Jacobi was first to provide a rigorous 
proof for Faulhaber’s guessed formula [11] which later became known as “the 
Faulhaber formula”, see [12] for an excellent expository on the topic.  

Weighted sums of powers of integers happen to be linked to the Bernoulli 
numbers. Conversely, the residues of the divided Bernoulli numbers, to the ex-
ception of some of them, can be expressed as residues of some weighted sums of 
powers of integers. Indeed, if i is a positive even integer that is prime to both p 
and 1p − , then  

11 1
1

1
1 1

1 mod
p p

i
i i

a b

b a a p
p b

−− −
−

−
= =

  
=      
∑ ∑  

This congruence namely follows from summing the Voronoi congruences from 
1889 [13] and using the fact that p divides a sum of powers of the first ( )1p −  
integers when these powers are not multiples of ( )1p − . 

Three centuries after Faulhaber, the earlier work on the sums of some fixed 
power of the first ( )1p −  integers weighted by the Fermat quotients goes back 
to Friedmann and Tamarkine [8] in the early twentieth century. Their congru-
ence modulo p opens another path towards the study of irregular primes since it 
provides a criterion for irregular pairs. The search for irregular primes had been 
of importance on the route to the proof of Fermat’s Last Theorem ever since 
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Ernst Kummer had shown that Fermat’s Last Theorem holds when the exponent 
is a regular prime [14], thus leaving irregular primes to be analyzed individually. 
While Friedmann and Tamarkine only deal with even powers, Emma Lehmer in 
1938 generalizes the Friedmann-Tamarkine congruence to odd powers and 
pushes the study one p power further. Her congruences namely hold modulo p2. 
It is not until 1978 that sums of some fixed power of the first ( )1p −  integers 
weighted by the squared Fermat quotients appear in the pioneering work of Hi-
roo Miki on his way to finding an identity relating a convolution of divided 
Bernoulli numbers to a binomial convolution of divided Bernoulli numbers, an 
identity which also involves harmonic numbers. Miki relates these sums modulo 
p for a restricted range of even powers to convolutions of divided Bernoulli 
numbers and to some of their truncations [6]. These exact same p-residues of 
truncated convolutions of divided Bernoulli numbers are studied independently 
in 2020 [3] using the p-adic analysis of some polynomial with p-adic integer 
coefficients whose study got initiated in [15]. In this study, the unsigned Stirling 
numbers of the first kind on p letters are involved. A congruence is obtained re-
lating these residues of truncated convolutions to the residues of some full con-
volutions. By confronting Miki’s work and our work of [3], we immediately re-
trieve Reijo Ernvall and Tauno Metsänkyla’s congruence [7] (holding for the 
same range of powers) from 1991, which instead of the complicated convoluted 
form by Miki, provides a much simpler expression for the considered residual 
sum in terms of the second residue in the p-adic Hensel expansion [16] of a cer-
tain difference of two divided Bernoulli numbers. We show further that Ernvall 
and Metsänkyla’s method does generalize to odd powers. This is the purpose of 
our Theorem 1. 

At this point, the p-adic analysis of the unsigned Stirling numbers of the first 
kind on p letters resurfaces in order to generalize to base a with 1 1a p≤ ≤ −  
some congruences of [17] that were achieved in base 2. We provide the residue 
of a powers of a weighted sum of divided Bernoulli numbers whose indices range 
between 1 and 2p − , for a set integer a and where the powers of a coincide with 
the indices of the divided Bernoulli numbers. This residue is as simple in expres-
sion as a sum modulo p of the Wilson quotient and of the Fermat quotient in 
base a. By summing over the bases such sums after these have been multiplied by 
some fixed power of a and by the squared Fermat quotient 2

aq , we thus get 
amongst other terms a sum of powers of integers weighted by the third power of 
the Fermat quotients. It is the purpose of Theorem 2. By combining further 
Theorem 2 with Theorem 1 evoked before, we may conveniently adjust the range 
of indices that concerns the divided Bernoulli numbers. However, this is not 
yet enough to generalize the Friedmann-Tamarkine-Lehmer-Ernvall-Metsänkyla 
congruence in an appealing way, that is one which is computationally efficient. 
So, we continue working on the same sum and apply to it the Ernvall-Metsänkyla 
congruence. We must also generalize Ernvall and Metsänkyla’s congruence to 
the unstudied cases when the power is respectively 0 or 2. This is the purpose of 
Theorems 3 and 4 respectively. Once this is done, we obtain Theorem 5 which 
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provides a satisfactory congruence modulo p for the sum of powers of integers 
weighted by the third power of the Fermat quotient in terms of only Bernoulli 
numbers. Independently however, we get a much simpler form—with a number 
of terms that is independent from the prime p—by using a result by Zhi-Hong 
Sun from [5] on sums of powers of integers. By comparing both expressions, we 
obtain new congruences on Bernoulli numbers generalizing those of [3]. The 
simpler version of Theorem 5 is the one which is retained for later use.  

From there, we have all the ingredients to tackle the main congruence of the 
paper. This time, the conjugates to the Stirling numbers, namely the multiple 
harmonic sums on 1p −  integers come into play. We will shortly discuss why. 
In [4], we had obtained by means of the Newton formulas and using some so-
phisticated p-adic expansions of the generalized harmonic numbers on 1p −  
integers modulo p4 by Zhi-Hong Sun [5] a congruence providing these sums 
modulo p4, see Theorem 3 of [4]. Sums that are related to those discussed in the 
previous paragraph are present in the expression. Another core term appearing 
in the expression is a differential term composed of two cubic convolutions of 
divided Bernoulli numbers. This is where Ira Gessel’s identity from the title now 
enters the scene. The Gessel identity [18] is a generalization of the Miki identity 
to products of three divided Bernoulli numbers. It involves a multinomial con-
volution of three divided Bernoulli numbers, a binomial convolution of divided 
Bernoulli numbers, the harmonic numbers and the multiple harmonic sums. It 
plays a key role in processing the differential term. Because we may write the  
multiple harmonic sum 

{ }2 1; 1ns p= −
  in yet another way by relating it modulo p4  

to the Stirling numbers on p letters and with 2 1n +  cycles (those are computa-
ble in an easier manner than their homologs), we are able to derive the interest-
ing congruence modulo p announced earlier.  

Another part of the paper is devoted to studying congruences concerning 
sums of powers of integers weighted by the p-adic integer roots of some poly-
nomials with p-adic integer coefficients, thus generalizing techniques arising 
from [19] and [7]. We provide these congruences modulo p3. The paper is built 
in such a way that it alternates between the different interconnected projects in 
order to make the computations nicer to follow. For clarity and in order to dis-
tinguish them from the present results, the past results from the other authors 
have been numbered with 0.i concerning the i-th Theorem or Proposition. 

1.2. Some Notations 

We shall introduce some standard or some personal notations which we shall 
use all throughout the paper. Given a prime p, we denote by pw  the Wilson 
quotient and by aq  the Fermat quotient in base a with 1 1a p≤ ≤ − . When 
dealing with Bernoulli numbers, we denote by t  the t-th divided Bernoulli 
number, by ( )2k  a convolution of divided Bernoulli numbers of order 2k 
and by ( )2k  a sum of products of three divided Bernoulli numbers whose 
indices sum up to 2k. Also, using the same notation as in [3], we denote by 
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( )1 2 , 3p n p+ − −  the following truncated convolutions of divided Bernoul-
li numbers:  

 ( ) ( )

3

2 1 2
1 2

1 2 , 3 :
p

k p n k
k p n

p n p
−

− − −
= + −

+ − − = ∑    

Throughout Section 2, we also deal with binomial (resp multinomial) convolu-
tions and thus introduce some notations for these as well. Namely,  

 ( )
2 2

2
2

2
2 :

n

i n i
i

n
b n

i

−

−
=

 
=  

 
∑   

and  

 ( )
2

2
2 :

, , i j k
i j k n

n
m n

i j k+ + =

 
=  

 
∑    

By a theorem due to Clausen [20] and independently Von Staudt [21], the de-
nominator of a Bernoulli number kB  consists of products of primes p of mul-
tiplicity one, such that 1|p k− . In particular, 1 1modppB p− = − . A conjecture 
of Agoh [22] and independently Giuga [23] claims that 1 1modnnB n− = −  if and 
only if n is a prime.  

We will denote the Agoh-Giuga quotient by  

 ( ) 1
1 1

1
: p

p

pB
pB

p
−

−

+
=  

when x is a p-adic integer, we denote by ( )i
x  its ( )1i + -th p-residue in its 

Hensel expansion (see e.g. [16]), that is:  

 ( )
0

i
i

i
x x p

∞

=

=∑  

It is important to underline that this notation does not apply to nor match with 

( )1 1ppB −  which got actually defined independently by being the Agoh-Giuga 
quotient.  

A quite present Hensel residue throughout the paper will be:  

 ( )1 1
:i p i i− += −    

Convolutions and truncated convolutions of these with ordinary or divided 
Bernoulli numbers are involved and we will thus use notations such as ( )2B n  , 

( )1 2 , 3B p n p+ − −   and ( )2n , ( )1 2 , 3p n p+ − −  to denote 
these respective entities. 

For instance,  

( ) ( )

3

2 1 2
1 2

1 2 , 3 :
p

i p n i
i p n

B p n p B
−

− − −
= + −

+ − − = ∑    

Finally, t  denotes the harmonic number of order t. Using standard notations, 
generalized harmonic numbers are denoted by 1,p kH −  or simply kH  when it 
is clearly understood that the order of the sum is 1p − . When the order of the 
sum is not 1p − , we will rather denote these numbers by ,n k  where the first 
index refers to the order of the sum and the second index refers to the index of 
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the power. So, we have:  

 
1

,
1 1 1

1 1 1: : :
pt n

t k n kk k
i x x

H
i x x

−

= = =

= = =∑ ∑ ∑   

Last, regarding multiple harmonic sums, we set  

 
1

,
1 1

1:
k

k n
i i n k

A
i i≤ < < ≤

= ∑




  

We recall that by some version of Wolstenholme’s theorem, the following two 
congruences 2

1 0modH p=  and 2 0modH p=  hold, see [24]. 

1.3. Some Historical Background 

Sums of powers of integers weighted by the Fermat quotients or by powers of the 
Fermat quotients have drawn the interest of many mathematicians since the be-
ginning of the twentieth century.  

Sums of powers of integers weighted by the Fermat quotients first appear in 
1909 in [8]. Given an even integer t, the authors show that:  

 
( )
( )

1

1

mod if 0 mod 1
mod if 0 mod 1

p
tt

a
a p

p t p
q a

w p t p

−

=

− ≠ −=  = −
∑


 

Their proof is based on studying the number of numbers divisible by p in the 
sequence of numbers  

 1,2,3, ,n  

and noticing that this number is congruent modulo p to  

 ( )1

1
1

n
p

y
y −

=

−∑  

A consequence of Friedmann and Tamarkine’s result is the following.  
A pair ( ),p t  is an irregular pair if and only if  

 
1

1
0mod

p
t

a
a

q a p
−

=

=∑  

The search for irregular primes has been of importance [25] [26] [27] ever since 
Kummer [14] showed that Fermat’s last theorem holds when the exponent is a 
regular prime. An important feature of irregular primes is that the numerators of 
the divided Bernoulli numbers consist of products of powers of irregular primes, 
except for n  with { }2,4,6,8,10,14n∈  when it is 1. A study on the irregular 
prime divisors of the Bernoulli numbers gets pursued by Wells Johnson in [28]. 

Later in 1938, Emma Lehmer generalizes the Friedmann-Tamarkine congru-
ence [9]. She proves that:  

 
( )
( )

1 2 1 2
2

1 2 2
1 2 2

1

1

mod if 2 0,2 mod 1

mod if 2 0,2 mod 1

p t
a t

p t

a

a a p t t

a q pB p t p

a q B B p t p

− +

−
−

=

+=

= − ≠ −

= − ≠ −

∑
∑

 

Her proof is based on congruences concerning sums of powers of integers and 
on the obvious equality 1p t t t

aa a a pq− + − = . 
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We note that the latter two congruences involve non divided Bernoulli num-
bers. In fact, Ernvall and Metsänkyla show in their 1991 paper that the differ-
ences 1 2 2p t t− + −   where the Bernoulli numbers have now been replaced with 
divided Bernoulli numbers also relate modulo p2 to these sums of powers of in-
tegers, but this time weighted by squared Fermat quotients. Explicitly, they ge-
neralize the Kummer congruences [29] by showing that:  

Theorem 0.1. Due to Ernvall and Metsänkyla 1991 [7]. Let t be an even in-
teger. Then,  

1
2 2

1
1

4 3, mod
2

p
t

p t t a
a

pt p q a p
−

− +
=

∀ ≤ ≤ − = − ∑   

Their theorem follows from another of their own congruences which we recall 
below. First, it will be necessary to introduce the Teichmüller characters. These 
arise for instance from factorizing the polynomial 1 1pX − −  in [ ]p X . Indeed, 
by Hensel’s lemma, each integer 1 1a p≤ ≤ −  lifts to a unique p-adic integer root  

( )aω  such that ( ) 1
p

w a a
p

− ≤ . The polynomial ( )f X  factors as  

( ) ( )( )
1

1

p

a
f X X aω

−

=

= −∏  

Writing for each integer a with 1 1a p≤ ≤ − ,  

( ) some ,a pa a pv aω = + ∈  

Ernvall and Metsänkyla’s congruence reads as follows.  
Proposition 0.1. (due to Ernvall and Metsänkyla, [7] 1991) Let t be an even 

integer with 4 3t p≤ ≤ − . Then,  
1 1

1 2 2 2

1 1

1 mod
2

p p
t t

t a a
a a

ta v p a v p
− −

− −

= =

−
= − −∑ ∑  

Ernvall and Metsänkyla’s proof is inspired from [19] and is simply based on 
Newton’s formula and sums of powers of integers. Let 1t ≥ . Denoting by tσ  
the elementary symmetric polynomials in the roots of f, namely  

( ) ( )
1

1
1 , , 1t

t t
a a p

a aσ ω ω
≤ ≤ −

= ∑


  

and by ts  the sums  

( )
1

1
,

p
t

t
a

s aω
−

=

=∑  

we have by Newton’s formula:  

( ) 1
1 1 2 2 1 , 1, , 1t

t t t ts s s t t pσ σ σ−
− −= − + + − ∀ = −   

Moreover, if follows from the expansion  

( ) ( )
1

1 2 3
1 3 2

1

p
p p p

p
a

f X X X X X aσ σ σ ω
−

− − −
−

=

= − + + − +∏  

that  
0, 1, , 2t t pσ = ∀ = −  
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Therefore, we have 0ts =  1, , 2t p∀ = − . Substituting ( ) aw a a pv= +  in the 
equation  

( )
1

1
0,

p
t

a
aω

−

=

=∑  

expanding the t-th power and reducing modulo p3 yields the result (see also [15] 
for the relevant developments on the sums of powers. This is where we need to 
exclude 2t = , namely 1 2

1 modp t
ta a pB p−

=
=∑  only when 2t ≠ ). Because we 

have ( ) 1 1paω − = , we also have  

( )
1

1

1
0

p
p t

a
aω

−
− +

=

=∑  

We thus get:  

( )
1 1

1 1 2 2 2
1

1 1
1 mod

2

p p
t p t

p t t a a
a a

pa a v v a p
− −

− − −
− +

= =

− = − + +∑ ∑   

Next, from expanding ( ) p
a aa pv a pv+ = +  modulo p2, we see that  

moda av aq p=  

The theorem follows. This result is fundamentally used in [4] where a congru-
ence modulo p4 gets provided for ( )1 !p −  in terms of Bernoulli numbers, ge-
neralizing Wilson, Glaisher and Sun’s own congruences modulo p, p2 and p3 re-
spectively. 

In [6], on his way to proving his identity which has become commonly known 
as “Miki’s identity”, Hiroo Miki finds a congruence modulo p2 for  

 
1

1
, 4 3

p
t

a
a

a q t p
−

=

≤ ≤ −∑  

This congruence involves convolutions of divided Bernoulli numbers, binomial 
convolutions of divided Bernoulli numbers, truncated convolutions of divided 
Bernoulli numbers as well as the Agoh-Giuga quotient and harmonic numbers 
of order t. He first finds an expansion for ,1 1aaq a p≤ ≤ −  to the modulus p2. 
We state Miki’s result below using our own notations. 

Theorem 0.2. Due to Miki (1978) [6]. Let t be an even integer with 4 3t p≤ ≤ − . 
Let n be the integer such that 1 2t p n= − − . Then,  

 
( ) ( )( )( ) ( )

( ) ( ) ( )

1

1 11
1

2

21
2

1 1 1 2 , 3 mod
2 2

p
t

a t p p t t
a

ta q pB pB t t

tb t p n p p p

−

− −
=

−= − + + − + +


− + + + − − 


∑    

 
     (1) 

By doing a similar work on the weighted sums  

 
1

2

1
, 4 3,

p
t

a
a

a q t p
−

=

≤ ≤ −∑  

he obtains a congruence modulo p for these sums in terms of convolutions of di-
vided Bernoulli numbers, of truncated convolutions of divided Bernoulli numbers 
and of the Agoh-Giuga quotient.  
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Independently in [3], we obtain a congruence relating residues of convolu-
tions of divided Bernoulli numbers with residues of truncated convolutions of 
Bernoulli numbers. By using Ernvall and Metsänkyla’s theorem, our Theorem 1 
point (i) of [3] is Lemma 4 of [6] with 1 2m p n= − −  and 6 5m p≤ ≤ − . 

Before closing this introduction, we recall below Miki’s identity and its gene-
ralization by Gessel. The identity by Gessel relates a multinomial convolution of 
three divided Bernoulli numbers to a convolution of three divided Bernoulli 
numbers, while Miki’s identity relates a binomial convolution of divided Ber-
noulli numbers to a convolution of divided Bernoulli number. We state both re-
sults below using our own notations. 

Theorem 0.3. Miki’s identity 1978 [6]. 
2 2

2 2
2

m m

i m i i m i m m
i i

m
i

− −

− −
= =

 
= + 

 
∑ ∑     

Theorem 0.4. Gessel’s identity 2005 [18]. 
2

2,
2

, , 2

2

2

3 6
, ,

3 5( )
4

n

i j k n i n i n n
i j k n i
i j k

n

n n
A

i j k i

n nn

−

−
+ + = =

≥

−

   
+ +   

   

− +
= +

∑ ∑     

 

 

In 1982, Shiratani and Yokoyama gave another proof for Miki’s identity. Their 
proof of [30] is very different from Miki’s original proof as it uses integration 
and analysis methods. It wasn’t until 2005 that Gessel gave a much simpler proof 
of Miki’s identity and one which generalizes as in Theorem 0.4. Gessel’s proof is 
based on two different expressions for Stirling numbers of the second kind. An 
identity related to Miki’s was found in 2000 by Faber and Pandharipande [31] 
and proven by Zagier. Some authors like [32] have then been talking about the 
Miki-Zagier-Gessel identity. By using his approach, Gessel could find a genera-
lization of the Faber-Pandharipande identity, which is also a generalization of 
the Miki identity. Shortly after in the same year, Crabb [33] gave a very short 
and simple proof for this generalization originally due to Gessel, from a func-
tional equation for the generating function  

 
( )

0 !
n n

n

B
X

n
λ

≥
∑  

Still around the same time, Schubert and Dunne found out that Miki’s identity 
arises naturally in a certain computation in perturbative quantum field theory. 
They use a different generating function which plays an important role in quan-
tum field theory computations in order to prove Miki’s identity. They also prove 
the Faber-Pandharipande identity by using yet another different generating func-
tion. By noticing that both generating functions are related in a certain way, they 
also find a novel convolution identity. By their approach, they also find a cubic 
generalization of the Faber-Pandharipande identity. Further, they outline the 
generalization of the method to the derivation of convolution identities of arbi-
trary order. Their work appears in [1]. 

https://doi.org/10.4236/am.2023.149034


C. Levaillant 
 

 

DOI: 10.4236/am.2023.149034 555 Applied Mathematics 
 

Remark 1. Multinomial convolutions of ordinary Bernoulli numbers were also 
studied by different authors, originating with Euler when the number N of Ber-
noulli numbers in the product equals 2. Then, in [34], Sitaramachandrarao and 
Davis generalized Euler’s formula to the case when 3,4N = . The cases 5N =  
and 6,7N =  were further respectively studied by Sankaranaryanan [35] and 
Zhang [36]. The full generalization to any N was finally achieved by Petojević 
and Srivastava in [37], based also on Dilcher’s results of [38]. Their closed for-
mula involves some Stirling numbers of the first kind.  

Remark 2. In 2010 in [39], the authors derive yet another type of quadratic 
convolution identities involving Bernoulli numbers, not obviously related to any 
included in [34].  

Remark 3. In 2016 in [40], Agoh gave yet another proof of Miki’s identity, 
based on Faulhaber’s formula for the sums of powers of integers (sometimes 
known as the “Bernoulli formula”).  

Before stating the results of the current paper, we state below a weaker version 
of Miki’s lemma 1 of [6] which we shall use several times in the current paper.  

Proposition 0.2. Weaker version of Lemma 1 of [6] by Miki. Let a be an in-
teger with 1 1a p≤ ≤ − . Then, we have: 

( )( )
3

1 1
1

11 1 mod
p

p k
a p k

k

p
aq pB a B a p

kp

−
−

−
=

 
= − + − −  

 
∑  

We briefly recall a proof of this fact. Denote the sums of powers of integers by  

 ( ) ( ): 1 2 1 mm m
mS n n= + + + −  

Then, Bernoulli’s formula reads (see e.g. [15]), (in the formula below 1
1
2

B = − ),  

 ( ) ( )
1

1
1

1
1

m
i

m m i
i

m
m S n B n

i

+

+ −
=

+ 
+ =  

 
∑  

In particular, letting 1m p= −  and n a= , we have for each integer a with 
1 1a p≤ ≤ − :  

 ( )
1

1 1
2

p
p i

p p p i
i

p
pS a a apB B a

i

−

− − −
=

 
= + +  

 
∑  

And after the change of indices j p i= − , we obtain:  

 ( )
2

1 1
1

p
p p j

p p j
j

p
pS a a apB B a

j

−
−

− −
=

 
= + +  

 
∑  

Since p
aa a aq p= +  and ( )1 1 1

1p ppB p pB− −= − + , this equality rewrites as:  

 ( ) ( )
2

1 1 1
1

1p
p j

p a p j
j

p
S a aq pB a B a

jp

−
−

− −
=

 
= + +  

 
∑  

On the other hand, since 1 1p
kk q p− = + , we have:  

 ( )
1

1
1

1
a

p k
k

S a a p q
−

−
=

= − + ∑  

Comparing the latter two identities yields Proposition 0.2. 
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1.4. New Results 

Our first theorem is based on a special case of Ira Gessel’s identity (listed as 
Theorem 0.4 of Section 1.3) and on Hiroo Miki’s identity (listed as Theorem 0.3 
of Section 1.3). It also relies on a result by Jianqiang Zhao from 2007 [41], which 
combined with our work of [3] provides the harmonic number 1p−  modulo p3. 
Recall that this number is zero modulo p2 by Wolstenholme’s theorem. The 
proof of the theorem below is saved for the very end of the paper. 

Theorem 0.  

 
3

1 1 3
2

2 mod
p

i p i p i p
i

p
−

− − − − −
=

=∑    

Corollary 0.  

 
3 3

1 1 3
2 2

mod
p p

i i p i i i p i p
i i

B B p
− −

− − − − −
= =

= = −∑ ∑     

Our next results serve as preliminary results towards the core theorem of the 
current paper listed below as Theorem 6. However, these results are interesting 
in their own sake and generalize the works of the group of mathematicians 
evoked before. By generalizing Reijo Ernvall and Tauno Metsänkyla’s congru-
ences described in Proposition 0.1 and Theorem 0.1, of Section 1.3 to odd integ-
ers t, we obtain a “Lehmer type” congruence like stated in Theorem 1 below. 
This is a necessary step towards finding novel congruences concerning sums of 
powers of integers weighted by the third power of the Fermat quotient, thus 
pushing the study of such sums “one Fermat quotient power” further. 

Theorem 1. Let t be an odd integer with 5 2t p≤ ≤ − . Then,  

 
1

2
1 1 1

1
mod

p
t

p t t a
a

B B a q p
−

− + − −
=

− = −∑  

By comparing this congruence modulo p to the one of Emma Lehmer modulo p2, 
we derive in turn the following statement. 

Corollary 1. Let t be an odd integer with 5 2t p≤ ≤ −  and let ( ) aa a pvω = +  
be the Teichmüller character associated to each a with 1 1a p≤ ≤ − .  

The following congruences hold. 
Version 1.  

 
1 1

2 1

1 1
mod

p p
t t

a a
a a

q a q a p
− −

−

= =

= −∑ ∑  

Version 2.  

 ( )
1

1

1
1 0mod

p
t

a a
a

q a v p
−

−

=

+ =∑  

A straightforward consequence of Theorem 1 is also the following. 
Corollary 2. Let t be an even integer with 4 3t p≤ ≤ − . Then,  

 
1

1 2

1
mod

p
t

t a
a

a q p
−

+

=

= ∑  

This is the version of Theorem 1 which we later use. The sum studied in the next 

https://doi.org/10.4236/am.2023.149034


C. Levaillant 
 

 

DOI: 10.4236/am.2023.149034 557 Applied Mathematics 
 

theorem below is present in the congruence for the multiple harmonic sums 

2 ,2 5nA n p≤ −  modulo p4 of Theorem 3 of [4]. This sum appears to be in con-
nection with the sum of 2n-th powers of integers weighted by the third power of 
the Fermat quotient, like follows. 

Theorem 2. Fix some integer n. Then,  
2 2 31 3 1 1

2 2 2
1 1 1 1

mod
p p p p

i a a a
pi n n n

a i a a

q q qw p
a a a a

− − − −

= = = =

= +∑∑ ∑ ∑
 

A joint application of Theorem 2, Corollary 2 applied with 1 2 2t p n+ = − −  
implies in turn the following result. 

Corollary 3. Fix some integer n. Then,  
2 2 31 3 1 1

3 22 2 2
1 2 1 1

1 mod
2

p p p p
i a a a

p p ni n n n
a i a a

q q qw p
a a a a

− − − −

− −
= = = =

= + +∑∑ ∑ ∑
  

When 2 0n = , this sum plays a central role in [4] in relation to finding an 
expansion for ( )1 !p −  to the modulus p4, a generalization of Wilson, Glaisher 
and Sun’s results to the respective moduli p, p2 and p3.  

Some parts of the next two statements serve as a preparation to part of Theo-
rem 5 below. 

Theorem 3.  

( )

( )( ) ( )( )
( )

1
2 2

1
2

2 2
1 12 11 2

12 1
2

1 mod

1 2 mod

2 1
mod

p

a p
a

p pp

pp

q w p p

pB p p p

pB pB p
p

p

−

=

− −−

−−

= − − −

= − − − −

− + −
=

∑ 

   

Remark 4. By an unpublished result of Sun [42] which got later generalized in 
a published version [43], we have for any non-negative integer k,  

 ( ) ( )( ) 2
11 1 1 modpk ppB k p kpB p−− = − − − +  

The last congruence of Theorem 3 offers a proof for the base case 2k = . Sun’s 
congruence can then be shown by induction on 2k ≥  using the fact that kp  
divides ( )1 1

1 1
kp p

a a− −
=

−∑ . This namely implies that:  

 ( ) ( )( ) ( ) ( ) ( )
1 1 1 2

1 1
1

1 1 1 mod
k l k

k p p k l
l

k
pB p B p p

l

−
− −

− − −
=

 
= − + − − 

 
∑  

Theorem 4.  

( )

( )
( )( )

1
2 2

1

1 2 1

2 1
2

1 1 4, 3 mod
6 4

12 mod
2

6 12 1 2 1
mod

6

p

a p
a

p

p p

q a w p p

p

pB pB p p p
p

p

−

=

+

+

= − − −

= − − −

− + − −
=

∑ 

    

We now state the long announced generalization of the Friedmann-Tamarkin- 
Lehmer-Ernvall-Metsänkyla congruences.  
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Theorem 5. Let p be a prime with 7p ≥ . Set an integer n such that  
2 2 5n p≤ ≤ − . Then, we have:  

( )( ) ( )( )
( )( ) ( )( )

( ) ( )( )
( ) ( ) ( )

31 5 2

1 2 1 22 1 2 2 1 22 1 11 2

2
1 2 3 2 1 21

3

3 1 2 2 1 2 11 2

1 24 1 2 3 1 2 2 1 2
3 23

2 2

1 2 1

2 mod

3 3
m

p p n
a

i p n i p p np n i p nn
a i

p p n p p n

p

i p n i p n i
i p n

p np n p n p n
p n

q w
a

w p

p

pB pB pB pB

p

− − −

− − − − −− − − − −
= =

+ − − − −

−

− − − − − −
= + −

− −− − − − − −
− −

= − − + −

− + − − + −

− −

− + −
= −

∑ ∑

∑

    

    

  

 od p

 

and  

 ( )1 1
1modp pw pB p−= −  

 ( ) ( )( )2 2
12 1 2

1 2 modppp p p p−−− = −    

(Case 2 0n = )  

 

( )( ) ( )( )

( )( )
( ) ( )

1
3 2

1 2 31
1

5

12 1 12

13 1 2 1
33

1 2 1

2 mod

3 3 1
mod

p

a p p p p
a

p

k p kp k
k

pp p
p

q w w p

p

pB pB pB p
p

p

−

+ −
=

−

− −− −
=

−− −
−

= − + − + + −

− −

− + − +
= −

∑

∑

   

  



 

In each case, the second congruence arises from a different perspective.  
In the general case, we deduce a very nice congruence which is a generaliza-

tion of the congruence of Theorem 1 point (i) of [3].  
Corollary 4. Let p be a prime with 11p ≥ . Let n be an integer such that  

4 2 7n p≤ ≤ − . Then,  

( )

( ) ( )( ) ( )( )
( ) ( ) ( )

2
1 2 1 22 1 2 1

1 24 1 2 3 1 2 2 1 2
3

1 2 , 3
11 2 1
2

3 3
mod

2

p p n p p np n

p np n p n p n

p n p

p n w w p

pB pB pB pB
p

p

− − − −− −

− −− − − − − −

+ − −

= − − − + − − + −

− + −
−



      

In the case when 2 0n = , we also have a nice corollary.  
Corollary 5. The following congruence holds.  

 
( ) ( )( )

( ) ( )

1 5
2 2

1 2 31
1 2

13 1 2 1
3

1 1
2 2

3 3 1
mod

2

p p
pk

a p p pk
a k

pp p

w
q w p

a
pB pB pB p

p
p

− −

+ −
= =

−− −

− = − − + + −

− + − +
−

∑∑     
 

with the residues of pw  and ( )1p −  already provided above.  
Up to a factor p3, this sum was called   and had served as an intermediate 

in [4] for the calculation of the residue of the same sum with the divided Ber-
noulli numbers being replaced with the ordinary ones. The sum   was actually 
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never computed as this intermediate gently vanished during the computation. 
Corollary 3 and Theorem 5 play a key role in the proof for Theorem 6 below. 

The result also relies heavily on our past work on the multiple harmonic sums  

{ }2 1; 1ls p= −
  modulo p4 of [4] and on Gessel’s identity of [18].  

Theorem 6. Let p be an odd prime with 11p ≥  and n be an integer with  
4 2 7n p≤ ≤ − . Then,  

( ) ( )( )

( ) ( )( ) ( )( )
( )( ) ( )( )( )
( )( )

1

1 2 1 23 1 2 2 1 2 2 1 22 2

1 1 2 1 22 1 21 1 1

1 22 1 2 1

1 1 2 1 2 , 3
2

2 2

1 2 1 2
2

p n p np n p n p n

p p n p np n

p p np n

B B p n p n p

n

pB

w

− − − −− − − − − −

− − − − −− −

− −− −

= − + + − − + + − −

+ − + − −

− − + −

− −

      

    

  

 

 

 

( )

( )

( ) ( ) ( )

2 2
1 1 1 1 22 1

2

1 24 1 2 3 1 2 2 1 2
3

1 2 12 1 2 1
2 2

12
2

3 32 1 mod
2

p p

p p p p np

p np n p n p n

nn p w n w

n pB p p p p

pB pB pB pBn p
p

− − − − −−

− −− − − − − −

 +   + + − + − +   
   

 + − + + −  
  

− + −+
+



     

Remark 5. In Theorem 6 just stated, in order to have the truncated convolu-
tions well defined, it necessary to impose 2 4n ≥ . As for the upper bound,  
2 7n p≤ − , it is necessary to have in order to be able to apply Theorem 1 point (i) 
of [3].  

Applying Theorem 6 in the special case when 2 4n =  allows to relate the 
p-residue of a convolution of order ( )5p −  of ordinary Bernoulli numbers 
with Ernvall-Metsänkyla residues to the second residue in the p-adic expansion 
of a convolution of order ( )5p −  of divided Bernoulli numbers. Also, applying 
Theorem 6 in the other extremal case corresponding this time to 2 7n p= −  
allows to relate the p-residue of a truncated convolution of ordinary Bernoulli 
numbers with Ernvall-Metsänkyla residues to the second residue in the p-adic 
expansion of the same truncated convolution of divided Bernoulli numbers. 
That is, under our notations, we relate ( )( )0

5B p −   and ( )( )15p −  on 
one hand and ( )( )0

8, 3B p −   and ( )( )18, 3p −  on the other hand. The 
results are gathered in the following corollary.  

Corollary 6.   

(i) 

( )

( )( ) ( ) ( )

( ) ( )

( ) ( )

7

1 5 5 1
2

2
3 2 4 3 311

2 2
1 1 1 52 1

2

3 7 2 6 5 2 6 52 2

1 5 2 4 1
2

13 2 4
2

4 2

p

i p p i p i
i

p p p p

p p p p p pp

p p p p p

B

p p

w w pB p p p p

−

− + − − − −
=

− − − −

− − − −−

− − − − −

−


= − + + − + −


 + + + − + + −  

  

+ − + − −

∑  

     

   

    

 

https://doi.org/10.4236/am.2023.149034


C. Levaillant 
 

 

DOI: 10.4236/am.2023.149034 560 Applied Mathematics 
 

( )( ) ( )( )1 5 2 6 51 1 1

4 8 3 7 2 6 5
3

1 2 1 2
2

3 3
2 mod

p p p p

p p p p

pB

pB pB pB pB
p

p

− − − −

− − − −

− − + −

− + −
+

  
 

(ii) 

( )

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )( ) ( )( ) ( )

3

1 5 5 1
8

1 4 4 2 1 2 2 41 1 1

2 2
1 1 1

6 2 4 5 6 5 62 1 2 2
2

1 6 5 6 5 61 1 11

1 6 8, 3 3
2

13 11 8 3 7
2 2

7 2

1 2 1 2
2

3

p

i p p i p i
i

p p

p p p p p

p p pp

p p p p

B

p

p w w pB p p p

p

pB w

p

−

− + + − + −
=

− + − +

− − −

+ + +−

− + +

−

= + − − − − −

 + − − − + − − + + 
 

− − − + − −
 

− − + − − −

−

∑  

       

  

      

    

3 3 2 4 5 6
3

3 3
modp p pB pB pB pB

p
p

+ + +− + −

 

Our last theorem deals with congruences concerning sums of powers of in-
tegers weighted by the Teichmüller characters and by some analogs of the Teich- 
müller characters. These characters (resp their analogs as defined below) arise 
from an application of Hensel’s lemma to the polynomial [ ]1 1p

pX X− − ∈  (resp 
( ) [ ]1 1 !p

pX p X− + − ∈ , [ ]1
1

p
p pX pB X−
−+ ∈ ). Given a polynomial ( )f X  

with p-adic integer coefficients, Hensel’s lemma asserts that if there exists a p-adic 
integer x such that ( ) pf x p∈   and ( ) pf x p′ ∉   (in other words, ( )f x′  is 
a unit in the ring of p-adic integers), then there exists a unique p-adic integer 
root 0x  of f such that 0 mod px x p≡  . We say that x lifts to a unique root 0x  
of f. The ( )1p −  elements of p

×  lift to ( )1p −  distinct roots of the respective 
polynomials above. In the case of the first polynomial, the Teichmüller character 
of pa ×∈  is the unique ( )1p − -th root of unity in p  which is congruent to 
a modulo p.  

Theorem 7. Let t be an integer with 4 2t p≤ ≤ − .  
(i) We denote by the aω ’s the ( )1p −  p-adic integer roots of the polynomial 

[ ]1 1p
pX X− − ∈ . The aω ’s are the Teichmüller characters.  

Then, we have:  

 
( ) 3

11
1

2 3
1 1

1 mod if is even

1 mod if is odd
2

p tp
t

a
a t

p t p t
a tp B p t

ω
− +−

−

= −

 −
=   −   

∑


 

(ii) We denote by the aΩ ’s the ( )1p −  p-adic integer roots of the polynomial 
( ) [ ]1 1 !p

pX p X− + − ∈ .  
Then, we have:  

( )( ) 3
11

1
2 3

1 1

1 mod if is even

1 mod if is odd
2

p t p tp
t

a
a t

p t pw p t
a tp B p t

− +−
−

= −

 − +


Ω =   −  
 

∑
 
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(iii) We denote by the aγ ’s the ( )1p −  p-adic integer roots of the polynomial 
[ ]1

1
p

p pX pB X−
−+ ∈ .  

Then, we have:  

 
( ) ( )( ) 3

1 11 1
1

2 31
1

1 mod if is even

1 mod if is odd
2

p t p tp
t

a
a

t

p t p pB p t
a tp B p t

γ
− + −−

−

=
−

 − +
=   −    

∑
 

 

2. Proofs of the Theorems 
2.1. Where We Apply Gessel’s Identity 

This is the most technical part of the discussion. We build upon the work of [4]  

which provides expressions for the Stirling numbers 
2 1

p
n

 
 + 

 (also denoted by 

1 2p nA − −  for the sum of products of 1 2p n− −  distinct integers chosen amongst 
the first 1p −  integers) and the multiple harmonic sums 

{ }2 1; 1ns p= −
  (also de-  

noted by 2nA  for the sum of products of 2n distinct reciprocals of integers 
chosen amongst the first 1p −  integers) modulo p4. We will go straight into the 
technical details. On one hand, the conjunction of Theorem 1 and Theorem 2 
point (i) of [4] allow to write:  

 

( ) ( )( )
( ) ( )

( ) ( )

3

2 1 2

2
3

3 2

2
4

1 2 1 1
6
4 2 1 6 2 1 5

24

1 1 2 mod
2

n p p p n

p n

p

pA p n p pw pw

n n
p

p pw p n p

− −

− −

= − − + + +

+ + + +
+

− + − −

  





       (2) 

On the other hand, we may list the main contributors from Theorem 3 of [4] as 
follows.  

( ) ( )( ) ( )( )
( )

3
3

2

23 1 5 7 2
4

2
1 1 2 2

2 11 2 2 1 2 1 2
6 12

2 1
mod

4

n

p p p n
i i i i a

i i n
a i p n i

p nA p n p p n p n
n

n B B qp OT p
n a a a

− − − −

= = + − =

−
= − − − − − − − −

 + + +
+ + + 

 
∑ ∑ ∑

   

 
(3) 

where the other terms OT must be copied from the theorem itself.  
We will study modulo p4 the differential term:  

 ( )( ) ( )3 3: ( 2 1 2 1 2p p p n p n∆ = − − − − −   

By using the Gessel identity, we may partly reduce this study to that of another 
simpler differential term, this time composed of multinomial cubic convolutions, 
namely:  

 ( )( ) ( )( )3 3: 2 1 2 1 2p m p m p n m p n∆ = − − − − −   

Before we start the computation, it is worth noting that for integers , , ,n i j k  
such that i j k n+ + = , we have:  
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( )
( )( ) ( )

( )
! 1 1!

, , ! ! ! ! ! !
n n i n i n i jn n n in

i j k i ji j n i j i n i j
− − − − − + −    

= = =    − − −    



 

We will split ( )( )2 1 2m p n− −  into three sums, say 1S , 2S  and 3S , 
namely:  

( ) 3 2

1 1 1 2
2

1 22 1 2
1

p n

p j p n j
j

p np n
S

jp

− −

− − − −
=

− − − −  
=    −   

∑    

( ) ( ) ( )
( )

2 1 2 23

2 2 1 2
2 2

2 1 2 2 1 2p n ip

i j p n i j
i j

p n p n i
S

i j

− − − −−

− − − −
= =

   − − − − −
=    

   
∑ ∑    

( ) ( ) ( ) ( )
( )

( )
( )

2 1 2 4 2 1 2 2

3 2 1 2
1 2

3 2 2

2 1 2
4 2

2 1 2 2 1 2

2 1 2

p n p n i

i j p n i j
i p j

p n s

j s jp n s
s j

p n p n i
S

i j

sp n
js

− − − − − − −

− − − −
= + =

− − −

−− − −
= =

   − − − − −
=    

   
 − −  

=    
  

∑ ∑

∑ ∑

  

  

 

By Von Staudt-Clausen’s theorem, the sum 3S  may be treated modulo p. When 
3 2s p n≤ − − , Kummer’s congruence applies and yields  

( ) 1 22 1 2 modp n sp n s p− − −− − − =  . Moreover, by a straightforward application of the 
Chu-Vandermonde identity and from other well known binomial congruences 
and identities (see e.g. [3]), we easily derive:  

( ) 1 2 1 22 1 2
mod

2 1
p n p np n s p

s sns
− − − − − −    

= +     +    
 

And since we also have,  

( )
5 2 1 2 2

1 2
2 2

3 2 2

1 2
4 2

1 2

1 2 1 2

1 2
,

p n p n i

i j p n i j
i j

p n s

p n s j s j
s j

m p n

p n p n i
i j

p n s
s j

− − − − − −

− − − −
= =

− − −

− − − −
= =

− −

− − − − −   
=    

   
− −   

=    
   

∑ ∑

∑ ∑



  

  

 

we therefore obtain:  

( )3

3 2 2

1 2
4 2

1 2

1 21
2 1

p n s

p n s j s j
s j

S m p n

p n s
s

s jn

− − −

− − − −
= =

− − −

− −   
=    +    

∑ ∑



  
 

After a change of indices, the right hand side above rewrites as:  

( )
5 2 1 2 2

1 2
2 2

1 2 1 21 1 2 ,
2 1

p n p n l

l j p n l j
l j

p n p n l
p n l

l jn

− − − − − −

− − − −
= =

− − − − −   
− − −    +    

∑ ∑    

which in turn is congruent modulo p to:  

( )
1 2 4 1 2 2

1 2
2 2

1 2

1 2 1 21
2 1

p n p n l

l j p n l j
l j

m p n

p n p n l
B

l jn

− − − − − − −

− − − −
= =

− − −

− − − − −   
−    +    

∑ ∑



 
 

The sum to the right hand side is a multinomial cubic convolution of divided 
Bernoulli numbers where one of the divided Bernoulli number has been replaced 
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with a regular Bernoulli number. By considering thrice such a sum, we see that 
this convolution is nothing else than:  

( )1 2 1 2
3

p n m p n− −
− −  

And so,  

( ) ( )3
21 2 1 2 mod
3

S m p n m p n p− − − = − − −           (4) 

Next, in order to tackle 2S  we will split it. Indeed, when 1 2i p n≥ − − , we have 
1 2 2p i n− < + + , then ( )2 1 2 2 1p n i p− − − − < − . Therefore the corresponding 

sum may be treated modulo p. We thus write:  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 1 2 23 2

2 2 1 2
2 2

2 1 2 23

2 1 2
1 2 2

2 1 2 2 1 2

2 1 2 2 1 2

p n ip n

i j p n i j
i j

p n ip

i j p n i j
i p n j

p n p n i
S

i j

p n p n i
i j

− − − −− −

− − − −
= =

− − − −−

− − − −
= − − =

   − − − − −
=    

   
   − − − − −

+    
   

∑ ∑

∑ ∑

  

  

 

Moreover, the sum of the second row is congruent to zero modulo p as p divides  

the binomial coefficient ( )2 1 2p n
i

 − −
 
 

 for this whole range of i. Further,  

dealing now with the first row, when 3 2i p n= − − , we have  
( )2 1 2 2 1p n i p− − − − = −  and when 3 2i p n< − − , we have  
( )2 1 2 2 1p n i p− − − − > − . In the first case, by Staudt’s theorem, only the extreme  

indices contribute to the right hand sum as p divides 
1p

j
+ 

 
 

 for this whole 

range of j. In the second case, when 1 2 3p n i j p+ − − ≤ ≤ − , for this whole 

range of j, p divides ( )2 1 2p n i
j

 − − −
 
 

. Then, after the adequate reductions 

modulo p we are left with three main contributions  

2 2,1 2,2 2,3S S S S= + +  

with:  

( ) ( )
2,1 1 2 3 2

2 1 2
1

3 2p p n
p n

S p p
p n− − −

 − −
= +  − − 

    

( ) ( )5 2

2,2 1 1 2
2

2 1 2 2 1 2
2

1

p n

i p p n i
i

p n p n i
S

i p

− −

− − − −
=

   − − − − −
=    −   

∑     

( ) ( )
( )

5 2 3 2

2,3 2 1 2
2 2

2 1 2 2 1 2
2

p n p n i

i j p n i j
i j

p n p n i
S

i j

− − − − −

− − − −
= =

   − − − − −
=    

   
∑ ∑    

Regarding 2,1S , we have  

 ( ) ( )1 22 1 2 2 mod 2 2 mod
3 21 23 2

p np n
p n p

p np np n
− − − −  

= = − +   − −− −− −   
 

Therefore,  
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 ( )2,1 3 2
1 1 mod
6 p nS n p− −= − +                    (5) 

Dealing with 2,2S  relies on proving the following lemma.  
Lemma 1. Let i be an integer with 0 3 2i p n≤ ≤ − − .  

( )
1

2 1 2
1 p p

p n i
p −

 − − −
∈ − 
  

and  

( )
1

2 1 2 1 mod
2 11 p p

p n i
p

n ip −

 − − −
= −  + +− 

  

Proof of Lemma 1. For this range of i, we have ( )2 1 2p n i p− − − > . There-
fore,  

( ) ( )( ) ( )
( )

2 2 3 2 12 1 2
1 2 !1

p p n i p p n i pp n i
p

p n ip
+ − − − + − − − + − − −

=  − − −− 



 

Moreover, 1 1modp pp p− =  , hence the lemma.  
Since, for this same range of non-zero even i’s, we also have:  

( ) 1 22 1 2 2 1 mod ,
2 1

p np n n i p
i ni

− − − −   + +
=    +  

 

we thus get:  

( )2,2 3 2
1 2 1 2 mod

6 2 1p n
nS b p n p

n− −
+

= − − −
+

            (6) 

Concerning 2,3S , for the ranges of even i’s and j’s that are considered, we 
have:  

( ) 1 22 1 2 2 1 mod
2 1

p n ip n i n i j p
j n ij

− − − − − −   + + +
=    + +  

 

It follows that:  
5 2 3 2

2,3 1 2
2 2

1 2 1 22 1 mod
2 1

p n p n i

i j p n i j
i j

p n p n in i jS p
i jn

− − − − −

− − − −
= =

− − − − −   + + +
=    +   
∑ ∑    

Therefore,  

 ( )2,3
2 1 2 mod
3

S m p n p= − −                   (7) 

It remains to treat 1S . Applying Lemma 1 with 0i =  immediately yields:  

 ( )1
1 1 2 mod

2 1
S b p n p

n
= − − −

+
                  (8) 

By gathering congruences (3)-(7), we obtain, where we also used Miki’s iden-
tity and the fact that 1 2 2 modp n n p− − =   (as 1 0modp p− =  by Wolsten-
holme’s theorem):  

 ( )3 3 4
2 1 2

3 61 2 mod
2 1 2 1 n p np m p p n p

n n − −
 ∆ = − − − + + + 

        (9) 
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We have done only part of the work so far. It remains to study the other diffe-
rential terms arising in Gessel’s identity. By Gessel’s identity applied twice and 
after some simplifications and use of the Kummer congruence, we have:  

( )( ) ( )( )

( )( )

( ) ( )

3 3
3 2 1 2

4
2, 1 2 1 22,2 1 2 2 1 2

2 3 3 2 1 2 1 2
2

1 1 13 2 1 2
2 1 2 2 2

6 6 mod

p n p n

p n p np n p n

np p m b p n b p n

b p n
p n p n p p n

A A p

− − − −

− − − −− − − −

+∆ = ∆ − + − − − − −

 

+ + + + − − − + − + − − 
+ − 




 

   



 

(10) 

We need further computations and start with the expression on the third row 
which we will conveniently denote by 3R . We decompose:  

( )

( )

( )

2 1 21 2

2, 1 22,2 1 2
1 2 2 2 1 2

1 1p np n

p np n
i j p n p n i j p n

A A
ij ij

− −− −

− −− −
= = − − ≤ < ≤ − −

= + +∑ ∑ ∑   

( )2,2 1 2p nA − −
  is the sum of three terms, we will denote the second term by 2s  and 

the third one by 3s . In 2s , the range of j can be split into 2 1p n j p− ≤ ≤ − , 
j p=  and ( )1 2 2p j p p n+ ≤ ≤ + − − . When working modulo pp , we thus 

have:  
1 2 1 2 2 22

2 1 2
1 1 1 1

1 1 1 mod
p n p n p nn

p n
i j i j

s p
ij p ij

− − − − − −

− −
= = = =

= − + +∑ ∑ ∑ ∑  

Moreover, we have (note, these types of congruences get worked out later on):  
2

1 2 2 ,2 2 modp n n np p− − = +    

Then, we get:  

2 2 ,2 2
1 1 mod

2 1n ns p
p n

 
= + + + 
   

We now deal with 3s . Regarding 3s , we split the ranges of i and j into three 
groups, namely  

( )

( )

12
22 1

2 21

pp n
pp n

p

p p np

+−
+− −

+ − −−




 

We thus obtain:  

( )3 2 ,2 2 2 2 ,2 2 2 2 2 1 2,2 2, 2 2
1 modn n p n p n n n n p ns p p A A p
p − − − − + − −= − − − + − + +        

with  
2

2 2 2 1,2 2 1 modp n n np p− − + += +    

2 2 ,2 2 1,2 mod ,p n n p− − += −   

3s  then simplifies to  

( )3 2 1,2 2 2 1 2,2 2, 2 22
1 1 mod

2 1 2 1
n n n n p n

ps p A A p
p n n

+ + − −

 
 = + + − + +
 + + 

     
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Moreover, we have:  

 2 1
2, 2 2 2, 1 2 mod

2 1
n

p n p nA A p
n

+
− − − −= +

+
  

 

We now need the following intermediate result which gets listed as a lemma.  
Lemma 2.  

2
2, 1 2 2,2 2 modp n n nA A p− − = − +    

Proof of Lemma 2. We have:  
1 2 1

2, 1 2 2
2 1 1 2

1 2 2

2,2
1 1

2,2 2 1 2

2
2,2 2

1 1

1 mod

mod

mod

p n p

p n
p n i j p i j p n

p n n

n
i j

n n p n

n n

A A
ij ij

A p
ij

A p

A p

− − −

− −
− ≤ < ≤ − = = −

− −

= =

− −

= − −

= − +

= − +

= − +

∑ ∑ ∑

∑ ∑

 







 



 

        
Then,  

( )2, 2 2 2,2 2 2 1 2
1 mod

2 1
p n n n nA A p

n
− − += − + +

+
     

Thus,  

3 2 1,2
1 1 2 mod

2 1 2 1 ns p
n p n +

 
= + + + + 

  

In the end, we have:  
Proposition 1.  

( ) 2, 1 2 2 1,2 2 12,2 1 2
1 12 mod

2 1p n n np nA A p
p n− − + +− −

 
= + + + + 

     

It follows that  

 ( )
3 3 2 42 1

3 2 1,2 1 2 2 1 2 1 26 2 6 mod
2 1

n
n p n n p np R p p p

n
+

+ − − + − −
 = + + + 


      (11) 

We further deal with 2R . Let u denote the p-adic integer:  
1 1 1 1:

2 1 1 2 2
u

p n p p p p n
= + + + + +

− − + + − −
   

We have:  

( )( ) ( )( )2
3 2 1 2 3 2 1 2R b p n ub p n
p

= − − + − −   

We decompose:  

 

( )( ) ( )
( )

( )
( )

( )
( )

1 2 1 2

3 2

2 1 2
2

3

2 1 2
1 2

2 1 2
2 1 2 2

1

2 1 2
2

2 1 2

p p n

p n

i p n i
i

p

i p n i
i p n

p n
b p n

p

p n
i

p n
i

− − −

− −

− − −
=

−

− − −
= + −

 − −
− − =  − 

 − −
+  

 
 − −

+  
 

∑

∑

  




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Then,  

( )( ) ( )

( )

( )
( )

3 2 2
2 1 1 2

3 2
3

1 2
2

3
3 4

2 1 2
1 2

2 1 2
3 2 1 2 6

1

1 26 2 1
2 1

2 1 2
3 mod

p p n

p n

i p n i
i

p

i p n i
i p n

p n
p R p b p n p p u

p

p n
p u n i

in

p n
p u p

i

− − −

− −

− − −
=

−

− − −
= + −

 − −
= − − +  − 

− − 
+ + + +  

 − −
+  

 

∑

∑

  





 

when 1 2 3p n i p+ − ≤ ≤ − , the binomial coefficient in the last sum is divisible 
by p, hence the latter sum simply vanishes. Further, after scrutiny,  

( )( )2 1 2b p n− −  is wanted modulo p2 while u is simply desired modulo p. 
We have:  

2 2 2

1

1 2
1 2

mod

1 mod

1 mod
2 1

p n n

p

n
k p n

u p

H p
k

p
n

− −

−

= − −

= −

= − −

=
+

∑

 

  

We now rewrite:  

( )( )
( )

( )

3 2 3
2 1 22

3 4

63 2 1 2
2 1

3 1 2 mod
2 1

p np R p b p n p
n

p b p n p
n

− −= − − −
+

+ − −
+

 



 

We move on to studying the binomial convolution ( )( ) 22 1 2 mod pb p n p− −  . 
We have:  

( )( ) ( )( ) ( ) ( )

( )( ) ( )

( ) ( )

2 2 2
2 1 2 2 1 2

2 2
1 2 2 1 2

2
2 1 2 2 1 2

3 2 1 2 3 2 1 2 6

3 2 1 2 6

6 6

p n p n

p n p n

p n p n

p b p n p p n p

p p n p

p p u

− − − −

− − − −

− − − −

− − = − − −

= − − −

− −

   

  

 

 

The first equality above holds by Miki’s identity. This time, we need to know u 
modulo p2 instead of simply modulo p. This is routine calculation which we ex-
pand right below. We have:  

( )
( )

( )
( ) ( ) 2

2 2 2

2
2 ,2 2

1 1 1
2 1 2 1

1 1 12 2 1 1 mod
12 2 1

modn n

p n p n p

p n p n p p
n n

p p

+ + +
− + − −

= − + − + − − − +
−

= − −





 

 

( ) ( )
( )

( )( ) 2
2 2 2

2
2 2,2 2 2

1 1 1
1 2 2 2
1 1 11 2 2 2 mod
1 2 2 2

modp n p n

p p p p n

p p p p n p
p n

p p− − − −

+ + +
+ + + − −

= − − − − − − − − −
− −

= − +





 
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( ) ( )2 2 2

2
1

2
2 1,2 2 1

1 1
1 2 1

1 1 1 mod
1 2 2 1

2 modn n

pH p
p n p

H p
p n p n p

p p+ +

 
 = − + + +
 − − − 

 
+ − + + + − − − − 

= +





 

 

Adding both contributions yields:  

 
( )

2
2 1,22

1 1 mod
2 1 2 1

n pu p p
n n

+

 
 = + +
 + + 

  

We also have:  
2

1 2 2 ,2 2 modp n n n pp p− − = +     

Therefore,  

( )( )
( )( ) ( ) ( )

( ) ( )

( ) ( )

2

2 3
2 1,2 1 2 2 1 2 1 2

3 2
2 2

1 1 22 1 2
2

3 4
2 1,2 1 2 2 1 2 1 2

3 2 1 2

3 2 1 2 12 6 1

6 6 3 1 2 , 3

12 6 1 mod

n p n n p n

p n

i p p np n i
i

n p n n p n

p b p n

p p n p p p

p p p p p n p

p p p p

+ − − + − −

− −

− − −− − −
=

+ − − + − −

− −

= − − − − +

= + + + − −

− − +

∑



    

   

   

 

In order to apply Ernvall and Metsänkyla’s congruence in the first sum above, 
we must impose 5 2i p n≤ − − . Hence we split this sum. After grouping the dif-
ferent terms, we obtain: 

( ) ( )

( ) ( )( )

( )
( ) ( )

3 3 2
2

25 2 1
2 3

2
2 1

2 32 1
1 2 1,2 1 2 1 2 3 21

4
2 1 2 1 2

3 1 2 3 1 2
2 1

3 1 2 1 2 , 3 3

6 2 6
2 1

6 1 mod

p n p
a i
n i

i a

n
p n p n p p n

n p n

p R p p n p p n
n

qp p n p n p p
a a

p p p p
n

p p p

− − −

= =

+
− + − − + − −

+ − −

= − − + − −
+

+ − − + + − − −

  + − + + −  +  
− +

∑ ∑

 


 


     

 

 

Moreover, by Theorem 1 point (i) of [3],  

 
( ) ( )

( )( )
21

1 1 22 1
1

1 2 , 3 1 2

2 1 mod
p

a
p p nn

a

p n p p n

q pB p
a

−

− − −
=

+ − − + − −

= − + −∑

 


 

Then,  

 

( ) ( )

( ) ( )( )

( )( )

3 3 2
2

3
1

2 21 5 2 1
2 3

1 1 2 2 21
1 2 10

2 2 1
1 2 1,2 1 2

3 1 2 3 1 2
2 1

3 1 2 1 2 , 3

3 2 1 3

6 2
2 1

p p n p
a a i

p p n n n i
a i a

n
p n p n

p R p p n p p n
n

p p n p n p

q q
p pB p

a a a

p p p
n

− − − −

− − −
= = =

+
− + − −

= − − + − −
+

+ − − + + − −

 
+ − − − 

 

  + − +  +  

∑ ∑ ∑

 

 





  
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( ) ( ) ( )
3 4

1 2 3 2 2 1 2 1 21
6 6 1 modp p n n p np p p p+ − − + − −+ − − +         (12) 

It remains to tackle the third term of the first row of (10). We have:  

( )

( )

3 2
1 1 2 1 1 2

3 2
3 4

1 2 1 2
2

2 1 2
6

1

1 22 1 2
3 2 mod

p n p p n

p n

p n i p n i
i

p n
p R p p

p

p np n
p p

ii

− − − − −

− −

− − − − −
=

 − −
=  − 

 − − − −  
+ −        

∑

  

 

 

As seen several times before, for the range of i that is considered,  

( ) 1 22 1 2 2 1 mod
2 1

p np n n i p
i ni

− − − −   + +
=    +  

 

Then,  

 ( ) 1 22 1 2 22 2 mod
2 1

p np n i p
i ni

− − − −   = +    +   
 

It immediately follows that the difference above vanishes. Further, by Lemma 1, 
we know that:  

( )
1

2 1 2 1 mod
2 11 p

p n
p

np −

 − −
= −  +− 

  

Then, we have:  

 3 3 42
1 1 26 mod

2 1
n

p np R p p
n − −= −
+


                 (13) 

By using Result 12 of [3] due to Sun [5] with 2k =  and 1 2b p n= − − , as well 
as Result 10 point (i) of [3], the congruence modulo 3

pp   arising from (2) and 
(3) simply reads:  

( )3 2 33 1 2 mod pp p p n p∆ = − −   

It is then routine verification that the congruence modulo 3
pp   is just trivial. 

We thus focus our attention on the modulus 4
pp  . But before moving any fur-

ther, this is an adequate time to prove the first few theorems of the introduction, 
as well as their related corollaries, culminating in the proof of Theorem 6. 

2.2. Proofs of Theorems 1 - 5 

Because the sum of importance in the previous Section 2.1 is the one contained 
in the left hand side of the congruence of Theorem 2, we start with the proof of 
Theorem 2.  

The proof is inspired from [17] and uses the Stirling numbers. The unsigned  

Stirling number of the first kind 
p
s
 
 
 

 is the unsigned coefficient of sx  in the 

falling factorial  

 ( )( ) ( )( ) ( ) 1

1
1 2 1 1

p
s s

s

p
x x x x p x

s
−

=

 
− − − − = −  

 
∑  
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By specializing x a= −  in the equality above, we obtain:  

 ( )( ) ( )( ) ( ) ( )1

1
1 2 1 1

p
s s

s

p
a a a a p a

s
−

=

 
− − − − − − − − = − − 

 
∑  

Then,  

 ( )
( ) 1

1 !
1 !

p
s

s

p a p
a

sa =

− +  
=  −  
∑  

Moreover,  

 ( ) ( ) ( ) ( ) 21 ! 1 ! 1 1 !modp a p p p a p a p− + = − − + = − −  

It follows that:  

 2

1
mod

p
s

s

p
p a p

s=

 
− =  

 
∑  

By using Corollary 2 of [15] originally due to Glaisher [2], we get:  

 ( )
2

1 2
1

3
mod

2

p
s p p

p p s
s

p pp pB p a B a a a p
s

−
−

− −
=

− = − + − +∑  

It follows that:  
Proposition 2.  

3

1
mod

p
i

p ai
i

w q p
a

−

=

= +∑   

From there, Theorem 2 follows. A rewriting of the theorem is the following.  

 
2 2 2 31 1 3 1 1

2 1 2 2 2
1 1 2 1 1

1 mod
2

p p p p p
a i a a a

pn i n n n
a a i a a

q q q qw p
a a a a a

− − − − −

+
= = = = =

− + = +∑ ∑∑ ∑ ∑
 

We now adapt Ernvall and Metsänkyla’s proof for the results of Section 1.3 when 
t is odd. First and foremost, we recall from [5] that  

 ( )
2 31

3
1 2

1
1 mod

2 6

p
t

t t t t
a

p pS a pB tB t t B p
−

− −
=

= = + + −∑         (14) 

Suppose t is odd and 3t ≥ . Then 0tB = . If we impose 3t ≠ , then  

 
2

3
1 mod

2t t
pS tB p−=  

Again, we have, using the same notations as in Section 1:  

( ) ( )1 2 2 2 31
mod

2
t t t t

a a a

t t
a pv a tpv a p v a p− − −
+ = + +  

Like before, when t is odd and 3 2t p≤ ≤ − , we have  

( )
1

1
0

p
t

a
a

a pv
−

=

+ =∑  

When excluding 3t = , reducing modulo p3 yields:  

 
( )2 1 1

1 2 2 2 3
1

1 1

1
mod

2 2

p p
t t

t a a
a a

t tp tB tp v a p v a p
− −

− −
−

= =

−
= − −∑ ∑          (15) 

We thus have:  
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1 1
1 2 2 2

1
1 1

1 mod
2 2

p p
t t

t a a
a a

p tB v a p v a p
− −

− −
−

= =

−
= − −∑ ∑  

And since we also have  

( )
1

1

1
0,

p
p t

a
a

a pv
−

− +

=

+ =∑  

similar developments and reductions lead to:  
1 1

1 1 2 2 2
1 1

1 1

2 mod
2 2

p p
p t t

p t a a
a a

p tB v a p v a p
− −

− + − −
− + −

= =

−
= − −∑ ∑  

Then, using also moda av aq p= , we obtain Theorem 1. 
It follows from Theorem 2 and Corollary 2 with 1 2 2t p n+ = − −  that  

 
2 2 31 3 1 1

3 22 2 2
1 2 1 1

1 mod
2

p p p p
i a a a

p p ni n n n
a i a a

q q qw p
a a a a

− − − −

− −
= = = =

= + +∑∑ ∑ ∑
          (16) 

This result can also be derived from a weaker version of Lemma 1 of [6]. Namely, 
as part of Miki’s congruence stated in his Lemma 1 of [6], we have:  

( )( )
3

1 1
1

11 1 mod
p

p k
a p k

k

p
aq pB a B a p

kp

−
−

−
=

 
= − + − −  

 
∑  

It comes:  

( )( )
2 2 21 1 1

12 1 2 1 21
1 1 1

3 1
2 1 2

1 1

1

1 mod

p p p
a a a

a pn n n
a a a

p p
p n k

k a
k a

q q qaq pB
a a a

p
B q a p

kp

− − −

−+ +
= = =

− −
− − −

= =

= − + −

 
−  

 

∑ ∑ ∑

∑ ∑
 

From there, by using again Corollary 2 with 1 2 2t p n+ = − − , we retrieve (16). 
After several adequate applications of the Ernvall-Metsänkyla congruence in 

(16), we further get:  

 

( )( )

( )( )

( ) ( )( )

31 5 2 1
2 2

1 2 3 22 1 22 11 2 1

1
2

1 2 1 22 1 2 11

3

3 1 2 2 1 2 11 2

12
2

2

2 mod

p p n p
a

i p n i a p np n in
a i a

p

a p n p p np n
a

p

i p n i p n i
i p n

q q a
a

q w

p

− − − −

− − − − −− − −
= = =

−

− − − −− −
=

−

− − − − − −
= + −

 
= − − + − 

 
 

+ + − 
 

− −

∑ ∑ ∑

∑

∑

   

  

  

 (17) 

In order to conclude to Theorem 5, we first need to prove Theorems 3 and 4 
of Section 1.3. These theorems are built out of two perspectives. The first pers-
pective relies on Miki’s result providing the residue of aaq  for a integer with 
1 1a p≤ ≤ − . The second perspective relies on Sun’s congruence for the sums of 
powers of integers issued from [5]. We first discuss the first perspective. It treats 
the first two congruences in each theorem.  

By a reformulation of Proposition 0.2 of Section 1.3 due to Miki, we have:  

( )( )
3

1 1
2

1 1 mod
2

p
p k

a p k
k

aq pB a a p
−

−
−

=

= − + − + ∑  

Then,  
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( )( )
1 1 1 3 1

2 2
1 1

1 1 1 2 1

1 1 mod
2

p p p p p
pa k

a a a p p ak
a a a k a

qq aq q a pB w q p
a a

− − − − −
−

−
= = = = =

= = − + − +∑ ∑ ∑ ∑∑  

Moreover, Lehmer’s congruence for odd powers implies that  

 
1

2 2
3

1
mod

p
p

a p
a

q a pB p
−

−
−

=

= −∑  

Then, the residue of the first sum is simply zero. 
Further, by the original Friedmann-Tamarkine congruence, we have:  

 
1

1
1

1
mod

p
p k

a p k
a

q a p
−

− −
− −

=

= −∑   

Then, up to sign, the last sum is the convolution ( )1p − . Hence the first 
congruence of Theorem 3. The second congruence follows from [3] which pro-
vides the residue of ( )1p −  (see Result 2.11 of [4]). 

As for Theorem 4, we have:  

( )( )

( )( )

1 1
2 2

1 1
1 1 3 1

2 2
1 1

1 1 2 1

1 1 mod
2

p p

a a a
a a

p p p p
k

a p a ak
a a k a

q a aq aq

q a pB q a q a p
a

− −

= =

− − − −

−
= = = =

=

= − + − +

∑ ∑

∑ ∑ ∑∑
 

when 4 3k p≤ ≤ − , the Friedmann-Tamarkine congruence applies and yields:  
1

1
1

1
mod

p
p k

a p k
a

q a p
−

+ −
+ −

=

= −∑   

Moreover, the Friedmann-Tamarkine congruence also applies to the first two 
terms. We thus get the first congruence of Theorem 4. The second congruence 
will follow immediately from forthcoming Lemma 3 of Section 2.3. 

The proof for the last congruence in each theorem relies on Congruence (14) 
by Z-H. Sun in [5] and is left to the reader. 

From there, Theorem 5 follows. 

2.3. Proof of Theorem 6 

This part closes the proof for Theorem 6. The rest of the computations will be 
based on the following series of lemmas. 

Lemma 3.  

( ) ( ) ( )1 2 11 1

1 14, 3 2 mod
12 6p pp pB p+ −− = − + +    

Proof. Immediately follows from Theorem 1 point (ii) of [3]. 
Lemma 4.  

( ) ( ) ( )3 4 11 1

7 16, 3 2 mod
720 60p pp pB p+ −− = + − −    

Proof. Again, this is an immediate consequence of Theorem 1 point (iii) of [3]. 
Lemma 5  

 ( )( )
21 5 2 5 2

1 22 1 22 11 2 2
2 mod

p p n p n
i a

i p n ip n ii n
a i i

B q B p
a a

− − − − −

− − −− − −
= = =

= − −∑ ∑ ∑    
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( ) ( )( )
21 3 3

3 1 2 2 1 22 11 1 2 1 2
2 mod

p p p
i a

i p n i p n ii n
a i p n i p n

B q B p
a a

− − −

− − − − − −
= = + − = + −

= − −∑ ∑ ∑    

Proof. For the first range of i, we have 4 1 2 3p n i p≤ − − − ≤ − . For the 
second range of i, we have ( )4 2 1 2 3p n i p≤ − − − ≤ − . In both cases the Ern-
vall-Metsänkyla congruence applies and yields the result.  

Lemma 6  

( )( )
21 5 2 5 2

1 22 1 22 11 2 2
2 mod

p p n p n
i a

i p n ip n ii n
a i i

q p
a a

− − − − −

− − −− − −
= = =

= − −∑ ∑ ∑
    

Proof. This range for i satisfies to the conditions of application of the Ernvall 
Metsänkyla’s congruence. 

More computational efforts using Lemma 3 - 6 lead to Theorem 6 which is 
thus entirely proven. Corollary 6 points (i) and (ii) are then respectively ob-
tained by specializing 2 4n =  and 2 7n p= −  in the congruence of Theorem 6. 
In the first case, the truncated convolution to the left hand side reduces to only 
one term. Moreover, from Corollary 4 applied with 2 4n = , the convolution 

( )5p −  gets fully determined. We then obtain the residue for ( )5B p −   
in terms of ( )( )2

3 1
5 pp −− +  .  

Remark 6. Theorem 0.3 of [3] establishes a congruence for ( )( )2
3 0

5 pp −− +  . 
Finding the next residue in the p-adic expansion remains an open question. 
Likewise, Theorem 1 point (i) of [3] applied with 2 7n p= −  provides the resi-
due for ( ) ( )( )0

8, 3 6p − +   while the next residue in the p-adic expan-
sion remains unknown.  

The next part deals again with the techniques exposed in the introduction. 

2.4. Proof of Theorem 7 

In the case when t is even, point (i) of Theorem 7 follows from a joint applica-
tion of Proposition 0.1 and Theorem 0.1 of Section 1.3, both due to Ernvall and 
Metsänkyla. 

In the case when t is odd, the sum of powers tS  verifies  

 
2

3
1 mod

2t t
pS tB p−=                         (18) 

And we have seen in Section 2.2 (cf. Congruence (15)) that  

 ( )
2 21 1

1 2 3
1

1 1
1 mod

2 2

p p
t t

a t a
a a

p pp a v B t a q p
− −

−
−

= =

= − − −∑ ∑  

By summing both contributions and using our Corollary 2, we obtain the result 
of (i) which is thus entirely proven.  

Regarding point (ii), we will study the polynomial  

 ( ) [ ]1 1 !p
pX p X− + − ∈  

in the same way as Ernvall and Metsänkyla had used the polynomial  

 [ ]1 1p
pX X− − ∈  

in order to prove their congruences. The first polynomial had played a key role 
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in [15] in order to recover Glaisher’s result that ( ) 2
11 ! modpp pB p p−− = −  and 

in order to find a formula for ( )1 !p −  modulo p3 by a different method than 
the one of Sun [5], see Corollary 6 in Section 1 of [15]. The analogs of the 
Teichmüller characters are the ( )1p −  p-adic integer roots of ( )1 1 !pX p− + −  
which we denote by aΩ , 1 1a p≤ ≤ − . Moreover, we define the aw ’s such that:  

 a aa pwΩ = +  

It is shown in [15] that  

 ( )( ) 21 1 ! moda apw a p pq p= + − +  

This is the purpose of Lemma 1 in Section 2 of [15]. Thus, we have:  

 ( )moda p aw a w q p= +  

By the same argument as in Section 1, we have:  

 ( )
1

1
0

p
t

a
a

a pw
−

=

+ =∑  

We assume 2t ≠ . Expanding modulo p3 leads to an analog of the Ernvall and 
Metsänkyla’s congruence, namely  

1 1
1 2 2 2

1 1

1 mod ,
2

p p
t t

t a a
a a

tw a p w a p
− −

− −

= =

−
= − −∑ ∑  

where av  was replaced with aw . By substituting:  
2 2 2 2 2 22 mod ,a p a a pw a w q a a q w p= + +  

we then obtain for even t:  

( )
1 1 1

1 2 2

1 1 1

1 1 mod
2

p p p
t t t

t a a p a
a a a

tw a p q a p t w q a p
− − −

−

= = =

−
+ = − − −∑ ∑ ∑  

By the Lehmer congruence applied with even powers modulo p and by the Ern-
vall-Metsänkyla’s congruence, we further obtain:  

 ( ) ( )
1

1 2
1

1
1 1 mod

p
t

a p t t p t
a

w a t t p t w p
−

−
− +

=

= − − + −∑             (19) 

The case t is even of Theorem 7 point (ii) follows. When t is odd, the congruence 
reads instead:  

( )
1 1 1

1 2 2
1

1 1 1

1 1 mod
2 2

p p p
t t t

a t a p a
a a a

p tw a B p q a p t w q a p
− − −

−
−

= = =

−
= − − − −∑ ∑ ∑  

The first sum to the right hand side of the congruence is known modulo p by 
our Corollary 2. As for the second sum it is known modulo p2 by Lehmer’s result 
applied with odd powers. The latter sum thus vanishes from the congruence 
since ( )1mod 1t p≠ − . We get:  

 
1

1 2
1

1
mod

p
t

a t
a

w a pB p
−

−
−

=

= −∑                     (20) 

We deduce point (ii) of Theorem 7 in the case when t is odd.  
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We now present a different proof for Congruences (19) and (20), one which 
does not refer to Ernvall and Metsänkyla’s original proof of [7]. We use an ex-
pansion of aw  one p-power further. This is achieved in [15]. Our ( )1aw  is the 
( )1
at  of [15]. Also, ( )i aδ  of [15] is ( )a i

q . Using the current notations, Lemma 
3 of [15] asserts that:  

 ( ) ( ) ( ) ( ) ( )( ) ( )
21 1

1 0 1 0 0 0
1 1

1 mod
p p

a a a i a i
i i

w a q q q q q p
− −

= =

  
 = + + + +    

∑ ∑  

Recall also from Theorem 1 of [15] that  

 
1

1
mod

p

a p
a

q w p
−

=

=∑  

Then, using again  

 
1

1
mod ,

p
t

t a
a

a q p
−

=

= −∑  

we have:  

 ( )
1 1

1 2

1 1
1 mod

p p
t t

a p t t a
a a

w a pw t p a q p
− −

−

= =

= − − +∑ ∑   

But by the Lehmer congruence applied with t even,  

 ( )
1

2
1

1
1 mod

p
t

a t p t t
a

a q p t t p
−

− +
=

= + − −∑     

Combining both congruences yields (19).  
When t is odd, we rather apply the Lehmer congruence with odd powers and 

it leads to (20). 
It remains to deal with (iii). We define in turn the p-adic integers az ‘s such 

that for each integer a with 1 1a p≤ ≤ − ,  

 a aa pzγ = +  

By Hensel’s lifting algorithm, the residue az  gets determined by  

 ( ) 1 2
1

p
a p pa pz pB p−

−+ + ∈   

We thus have:  

 ( )( )1 1
moda a pz a q pB p−= +  

Then the sketch of the proof with respect to the Ernvall-Metsänkyla type of 
proof is identical as in (ii) with pw  being replaced with ( )1 1ppB − . It yields the 
result of (iii) straight away. Again, another proof consists of pushing the expan-
sion for az  one p-power further as in Proposition 3 below whose proof relies 
on Hensel’s lifting algorithm.  

Proposition 3.  

 ( )( ) ( )( ) ( )( ) 2
1 1 11 1 1

1 moda a p p a pz a q pB ap pB q pB p− − −= + + + +  

Our next and last part is concerned with proving Theorem 0. 
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2.5. Convolutions of Divided Bernoulli Numbers and Products of  
Those with Harmonic Numbers 

The work of [4] had allowed to find an expression for ( )1 1 !pA p− = −  modulo 
p4. The formula expressed in terms of Bernoulli numbers was satisfactory in that 
it involved only a constant number of terms, independently from the prime p. 
This expression had also allowed to write the residue of a cubic convolution of 
order ( )1p −  like follows. 

( ) ( )( ) ( )( )3 2
1 1 0

3
1 3

3

1 6 3 1 3 1

156 mod
4

p

p p

p A p p p p

p p p

−

− −


− = − + − + −


− − 


  

 

 

Contrary to the generic case for ( )1 2p n− −  studied in Section 2.1 and 
Section 2.3, Gessel’s identity does not provide any information on ( )1p − . 
However interestingly, combined with Miki’s identity it fully determines a con-
volution of divided Bernoulli numbers with a product of divided Bernoulli 
numbers and harmonic numbers. Indeed, setting 1n p= −  in the Gessel iden-
tity (Theorem 0.4 of Section 1.3) yields (after using Wolstenholme’s theorem 
imposing 2

1 0modp p− = ):  

 ( ) ( )
5

1 2, 1 3
2

91 1 6 mod
4

p

i p p p
i

p b p j A p
−

− − −
=

− = − − + −∑          (21) 

When applying Miki’s identity, the terms ( )1p −  cancel each other, leav-
ing only one convolution. Moreover, a result by Jianqiang Zhao from [41] claims 
that  

1 3
2, 1 modp

pA p
p
−

− = 
 

In [3], combining our work and Zhao’s result, we showed that  

 ( ) 3
2, 1 2 4 32 modp p pA p p− − −= − −    

Plugging back into (21) with 1 1modpp p− =  yields Theorem 0 of Section 2.1. 
It is interesting to note that by an application of Wolstenholme’s theorem we 
have 1 modp i i p− − =  . Then, by considering twice the convolutions of Corol-
lary 0, we get by a usual trick used many times in [4] the result of the corollary.  
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