
Applied Mathematics, 2023, 14, 419-427
https://www.scirp.org/journal/am

ISSN Online: 2152-7393
ISSN Print: 2152-7385

DOI: 10.4236/am.2023.146025 Jun. 13, 2023 419 Applied Mathematics

Evaluation of the Use of Minimax Search in
Connect-4
—How Does the Minimax Search Algorithm Perform in Connect-4 with
Increasing Grid Sizes?

Abdoul Wahab Touré

Department of Mathematics, Le Collège Bilingue, Dakar, Sénégal

Abstract
As computers have become faster at performing computations over the dec-
ades, algorithms to play games have also become more efficient. This research
paper seeks to see how the performance of the Minimax search evolves on in-
creasing Connect-4 grid sizes. The objective of this study is to evaluate the ef-
fectiveness of the Minimax search algorithm in making optimal moves under
different circumstances and to understand how well the algorithm scales. To
answer this question we tested and analyzed the algorithm several times on
different grid sizes with a time limit to see its performance as the complexity
increases, we also looked for the average search depth for each grid size. The
obtained results show that despite larger grid sizes, the Minimax search algo-
rithm stays relatively consistent in terms of performance.

Keywords
Minimax, Alpha-Beta Pruning, Connect-4, Algorithms

1. Introduction

Search algorithms for playing or even solving board games have been used and
developed since the invention of computers. Many board games are complex
and decisive problems where an action in the present has subsequent outcomes
when the game ends in victory or defeat. Because these board games have so
many outcomes, it is very difficult for humans to visualize and master the game
in a short time [1]. Search algorithms are an important part of game algorithms
and are often used in combination with other AI techniques to create powerful
and efficient game programs such as Stockfish, which is the most powerful chess

How to cite this paper: Touré, A.W.
(2023) Evaluation of the Use of Minimax
Search in Connect-4. Applied Mathematics,
14, 419-427.
https://doi.org/10.4236/am.2023.146025

Received: May 1, 2023
Accepted: June 10, 2023
Published: June 13, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2023.146025
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2023.146025
http://creativecommons.org/licenses/by/4.0/

A. W. Touré

DOI: 10.4236/am.2023.146025 420 Applied Mathematics

engine at the time of this writing. For simpler games like Tic-Tac-Toe, a com-
puter can easily search for all future possibilities and still be able to make the
best move. However, for most games like chess or go1, the state space is far too
large to be traversed by brute force, and the question of playing these games then
becomes how to play them efficiently while respecting the restrictions on search
time [2], and for this research paper, we will see how that applies to Connect-4.
Connect-4 has been chosen because it has moderate complexity and increasing
its grid size can greatly affect how an algorithm performs. Knowing this we will
see how an increasing grid size correlates with the performance of the Minimax
search algorithm. We will first understand how Connect-4 works in the context
of game theory, then we will see how the Minimax search algorithm and its dif-
ferent optimizations are used to make it more performant, and finally, we will
analyze and discuss the results of our experiments.

2. Related Works

A notable work related to this research paper is “Research on Different Heuris-
tics for Minimax Algorithm Insight from Connect-4 Game” by Xiyu Kang, Yiqi
Wang, and Yanrui Hu [3] in which they go into depth about how the Minimax
search algorithm works in Connect-4 and the use of different heuristic functions
to improve the algorithm. Another research paper that goes into depth about the
Minimax search algorithm is “Alpha-Beta Pruning in Mini-Max Algorithm-An
Optimized Approach for a Connect-4 Game” by Rijul Nasa, Rishabh Didwania,
Shubhranil Maji, and Vipul Kumar4 [4] where they evaluated to what extent
Alpha-Beta pruning, which we will use in this research paper, increases the per-
formance of a Minimax search algorithm in Connect-4. There have also been
similar research papers comparing Minimax to other search algorithms such as
“Solving Connect 4 Using Optimized Minimax and Monte Carlo Tree Search”
by Kavita Sheoran et al. [1] where they compared the Minimax algorithm and
Monte Carlo Tree Search that both have different approaches to finding optimal
moves in zero-sum games.

3. Theoretical Context
3.1. Connect-4

Connect-4 is presented in the form of a game board, with 7 columns and 6 rows
where chips of different colors are stacked. Two players compete with the objec-
tive of aligning 4 chips of the same color, horizontally, vertically, or diagonally as
in Tic-Tac-Toe [5]. Each player slides his or her token in succession so that the
game is a zero-sum game, which is a term used in game theory in which one
person’s gain is equivalent to another’s loss. The Connect-4 game grid can be
represented as a matrix and the chips can be represented by different values,
such as 0 being an empty slot, 1 being the first player and 2 being the second

1Go is an abstract strategy board game for two players in which the goal is to surround more territo-
ry than the opponent. The game was invented in China over 2500 years ago and is believed to be the
oldest board game still played today.

https://doi.org/10.4236/am.2023.146025

A. W. Touré

DOI: 10.4236/am.2023.146025 421 Applied Mathematics

player (see Figure 1). This matrix representation of the Connect-4 grid with a
2D table allows the computer to easily play moves, analyze the grid and check
for winning moves.

About 4.5 trillion board configurations are possible for Puisssance 4, which
classifies it as a moderate complexity game [1]. When we will need to increase
the size of the grid for the experiment, we will choose dimensions of ()1n n+ ×
with n being an even number to have odd numbers of columns and even num-
bers of rows which refers to the Connect-4 fundamentals where there is a central
column.

Figure 1. Matrix representation of a Connect-4 game where player 2 won by aligning four
“2” diagonally.

3.2. Minimax Search

Let’s start by explaining the Minimax search algorithm because it is the simpler
of the two algorithms in this experiment. The Minimax search algorithm is a
backtracking algorithm2 used in decision making, game theory, and artificial in-
telligence (AI). It is used to find the optimal move for a player, assuming that the
opponent also plays optimally [6]. Its name comes from its objective to minim-
ize the opponent’s score while maximizing our own score with each move made
[7] because our opponent will constantly try to minimize our chances and we
will constantly try to maximize our chances, which brings us back to the ze-
ro-sum nature of Connect-4 in which one’s gain is always the opponent’s loss
and vice versa. Minimax can be represented by a game tree where each node
represents the value of a game state starting from the root node (level 0) which is
the initial game state, branching into “child” nodes (level 1) which will branch
into “grandchild” nodes (level 2) and so on until reaching a terminal state [8]
(see Figure 2). Knowing that a standard Connect-4 set can have up to 4.5 trillion
combinations, branching all the nodes in a Minimax search algorithm would be
an impossible task for modern machines to compute in a reasonable time (see
Table 1). For this reason, we must limit our search depth level. In theory, the
greater the search depth, the more knowledge the Minimax search algorithm has
to find the best move. With this information, we need to have a search depth
that is not so large that it takes too long to compute, but not so small that the
search algorithm has very little information.

In Figure 2 below, we can see that the minimizing nodes took the smallest

2A backtracking algorithm is a problem-solving algorithm that uses a brute force approach to find
the desired result.

https://doi.org/10.4236/am.2023.146025

A. W. Touré

DOI: 10.4236/am.2023.146025 422 Applied Mathematics

Figure 2. Tree representation of a Minimax algorithm where the circle represents the player
who maximizes and the square the one who minimizes.

Table 1. Number of legal Connect-4 positions after n depth levels.

Search depth Number of legal positions

n B

0 1

1 7

2 49

3 238

4 1120

5 4263

6 16,422

7 54,859

8 184,275

values among their children, 4 and 1 respectively, and that the maximizing node
(squares) at the top which is also the root node (circle) took the largest value
among its two children, in this case, it chose 4. We see that the Minimax search
tree is a recursive algorithm in the sense that the maximizing player calls the mi-
nimizing player, and the minimizing player calls the maximizing player, this as-
sumes that both players will always play the most advantageous move when it is
their turn. The conditions for exiting the recursive loop are: if we reach a node
where someone has won; if the two players have tied; or if we have reached a
predetermined depth limit [8].

The time complexity of a Minimax search algorithm is ()mb where b is the
branching factor or the number of legal moves at each point and m is the maxi-
mum depth of the tree. This time complexity is moderate for a typical 7 × 6 grid,
but as the grid size increases, the effects of time complexity become clearer as the
maximum depth of increasing grid sizes is larger and the branching factor also
becomes larger. To alleviate this problem, we will need to significantly reduce
the number of nodes to be searched, and fortunately, there is an optimization of

https://doi.org/10.4236/am.2023.146025

A. W. Touré

DOI: 10.4236/am.2023.146025 423 Applied Mathematics

the Minimax search algorithm called Alpha-Beta pruning that we will discuss in
the next subsection.

3.2.1. Alpha-Beta Pruning
Alpha-beta pruning is an optimization of the Minimax search algorithm. Before
we dive into the alpha-beta pruning algorithm, let’s define what “pruning”
means in alpha-beta pruning. The word “pruning” means cutting off branches
and leaves. Thus, alpha-beta pruning is nothing more than pruning unnecessary
branches in decision trees [9], in this case, pruning unnecessary branches in a
Minimax search algorithm. As we said in the Minimax section, the search tree
becomes extremely complex as the search depth increases, some unnecessary
branches in this tree add to the complexity of the search algorithm. Alpha-beta
pruning removes these branches, saving the computer from examining the entire
tree [9]. In order to know which branches of the search algorithm to prune, we
need two threshold parameters: α (alpha) and β (beta). These values represent
the worst-case scenario for each player. The value of α is initially set to -∞ and
will be updated to the highest value each time it is the maximizing player’s turn
and the value of β is initially set to ∞ and will be updated to the lowest value
each time it is the minimizer’s turn. The condition for pruning a branch or a
subtree3 is when α β≥ , because all the higher values that α can have in the
sub-tree of the maximizing player will be useless because the minimizing player
has already found a move that would be more advantageous for him, it also
works in the other way, all the lower values that β can have in the sub-tree of the
minimizing player will be useless because the maximizing player has already
found a move that would be more advantageous for him. It is important to note
that the values of α and β are passed on during the backtracking because the Mi-
nimax search algorithm uses the depth search to traverse the tree (see Figure 3).

In Figure 3, we can see that this is the same Minimax search tree that we had
in the previous section, but this time the second node of the minimizer has cho-
sen 3 instead of 1, pruning the other two nodes because even though the mini-
mizer is finding values less than 3, the maximizer has already found a value 4

Figure 3. Same Minimax search tree in Figure 2 but with Alpha-beta pruning imple-
mented and two nodes that have been pruned.

3A subtree is a subset of a larger tree containing branches.

https://doi.org/10.4236/am.2023.146025

A. W. Touré

DOI: 10.4236/am.2023.146025 424 Applied Mathematics

that is greater than 3, so an additional search in the minimizer’s path would be a
waste of time.

The amount of branches pruned by alpha-beta pruning depends on the order
of the values. The worst order occurs when the best values for the maximizing
and minimizing player are at the end, which means that the best values are on
the right side of the tree, because of this Minimax with αβ pruning4 behaves like
a normal Minimax search algorithm by searching all nodes, where the time
complexity is ()mb . The ideal order, which means that the best values are al-
ways the first ones to appear on the left side of the tree, in this optimal case, Mi-
nimax with αβ pruning will have a time complexity of ()2mb . The reason it is

()2mb in an ideal order scenario is that essentially all the values of the first
player must be examined to find the best one, but for each, only the second
player’s best move is necessary to refute all but the first (and best) move of the
player [10], in other words, Minimax with αβ pruning will skip every other level.
In almost all Minimax search trees with αβ pruning, the order of the values will
be neither the worst nor the ideal but somewhere in the middle (see Table 2).
We could order the movements (values) to be ideal using various heuristic func-
tions, but that is beyond the scope of this research paper.

We can see in Table 2 the Minimax search algorithm with αβ pruning, even
without ideal order, traverses far fewer nodes than a standard Minimax search
algorithm as the depth level (ply) increases in Connect-4. With this information,
we can assume that for the same number of nodes traversed, the Minimax with
αβ can go into a much larger depth level than the normal Minimax.

Table 2. Table of the number of nodes traversed at different search depths (ply) for Mi-
nimax and Minimax αβ at Connect-4 (Source: Nasa, Rijul et Didwania, Rishabh et Maji,
Shubhranil et Kumar, Vipul, 2018. [4])

 Minimax Minimax + αβ

ply 1 (easy) 7 7

ply 4 (medium) 2799 477

ply 8 (difficult) 5,847,005 71,773

3.2.2. Evaluation Function
In the Minimax section and the alpha-beta pruning subsection, the search trees
had values in which these algorithms worked to have a result, but where do we
actually get these values in a Connect-4 game? To deal with these values, we
need an evaluation function that evaluates the state of a set5 after a player’s move
and assigns it an appropriate value that the maximizing and minimizing players
can use to find the best moves. Essentially, each node in the search tree is the
value of a different board state.

The evaluation functions are game specific and can be tuned. For this experi-
ment, we will use a simple Connect-4 evaluation function. This evaluation func-

4Shorter expression for alpha-beta pruning.
5A board state is a board configuration of different moves/movements.

https://doi.org/10.4236/am.2023.146025

A. W. Touré

DOI: 10.4236/am.2023.146025 425 Applied Mathematics

tion assigns a weight to all groups of chips6 depending on how many chips are
lined up in a group, for each player. The value that will be returned by the evalu-
ation function is the sum of all weights of the maximizing player minus the sum
of all weights of the minimizing player (see Equation (1.1)).

0 0
Eval

n n

i i
i i

w w
′

= =

= −∑ ∑ (1.1)

- n = number of token groups for the player who maximizes
- n' = number of groups of chips for the player who minimizes
- i = the index of a group of chips
- w = weight assigned to a group of tokens (see Table 3)

The reason these weights were chosen is to emphasize the groups of chips that
have more aligned chips. As we see in Table 3, for two lined-up chips we give it
a score of only 1, but for three lined-up chips, we give it a score of 10 because it
may be one chip away from winning, and finally for four lined up chips we give
it a score of 1000 because it is a winning state which is the only thing that mat-
ters to us. Having weights for a higher number of lined-up chips would be use-
less because the number of lined-up chips needed to win is only four.

Table 3. Associated weight for each number of aligned chips.

Number of tokens lined up Weight (w)

2 1

3 10

4 1000

4. Methdology of the Experiment

For the experiment, I tested the Minimax search algorithm with Alpha-Beta
pruning against a greedy agent7 100 times (50 times as the first player, 50 times
as the second player to give each player the chance of having the first move) with
a time limit of 1 second, for a 7 × 6 board, 9 × 8 board, 11 × 10 board, and a 13 ×
12 board. These board sizes have been chosen because like we said previously,
we will choose dimensions of ()1n n+ × with n being an even number to have
odd numbers of columns and even numbers of rows which ties back to the
Connect-4 fundamentals. This experiment has been conducted with the usage of
the Kaggle Connect-X [11] module which helps us run our algorithms without
the need to adapt them for each grid size. For our win rate metric, we will con-
sider a win as 1 point, a draw as 0.5 points, and a loss as 0 points. We will also
calculate the average search depth of our algorithm to see if there is any correla-
tion between the search depth and the size of our grids. We used the Kaggle
kernel to conduct the experiments so the processor used is an Intel(R) Xeon(R)

6A group of chips consists of two or more chips of the same color that are lined up vertically, horizon-
tally, or diagonally.
7An agent that will always take the winning move if available, the agent will also observe if the other
opponent can win of the next move and block accordingly.

https://doi.org/10.4236/am.2023.146025

A. W. Touré

DOI: 10.4236/am.2023.146025 426 Applied Mathematics

CPU @ 2.30 GHz with 4 GB of RAM.

5. Results of the Experiment
Results Analysis

In Table 4 and Figure 4 we can immediately see that as the grid size increases,
the overall win rate and average search depth decrease too, this can be explained
by the state space increasing when we have bigger grid sizes. Indeed, the more
possibilities we have the longer the search will need to be to find the most op-
timal move. We can also see in Table 4 that the win rate % when playing first is
slightly above the win rate % when playing second because the Minimax search
algorithm tends to always choose the middle column because the middle is con-
nected to a higher proportion of possible winning spaces. Contrary to our ex-
pectations, the win rate at each grid size isn’t decreasing at much as we thought so
we can conclude that the Minimax + αβ search is entirely scalable. We can also
see in Table 4 that the highest search depth achieved at the 7 × 6 is very big (21)
compared to its successors and that it can be due to a lower state space in the
endgames where there aren’t many possible moves left for both players because
the branching factor is quite low making it easy to search deeper.

Table 4. Minimax + αβ results table.

Grid
size

Winrate % as
first player

Winrate % as
second player

Overall win
rate %

Average
search depth

Highest search
depth reached

7 × 6 100% 100% 100% 2.69 21

9 × 8 100% 98% 99% 2.02 6

11 × 10 96% 93% 94.5% 1.81 3

13 × 12 94% 92% 93% 1.50 2

Figure 4. Graphs of the overall win rate and average search depth for each grid size.

6. Conclusion and Further Research

In this research paper, we compared how the performance of the Minimax
search algorithm performance with increasing grid sizes, we then found out how

https://doi.org/10.4236/am.2023.146025

A. W. Touré

DOI: 10.4236/am.2023.146025 427 Applied Mathematics

the performance of the algorithm is related to how deep the search can be. To
conclude, we can say that the Minimax search algorithm is efficient at playing
Connect-4 with increasing grid sizes because it has a relatively stable win rate
with each grid size. We saw that the Minimax search also has a lower search
depth average as the grid size increases, slightly impacting its performance as we
can see in the graphs of Figure 4. This study was limited as we had limited
computational power and couldn’t do tests with bigger grid sizes as it would be
very time-consuming because larger grid sizes tend to have really long games.
This experiment was only testing the Minimax search algorithm versus a greedy
agent, but testing it against other agents/algorithms might be more indicative of
how performant the algorithm truly is. It would also be interesting to integrate
reinforcement learning techniques as it could help the search algorithm get more
efficient with each game it plays. There are also many heuristic functions we can
integrate with Minimax which may help search for optimal moves faster in con-
junction with Alpha-Beta pruning. Overall Minimax Search is a simple yet very
effective algorithm used in many board games and particularly excels at Con-
nect-4 because of its moderate complexity.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References
[1] Sheoran, K., et al. (2022) Solving Connect 4 Using Optimized Minimax and Monte

Carlo Tree Search. Mili Publications. Advances and Applications in Mathematical
Sciences, 21, 3303-3313.

[2] Avellan-Hultman, D. and Querat, E.G. (2021) A Comparison of Two Tree-Search
Based Algorithms for Playing 3-Dimensional Connect Four.

[3] Kang, X.Y., Wang, Y.Q., Hu, Y.R., et al. (2019) Research on Different Heuristics for
Minimax Algorithm Insight from Connect-4 Game. Journal of Intelligent Learning
Systems and Applications, 11, 15-31. https://doi.org/10.4236/jilsa.2019.112002

[4] Nasa, R., et al. (2018) Alpha-Beta Pruning in Mini-Max Algorithm—An Optimized
Approach for a Connect-4 Game. International Research Journal of Engineering
and Technology, 5, 1637-1641.

[5] Mf (2021, April) Application of Mcts within the Connect-4 Game.

[6] Vadapalli, P. (2022, October) Min Max Algorithm in AI: Components, Properties,
Advantages & Limitations. https://www.upgrad.com/blog/min-max-algorithm-in-ai

[7] Daitzman, S. (2020, December) Minimax. https://mcts.netlify.app/minimax

[8] Eppes, M. (2019, August) Game Theory—The Minimax Algorithm Explained.
https://towardsdatascience.com/how-a-chess-playing-computer-thinks-about-its-ne
xt-move-8f028bd0e7b1

[9] Great Learning Team (2022, October) Alpha Beta Pruning in AI.
https://www.mygreatlearning.com/blog/alpha-beta-pruning-in-ai

[10] Wikipedia (2022) Alpha-Beta Pruning—Wikipedia, the Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta%20pruning&oldi
d=1127344922

[11] Kaggle Connect X. https://www.kaggle.com/c/connectx

https://doi.org/10.4236/am.2023.146025
https://doi.org/10.4236/jilsa.2019.112002
https://www.upgrad.com/blog/min-max-algorithm-in-ai
https://mcts.netlify.app/minimax
https://towardsdatascience.com/how-a-chess-playing-computer-thinks-about-its-next-move-8f028bd0e7b1
https://towardsdatascience.com/how-a-chess-playing-computer-thinks-about-its-next-move-8f028bd0e7b1
https://www.mygreatlearning.com/blog/alpha-beta-pruning-in-ai
http://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta%20pruning&oldid=1127344922
http://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta%20pruning&oldid=1127344922
https://www.kaggle.com/c/connectx

	Evaluation of the Use of Minimax Search in Connect-4
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Theoretical Context
	3.1. Connect-4
	3.2. Minimax Search
	3.2.1. Alpha-Beta Pruning
	3.2.2. Evaluation Function

	4. Methdology of the Experiment
	5. Results of the Experiment
	Results Analysis

	6. Conclusion and Further Research
	Conflicts of Interest
	References

