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Abstract 
We aim, in this work, to demonstrate the existence of minimal and maximal 
coupled quasi-solutions for nonlinear Caputo fractional differential systems 
with order ( )1,2q∈ . Our approach is based on mixed monotone iterative 
techniques developed under the concept of lower and upper quasi-solutions. 
Our results extend those obtained for ordinary differential equations and 
fractional ones. 
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1. Introduction 

Fractional differential equations and systems are appearing in a variety of scien-
tific and engineering branches being mathematical modelling in many fields, 
namely, in Physics, electromagnetic, acoustic, viscoelasticity, electrochemistry, 
economics, signal and image processing, control theory, etc. For details, one can 
see [1]-[8]. Many works treated the problems concerning fractional differential 
equations or systems by using several methods. Essentially, the authors used the 
techniques of nonlinear analysis to study these problems. We quote the power 
series method [9], the compositional method [9], the variational Lyapunov me-
thod [10], the Adomian decomposition method [11], the generalized monotone 
method [12], by the means of fixed point theorems [13]. Recently, the method 
combining the method of lower and upper solutions, and the monotone iterative 
techniques were frequently, served for the study of both fractional differential 
equations or systems involving Caputo or Riemann-Liouville Derivatives, espe-
cially for the order q in ( )0,1 , we refer readers to the cited works as examples 
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[14]-[20]. This restriction is due to that the comparison result has been estab-
lished only for the order 0 1q< <  until the works of Shi [21] and Al-Refai [22] 
which treated the case 1 2q< < . In [23], Ramirez and Vatsala were interested in 
the differential equation involving the Riemann-Liouville fractional derivative  

( ) ( )( ) ( ), in ,qD u t f t u t a b=  

with periodic boundary conditions 

( ) ( ) ( )1 q

t b
u a t b u t−

=
= −  

where ( ]0,1q∈ , [ ]( ), ,f a b∈ ×  . The authors showed the existence of mi-
nimal and maximal solutions. Their method was grounded in developing a mo-
notone method and using lower and upper solutions. 

In [24], Al-Refai and Hajji studied the boundary value problem involving the 
Caputo fractional derivative with order ( )1,2q∈ , 

( ) ( )( ), 0, 0 1qD u x g x u x x+ = < <  

( ) ( )0 , 1 ,u uα β= =  

where the nonlinearity g is belonging to [ ]( )0,1 ,×  . The authors stated ex-
istence and uniqueness of solution for the above problem under the assumption  

g is strictly decreasing with respect to the second variable, and g
u
∂
∂

 is bounded 

below in some given sector. 
In [25], Denton and Vatsala established new comparison results of the scalar 

Riemann-Liouville fractional differential equation with order ( )0,1q∈ , and 
proved that the system 

( ) ( )( ) ( ), in ,qD u x f x u x a b=  

( ) ( ) ( ) ,
x b

u a x b u x
=

= −  

admits minimal and maximal solutions, where the nonlinearity  
[ ]( ), ,n nf a b∈ ×  . The authors suppose that the function f satisfies quasi-

monotone property. These results are the generalization of the results of MCRae 
[26]. Recently, inspired by the works of Cui [27] [28], Toumi, in [29], was con-
cerned with the following finite system of nonlinear fractional differential equa-
tions 

( ) ( )( ) ( ), 0, 0,1qD u x f x u x x+ = ∈                 (1) 

( ) ( ) ( ) ( )0 0 , 1 1 ,u u u uα λ β µ′ ′− = + =                (2) 

where qD  is the Caputo fractional derivative with order ( )1,2q∈ . The func-
tion [ ]( )0,1 ,n nf ∈ ×  , , nλ µ ∈ , ( ), nα β +∈  . The author established 
the existence of quasi-solutions for the problem (1) and (2). Quasi-solutions are 
understood in the sense of Definition 7 given below. More precisely, under the 
hypotheses on the nonlinearity f related to the Green kernel associated with 
the scalar problem (1) and (2), the author constructs a pair of sequences of 
coupled upper and lower quasi-solutions converging uniformly to extremal qua-
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si-solutions. 
Motivated by the previous papers, we aim in this work to prove the existence 

of extremal quasi-solutions for (1) and (2) under more general conditions on the 
nonlinearity f.  

This paper is organized as follows. Section 2, provides some necessary pre-
liminaries, especially, the new comparison result for the Caputo fractional diffe-
rential equation. In Section 3, we prove the existence of extremal quasi-solutions 
of (1) and (2). We end this work with two examples illustrating our results. 

2. Preliminary Results 

We start this section by recalling definitions and properties related to the Caputo 
fractional derivatives, then, we state the new positivity result. 

Definition 1. A real function f is belonging to the space ,q q∈ , if there 
exists r q> , such that ( ) ( )rf x x h x= , where the function [ )( )0, ,h∈ +∞  , 
and f is in n

q , if ( ) ,n
qf n∈ ∈ . 

Definition 2 (See [9] [30]). The fractional integral of order 0q >  for a con-
tinuous function [ ): 0,u +∞ →   is defined as  

( ) ( ) ( ) ( )1

0

1 d , 0,
x qqI u x x s u s s x

q
−= − >

Γ ∫  

where Γ  is the Euler Gamma function.  
Definition 3 (See [9] [30]). For 0, 1 ,q n q n n> − < < ∈ . The Caputo frac-

tional derivative of order q for a function 1
nu −∈  is defined as  

( ) ( ) ( ) ( ) ( ) ( ) ( )1

0

1 d .
x n q n nq n qD u x x s u s s I u x

n q
− − −= − =

Γ − ∫  

Next, recall the following 
Lemma 1. Let 0q >  and m be the smallest integer greater than or equal to q. 

Let [ ]( )0,1 ,mu∈  . Then, we have 
1) q qD I u u= . 

2) ( ) 0qD u x = , if and only if, ( )
1

0

m
k

k
k

u x c x
−

=

= ∑ , where 
( ) ( )0

!

k

k

u
c

k

+

=  for  

0,1, , 1k m= − . 
3) 0q m kD x − = , for 1,2, ,k m=  .  
For the proof of the above Lemma, and more details concerning the fractional 

derivative, one can refer to [30] [31]. 
Now we introduce below the nonlinear fractional differential equation 

( ) ( ) ( ), 0, 0,1qD u x F x u x+ = ∈                     (3) 

with boundary value conditions  

( ) ( ) ( ) ( )0 0 , 1 1 ,u u u uα λ β µ′ ′− = + =                  (4) 

where ( )1,2 , , , ,q λ µ α β +∈ ∈ ∈  , and the function F is in [ ]( )0,1 ,×  .  
Definition 4. A function [ ]( )2 0,1 ,v∈   is said a lower solution of (3) and 

(4) if it satisfies 
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( ) ( ) ( ), 0, 0,1qD v x F x v x+ ≥ ∈                    (5) 

( ) ( ) ( ) ( )0 0 , 1 1v v v vα λ β µ′ ′− ≤ + ≤                  (6) 

A function [ ]( )2 0,1 ,w∈   is said an upper solution of the problem (3) and 
(4) if w satisfies (5) and (6) with reversed inequalities. In addition, if  

( ) ( ) [ ], for each 0,1 ,v x w x x≤ ∈  

then, the lower solution v and the upper solution w are ordered.  
Next, we state a comparison result due to Syam and Al-Refai [32] 
Lemma 2 (Positivity result). Let [ ]( )2 0,1 ,h∈  , and 0N > . Suppose that 

h satisfies the following inequalities 

( ) ( ) ( )0, 0,1qD h x Nh x x− ≤ ∈  

( ) ( ) ( ) ( )0 0 0, 1 1 0,h h h hα β′ ′− ≥ + ≥  

where , 0α β ≥ . Then, we have ( ) 0h x ≥  for [ ]0,1x∈ , provided that  
( )1 1qα − ≥ . 

3. Main Results 

In the present section, we shall prove the existence of extremal quasi-solutions 
for the system (1) and (2). For each 1,2, ,i n=  , let ir  and is  be nonnega-
tive integers satisfying 1i ir s n+ = − . One can split the vector nu∈  into  

[ ] [ ]( ), ,
i ii r s

u u u . Thus, the Equations (1) and (2) are equivalent to  

( ) ( ) ( ) ( )( ) ( ), , , 0 in 0,1
i i

q
i i i r s

D u x f x u x u x u x+ =                  (7) 

( ) ( ) ( ) ( )0 0 , 1 1 ,i i i i i i i iu u u uα λ β µ′ ′− = + =                 (8) 

for each 1,2, ,i n=  . 
Next, we recall that for , nv w∈ , v w≤  if and only if, i iv w≤  for each 
1,2, ,i n=  . Define for [ ]( )2, 0,1 , nv w∈   the set  

[ ] [ ]( ) ( ) ( ) ( ) [ ]{ }2, 0,1 , : , 0,1 .nv w u v x u x w x x= ∈ ≤ ≤ ∈  

For the sake of simplicity, we put ( ) ( ) ( )0 0i i i iu u uϕ α ′= − , and  
( ) ( ) ( )1 1i i i iu u uψ β ′= + , for each 1,2, ,i n=  . 

Now, we introduce a crucial property, known as called quasimonotone. 
Definition 5. A function [ ]( )0,1 ,n nf ∈ ×   is said to possess a mixed 

quasimonotone property if the function [ ] [ ]( ), , ,
i ii i r s

f t u u u  is monotone non-
decreasing in [ ]

ir
u  and monotone nonincreasing in [ ]

is
u , for each 1,2, ,i n=  . 

Definition 6. Let [ ]( )2, 0,1 , nv w∈  , the functions v and w are coupled 
lower and upper quasi-solutions of (7) and (8) if v and w satisfy 

( ) ( ) ( ) ( )( ) ( ), , , 0, 0,1
i i

q
i i i r s

D v x f x v x v x w x x+ ≥ ∈                 (9) 

( ) ( ), ,i i i iv vϕ λ ψ µ≤ ≤                      (10) 

and 
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( ) ( ) ( ) ( )( ) ( ), , , 0, 0,1
i i

q
i i i r s

D w x f x w x w x v x x+ ≤ ∈              (11) 

( ) ( ), ,i i i iw wϕ λ ψ µ≥ ≥                      (12) 

for each 1,2, ,i n=  .  
Definition 7. Let [ ]( )2, 0,1 , nv w∈  . The functions v and w are said a 

coupled of quasi-solutions of (7) and (8) if v and w satisfy 

( ) ( ) ( ) ( )( ) ( ), , , 0, 0,1
i i

q
i i i r s

D v x f x v x v x w x x+ = ∈        

( ) ( ), ,i i i iv vϕ λ ψ µ= =  

and 

( ) ( ) ( ) ( )( ) ( ), , , 0, 0,1
i i

q
i i i r s

D w x f x w x w x v x x+ = ∈        

( ) ( ), ,i i i iw wϕ λ ψ µ= =  

for each 1,2, ,i n=  .  
In the sequel, we adopt the following hypotheses 
(H1) [ ]( )0 0 2, 0,1 , nv w ∈   are coupled lower and upper quasi-solutions of 

(7) and (8) satisfying 0 0v w≤  on [ ]0,1 . 
(H2) The function f possess the mixed quasimonotone property, and there ex-

ists ( )nN +∈   such that, for each 1,2, ,i n=  , we have  

[ ] [ ]( ) [ ] [ ]( ) ( ), , , , , ,
i i i ii i i i i i ir s r s

f x u u u f x z u u N u z− ≥ − −         (13) 

whenever 0 0v z u w≤ ≤ ≤  on [ ]0,1 .  
Theorem 3. Let ( )1 1i qα − ≥ , for each 1,2, ,i n=  . Assume that (H1) and 

(H2) are satisfied and suppose that 
(H3) , , 1k kv w k ≥  is a pair of solutions of 

( ) ( ) ( )1 1 1 1, , , 0, 0,1
i i

q k k k k k k
i i i i i ir s

D v f x v v w N v v x− − − −   + − − = ∈        (14) 

( ) ( ) ( ) ( )1 1, ,k k k k
i i i i i iv v v vϕ ϕ λ ψ ψ µ− −≤ ≤ ≤ ≤             (15) 

and 

( ) ( ) ( )1 1 1 1, , , 0, 0,1
i i

q k k k k k k
i i i i i ir s

D w f x w w v N w w x− − − −   + − − = ∈       (16) 

( ) ( ) ( ) ( )1 1, ,k k k k
i i i i i iw w w wϕ ϕ λ ψ ψ µ− −≥ ≥ ≥ ≥           (17) 

for each 1,2, ,i n=  .  
Then, we have the following 
1) ( )kv  and ( )kw  are a couple of monotone sequences of ordered coupled 

of lower and upper quasi-solutions of (7) and (8). 
2) The sequences ( )kv  and ( )kw  converge monotonically and uniformly to 

the functions v∗  and w∗ , respectively, with 0 0v v w w∗ ∗≤ ≤ ≤  on [ ]0,1 . More-
over, if for 0k ≥  and for each 1,2, ,i n=  , ( ) ( )k k

i i iv wϕ ϕ λ= =  and  

( ) ( )k k
i i iv wψ ψ µ= = . Then v∗  and w∗  are a pair of minimal and maximal 

quasi-solutions of (7) and (8), in 0 0,v w   .  
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Proof.  
1) First, we show that ( )

1

k

k
v

≥
 is increasing sequence and ( )

1

k

k
w

≥
 is de-

creasing sequence using induction arguments. For 1k = , we have from (14) and 
(16),  

( ) ( )1 0 0 0 1 0, , , 0
i i

q
i i i i i ir s

D v f x v v w N v v   + − − =              (18) 

and 

( ) ( )1 0 0 0 1 0, , , 0
i i

q
i i i i i ir s

D w f x w w v N w w   + − − =             (19) 

for each 1,2, ,i n=  . 
Since 0v  and 0w  are coupled lower and upper quasi-solutions of (7) and 

(8), we have 

( )0 0 0 0, , , 0
i i

q
i i i r s

D v f x v v w   + ≥                   (20) 

and 

( )0 0 0 0, , , 0
i i

q
i i i r s

D w f x w w v   + ≤                   (21) 

for each 1,2, ,i n=  . 
Subtracting (18) from (20) and (21) from (19) we obtain  

( ) ( )1 0 1 0 0q
i i i i iD v v N v v− − − ≤                   (22) 

and  

( ) ( )0 1 0 1 0.q
i i i i iD w w N w w− − − ≤                  (23) 

Using the fact that 0 0v w≤  on [ ]0,1 , (22) and (23) and the boundary condi-
tions (15) and (17) for 1k = , we obtain for each 1,2, ,i n=   

( ) ( ) ( )0 in 0,1 , 0, 0q
i i i i iD p N p p pϕ ψ− ≤ = =           (24) 

and  

( ) ( ) ( )0 in 0,1 , 0, 0,q
i i i i iD z N z z zϕ ψ− ≤ = =           (25) 

where 1 0p v v= −  and 0 1z w w= −  on [ ]0,1 . Applying Lemma 1 we get 1 0
i iv v≥  

and 0 1
i iw w≥  on [ ]0,1  for each 1,2, ,i n=  . So 1 0v v≥  and 1 0w w≤  on  

[ ]0,1 . Thus, the result is proved for 1k = . Next, suppose that for { }1, ,j k∈   

[ ]1 1and on 0,1 .j j j jv v w w− −≤ ≤                  (26) 

From (14), we get  

( ) ( )1 1, , , 0
i i

q k k k k k k
i i i i i ir s

D v f x v v w N v v+ +   + − − =            (27) 

and 

( ) ( )1 1 1 1, , , 0
i i

q k k k k k k
i i i i i ir s

D v f x v v w N v v− − − −   + − − =            (28) 

for each 1,2, ,i n=  . 
Subtracting (28) from (27), we obtain 

https://doi.org/10.4236/am.2023.143011


F. Toumi 
 

 

DOI: 10.4236/am.2023.143011 188 Applied Mathematics 
 

( ) ( )
( ) ( ) ( )

1 1

1 1 1 1, , , , , , .
i i i i

q k k k k
i i i i i

k k k k k k k k
i i i i i i ir s r s

D v v N v v

f x v v w f x v v w N v v

+ +

− − − −

− − −

       = − − −       
 

Now using the induction’s hypothesis (26), and the mixed monotone property 
of f, we obtain 

( ) ( )
( ) ( ) ( )

1 1

1 1 1 1, , , , , , .
i i i i

q k k k k
i i i i i

k k k k k k k k
i i i i i i ir s r s

D v v N v v

f x v v w f x v v w N v v

+ +

− − − −

− − −

       ≤ − − −       
 

So, hypothesis (H2) yields 

( ) ( ) ( ) ( )1 1 1 1 0.q k k k k k k k k
i i i i i i i i i i iD v v N v v N v v N v v+ + − −− − − ≤ − + − =    (29) 

Therefore, using (29) and the boundary conditions (15) and (17) for 1j k= + , 
we obtain  

( ) ( ) ( )

( ) ( )

1 1

1 1

0 in 0,1 ,

0, 0.

q k k k k
i i i i i

k k k k
i i

D v v N v v

v v v vϕ ψ

+ +

+ +

− − − ≤

− ≥ − ≥
 

Let 1k k
i ip v v+= − , by Lemma 1 we have 0p ≥  and so 1k k

i iv v+ ≥  for each  
1,2, ,i n=  . Hence 1k kv v+ ≥  on [ ]0,1 . Similarly, we obtain 1k kw w +≤  on  

[ ]0,1 . Whence, we verify the result for 1j k= + . 
Now, let us prove that, for each 1k ≥ , the pair kv  and kw  are an ordered 

coupled lower and upper quasi-solutions of (7) and (8). By adding  

( ), , ,
i i

k k k
i i r s

f x v v w        to both sides of (14), we get for each 1,2, ,i n=   

( ) ( )
( ) ( ) ( )1 1 1 1

, , ,

, , , , , ,

i i

i i i i

q k k k k
i i i r s

k k k k k k k k
i i i i i i ir s r s

D v f x v v w

f x v v w f x v v w N v v− − − −

   +    

       = − + −       

 

Using the fact that 1k k
i iv v −≥  and 1k k

i iw w− ≥  and the property of the func-
tion f, it follows that 

( ) ( )
( ) ( ) ( )1 1 1 1

, , ,

, , , , , ,

i i

i i i i

q k k k k
i i i r s

k k k k k k k k
i i i i i i ir s r s

D v f x v v w

f x v v w f x v v w N v v− − − −

   +    

       ≥ − + −       

 

So, by hypothesis (H2), we conclude 

( ) ( ), , , 0
i i

q k k k k
i i i r s

D v f x v v w   + ≥     

Similarly, we prove that  

( ) ( ), , , 0
i i

q k k k k
i i i r s

D w f x w w v   + ≤     

which together with (15) and (17) prove that ( ),k kv w  is pair of coupled lower 
and upper quasi-solutions of (7) and (8). 

Now, we shall prove that kv  and kw  are ordered. We use induction argu-
ments. For 1k = , by subtracting (18) from (19) we get  
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( ) ( )
( ) ( ) ( )

1 1 1 1

0 0 0 0 0 0 0 0, , , , , , .
i i i i

q
i i i i i

i i i i i i ir s r s

D w v N w v

f x v v w f x w w v N w v

− − −

       = − − −       
 

Using hypothesis (H1), and the mixed-monotone property of f, we obtain  

( ) ( )
( ) ( ) ( )

1 1 1 1

0 0 0 0 0 0 0 0, , , , , , ,
i i i i

q
i i i i i

i i i i i i ir s r s

D w v N w v

f x v w w f x w w w N w v

− − −

       ≤ − − −       
 

which by hypothesis (H2) yields  

( ) ( )1 1 1 1 0.q
i i i i iD w v N w v− − − ≤  

From (15) and (17), we obtain ( )1 1 0i w vϕ − ≥  and ( )1 1 0i w vψ − ≥ . Let  
1 1
i iz w v= − , then by Lemma 1, we obtain 0z ≥  for i, 1 i n≤ ≤ , so 1 1w v≥ . 

Next, assume that we have for any j in { }1, , k   

.j jv w≤                            (30) 

Similarly, by hypothesis (H2) and (30) we have 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

, , , , , ,

, , , , , , 0.

i i i i

i i i i

q k k k k
i i i i i

k k k k k k k k
i i i i i i ir s r s

k k k k k k k k
i i i i i i ir s r s

D w v N w v

f x v v w f x w w v N w v

f x v w w f x w w w N w v

+ + + +− − −

       ≤ − − −       

       ≤ − − − ≤       

 

On the other hand, from (15) and (17), we obtain ( )1 1 0k k
i w vϕ + +− ≥  and 

( )1 1 0k k
i w vψ + +− ≥ . Let 1 1k k

i iz w v+ += − , then by Lemma 1, we obtain 0z ≥  for 
each 1,2, ,i n=  . Thus 1 1k kv w+ +≤ . 

2) For each 1,2, ,i n=  , the sequences ( )k
iv  and ( )k

iw  are uniformly 
bounded and equicontinuous. Thus, using Arzela-Ascoli’s Theorem, we deduce 
that lim k

k i iv v∗→+∞ =  and lim k
k i iw w∗
→+∞ = . Since, in this case, the pointwise 

convergence yields to the uniform one, we deduce that ( )k
iv  and ( )k

iw  con-
verge uniformly on [ ]0,1  and so ( )kv  and ( )kw  converge uniformly to v∗  
and w∗ , respectively. 

Now, by using the fact that 0 0
k kv v w w≤ ≤ ≤  for each 1k ≥  and letting 

k →∞  we conclude that v w∗ ∗≤ . 
Next, let us prove that ( ),v w∗ ∗  is pair a of quasi-solutions of (7) and (8). 

From (14) 

( ) ( )1 1 1 1, , , 0
i i

q k k k k k k
i i i i i ir s

D v f x v v w N v v− − − −   + − − =     

Applying the operator qI  and using Lemma 1 (2), we obtain 

( ) ( )1 1 1 1
0 1 , , , 0.

i i

k k k q k k k q k q k
i i i i i ir s

v c c x I f x v v w N I v I v− − − −   − − + − − =     

Since kv v∗→  and kw w∗→  uniformly when k → +∞  and the function f 
is continuous, we obtain, for each 1,2, ,i n=  , 

( )0 1 , , , 0
i i

q
i i i r s

v c c x I f x v v w∗ ∗ ∗ ∗ ∗ ∗   − − + =                (31) 
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where ( ) ( )0 0 lim 0k
i k ic v v∗ ∗

→∞= =  and ( ) ( )1 lim 0k
k ic v∗
→∞

′= . Now, applying 
qD  to (31) and using Lemma 1 (1) and (3), we obtain, 

( ), , , 0.
i i

q
i i i r s

D v f x v v w∗ ∗ ∗ ∗   + =                    (32) 

In addition, it is easy to verify that ( ) ( ),i i i iv vϕ λ ψ µ∗ ∗= = . So v∗  satisfies (9) 
and (10), in the same manner, we prove that w∗  satisfies (11) and (12). There-
fore, v∗  and w∗  are coupled quasi-solutions of (7) and (8) in 0 0,v w   . 

Now, let us prove that the functions v∗  and w∗  are a pair of minim-
al-maximal coupled quasi-solutions of the problem (7) and (8) in 0 0,v w   . Let 

0 0, ,v w v w ∈    be a pair of coupled quasi-solutions of (7) and (8). We will pro-
ceed by induction. First, it is obvious to see that 0v v≥ , and 0w w≤ . Assume 
that  

[ ]and on 0,1k kv v w w≥ ≤                      (33) 

is true. Thus, using (33), we obtain 

( ) ( )
( ) [ ] [ ]( ) ( )

[ ] [ ]( ) [ ] [ ]( ) ( )

1 1

, , , , , ,

, , , , , ,

i ii i

i i i i

q k k
i i i i i

k k k k
i i i i i i ir sr s

k k
i i i i i i ir s r s

D v v N v v

f x v v w f x v v w N v v

f x v v w f x v v w N v v

+ +− − −

   = − + −   

≤ − + −

 

So, by hypothesis (H2), we conclude 

( ) ( )1 1 0.q k k
i i i i iD v v N v v+ +− − − ≤  

From (15), we obtain ( )1 0k
i v vϕ +− ≥  and ( )1 0k

i v vψ +− ≥ . Put 1k
i iz v v += − , 

then by Lemma 1, we have 0z ≥  for each 1,2, ,i n=  , so 1kv v +≥ . In the 
same manner, we prove that 1kw w +≤ . Thus, taking limit k → +∞ , we get 

and .v v w w∗ ∗≥ ≤  

That is, ,v w∗ ∗  are minimal-maximal coupled quasi-solutions of the problem 
(7) and (8) in 0 0,v w   . This ends the proof. 

Remark 1. We remark that if 1n =  then 0i is r= = , and so (7) and (8) is 
reduced to the scalar boundary value problem. In this case, Theorem 2 improves 
the result in [24].  

Remark 2. Note that, if, for each 1, ,i n=  , 1ir n= − , 0is = . Then, we ob-
tain minimal and maximal solutions of (7) and (8). Hence, Theorem 1 covers the 
case of quasimonotone nondecreasing nonlinearity.  

We state uniqueness result in the following 
Theorem 4. Assume that assumptions (H1) - (H3) hold. Moreover, suppose 

that, for each 1,2, ,i n=  , 0iL >  and  

[ ] [ ]( ) [ ] [ ]( ) ( ), , , , , ,
i i i ii i i i i i ir s r s

f x u u v f x v v u L u v− ≤ − −  

on [ ]0,1 , for any v, 0 0v v u w≤ ≤ ≤ . Then, the problem (7) and (8) admits a 
unique solution in 0 0,v w   . 

Proof. Since v w∗ ∗≤ , we need only to prove that w v∗ ∗≤  on [ ]0,1 . Let 
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i i iz v w∗ ∗= −  on [ ]0,1  for each 1, ,i n=  . Then we get 

( ) ( ) ( ), , , , , , .
i i i i

q
i i i i i i i ir s r s

D z f x w w v f x v v w L v w∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗       = − ≤ −         

So, we conclude 

0.q
i i iD z L z− ≤  

Since ( ) ( )i i iv wϕ ϕ λ∗ ∗= = , and ( ) ( )i i iv wψ ψ µ∗ ∗= = . Then ( ) 0i zϕ =  and 
( ) 0i zψ = . Therefore, by Lemma 1, we have 0iz ≥  for each 1,2, ,i n=  , 

which implies w v∗ ∗≤  on [ ]0,1 . So, v w∗ ∗=  is the unique solution of (7) and 
(8) in 0 0,v w   , which ends the proof.  

Remark 3. It is worth mentioning that one can generate a numerical approx-
imation of ,v w∗ ∗  the minimal-maximal coupled quasi-solutions of the problem 
(7) and (8) in 0 0,v w    for a given coupled lower and upper quasi-solutions.  

4. Examples 

This section is devoted to some examples to illustrate our results. 
Example 1. We consider the following nonlinear problem  

( ) ( ) ( )
( ) ( ) ( )

3
22 0, 0,1

0 2 0 0, 1 1

D u x u x x

u u u


 − = ∈

 ′− = =

                   (34) 

So, 31, , 2, 0, 1
2

n q α β λ µ= = = = = =  and ( ) 2,f t u u= − . First, condition  

( )1 1qα − ≥  is satisfied. The pair ( )0 0v x =  and ( )0 1w x =  are ordered coupled 
lower and upper quasi-solutions of (34), so (H1) is verified. Moreover, we have 
for 2N = , the hypothesis (H2) holds. Next, define for each 1k ≥ , the se-
quences ( )kv x  and ( )kw x , respectively, by 

( ) ( ) ( ) ( ) ( )( )( ) ( )
21 1 1

0

2 1 , 2 2 d
3

k k k kv x x k x y v y v y v y y− −= + + − −∫  

and 

( ) ( ) ( ) ( ) ( )( )( ) ( )
21 1 1

0

2 1 , 2 2 d ,
3

k k k kw x x k x y w y w y w y y− −= + + − −∫  

where  

( )
( )
( )
2 1 , 01,

3 2 1 3 , 13
2

x y x y
k x y

x y x y y x

 + − ≤ ≤= 
  + − − − < ≤Γ 
 

         (35) 

By Lemma 2 in [29], the sequences ( )kv x  and ( )kw x  satisfy the linear 
problems  

( )( ) ( )

( ) ( ) ( ) ( )

3
21 12 2 2 0 in 0,1

0 2 0 0, 1 1

k k k k

k k k

D v v v v

v v v

− −
+ − − =


 ′− = =

 

and  
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( )( ) ( )

( ) ( ) ( ) ( )

3
21 12 2 2 0 in 0,1

0 2 0 0, 1 1

k k k k

k k k

D w w w w

w w w

− −
+ − − =


 ′− = =

 

Thus, the hypothesis (H3) is satisfied. Hence, Theorem 1 ensures the existence 
of minimal and maximal solutions of (34) in [ ]0,1 .  

Example 2. Let f be in [ ]( )3 30,1 ,×  , and defined by ( )1 2 3, ,f f f f= , 
where  

( )
( )
( )

3

3

2
1 1 2 3 1 2

2
2 1 2 3 2 1 3

3 1 2 3 1 2

, , , e 3

, , , 4

, , , e

u

u

f x u u u u u

f x u u u u u u

f x u u u u u

−

−

= − +

= − +

= − −

 

In this example, we deal with the following nonlinear problem  

( ) ( )( ) ( )
( ) ( ) ( )

3
2 , 0 in 0,1

0 0 , 1 ,

D u x f x u x

u u uα λ µ


 + =

 ′− = =

                (36) 

where, ( ) ( )33, , 2, 2, 2 , 0,0,0
2

n q α λ= = = =  and ( )1,1,1µ = . For each  

1,2,3i = , the condition ( )1 1i qα − ≥  is satisfied. It is easy to verify that the 
pair ( ) ( )0 0,0,0v x =  and ( ) ( )0 1,1,1w x =  are ordered coupled lower and up-
per quasi-solutions of (36). Now, let us verify (H2). For 1i =  we take  

1 11, 1r s= = . So the function ( )1 1 2 3, , ,f x u u u  is nondecreasing in 2u  and non-
increasing in 3u . Moreover, for 1 3N = , condition (13) holds. For 2i =  we take 

2 12, 0r s= = . So the function ( )2 2 1 3, , ,f x u u u  is nondecreasing in ( )1 3,u u  and 
for 2 4N = , condition (13) holds. For 3i =  we take 3 30, 2r s= = . So the func-
tion  

( )3 1 2 3, , ,f x u u u  is nonincreasing in ( )2 3,u u  and for 3 1N = , the condition (13) 
holds. Thus (H2) is satisfied. Now, let us define for 1k ≥ , the sequences ( )kv x  
and ( )kw x , by 

( ) ( ) ( ) ( )1 1 1 1 1
1 1 1 2 3 1 10

2 1 , ( , , , 3 ) 3 d ,
3

k k k k k kv x x k x y f y v v w v v y− − − −= + + + −∫  

( ) ( ) ( ) ( )( )1 1 1 1 1
2 2 2 1 3 2 20

2 1 , , , , 4 4 d ,
3

k k k k k kv x x k x y f y v v v v v y− − − −= + + + −∫  

( ) ( ) ( ) ( )( )1 1 1 1 1
3 3 3 1 3 3 30

2 1 , , , , d
3

k k k k k kv x x k x y f y v w w v v y− − − −= + + + −∫  

and 

( ) ( ) ( ) ( )( )1 1 1 1 1
1 1 1 2 3 1 10

2 1 , , , , 3 3 d ,
3

k k k k k kw x x k x y f y w w v w w y− − − −= + + + −∫  

( ) ( ) ( ) ( )( )1 1 1 1 1
2 2 2 1 3 2 20

2 1 , , , , 4 4 d ,
3

k k k k k kw x x k x y f y w w w w w y− − − −= + + + −∫  

( ) ( ) ( ) ( )( )1 1 1 1 1
3 3 3 1 3 3 30

2 1 , , , , d ,
3

k k k k k kw x x k x y f y w v v w w y− − − −= + + + −∫  
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where ( ),k x y  is defined by (35). 
Using Lemma 2 in [29], the sequences ( )kv x  and ( )kw y  satisfy (14) - (17). 

Therefore, the hypothesis (H3) is satisfied. Hence, Theorem 1 assures the exis-
tence of minimal-maximal coupled quasi-solutions of (36) in 0 0,v w   . 
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