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Abstract 
This paper uses the Adomian Decomposition Method (ADM) to solve Bous-
sinesq equations using Maple. The Boussinesq approximation for water waves 
is a weakly nonlinear and long-wave approximation in fluid dynamics. The 
approximation is named after Joseph Boussinesq, who developed it in response 
to John Scott Russell’s observation of a wave of translation (also known as so-
litary wave or soliton). Bossinesq’s article from 1872 introduced the equations 
that are now known as the Boussinesq equations. Numerical methods are com-
monly utilized to solve nonlinear equation systems. In this paper, we investi-
gate a nonlinear singly perturbed advection-diffusion problem. Using the usual 
Adomian Decomposition Method, we formulate an approximate linear advec-
tion-diffusion problem and investigate several practical numerical approaches 
for solving it (ADM). The Adomian Decomposition Method (ADM) is a po-
werful tool for numerical simulations and approximation analytic solutions. 
The Adomian Decomposition Method (ADM) is used to solve nonlinear ad-
vection differential equations using Maple by illustrating numerous examples. 
The findings are presented in the form of tables and graphs for several exam-
ples. For various examples, the findings are presented in the form of tables 
and graphs. The difference between the precise and numerical solutions indi-
cates the Maple program solution’s efficacy, as well as the ease and speed with 
which it was acquired. 
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1. Introduction 

Since the beginning of the 1980s, Adomian [1]-[8] has introduced and developed 
a technique known as the Adomian Decomposition Method (ADM) which is 
a well-known systematic method for the practical solution of Ordinary Differen-
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tial Equations (ODEs), Partial Differential Equations (PDEs), integral equations, 
integro-differential equations, and other operator equations with linear or non-
linear, deterministic, or stochastic operators. The ADM is an effective method 
that offers quick algorithms for approximating analytical solutions and numeri-
cal simulations for practical applications in engineering and the applied sciences. 
The solution is found as an infinite series that converges rapidly to accurate so-
lutions. 

Adomian and co-workers have solved nonlinear differential equations for a 
wide class of nonlinearities, including product [9], polynomial [10], exponential 
[11], trigonometric [12], hyperbolic [13], composite [14], negative-power [15], 
radical [16] and even decimal-power nonlinearities [17]. We find that the ADM 
solves nonlinear operator equations for any analytic nonlinearity, providing us 
with an easily computable, readily verifiable, and rapidly convergent sequence of 
analytic approximate functions. 

More recently, Adomian and Rach [18] introduced the phenomena of the 
so-called “noise terms”. The “noise terms” were defined in [3] as identical terms 
with opposite signs that appear in the first two components of the series solution 
of u(x). 

Recent research by Wazwaz [19] developed a condition that is fundamen-
tally required to guarantee the presence of “noise terms” in inhomogeneous 
equations. Then, Luo commented on it with a scientific paper [20] and mod-
ified this method with a two-step Adomian Decomposition Method. Chen and 
Lu [21] established a promising algorithm that can be easily programmed in 
Maple.  

The classical Boussinesq equation 

( )2 ,tt xx xx
u u u u= + +                         (1) 

which has been derived in 1872 to describe shallow water waves has the flaw that 
the Cauchy problem is improperly posed. Therefore, it can’t be used for the analy-
sis of numerical wave propagation issues. 

It also occurs in various physical applications such as vibrations in a nonlinear 
string, iron sound waves in plasma, and nonlinear lattice waves. Additionally, it 
was used to address issues with water percolation in porous subsurface strata. Re-
cently, certain novel approaches to solving nonlinear equations have garnered con-
siderable interest, such as the variational iteration method. 

Boussinesq put forth a well-known model of nonlinear dispersive waves in the 
generalized form. 

( ) ( ), , , 0,tt xxxxxx
u f u u h x t x t= + + −∞ < < ∞ >              (2) 

with u and h are sufficiently differentiable functions, and ( )0 0f = . The initial 
conditions associated with Boussinesq Equation (1) have the form 

( ) ( ) ( ) ( ),0 , ,0 , ,tu x a x u x b x x= = −∞ < < ∞               (3) 

with ( )a x  and ( )b x  given C∞ . 
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This paper aims to solve the Boussinesq equation and compare the exact solu-
tion, and the numerical solution obtained using the method of Adomian De-
composition Method by Maple 18 program.  

To present a clear overview of the method, we have chosen two examples, to 
illustrate the Adomian Decomposition Method and the obtained solutions are 
compared with the exact solutions. 

2. Adomian Decomposition Method 

To illustrate the methodology of the proposed method, using the Adomian De-
composition Method, we consider 

( ) ( ) ( ) ,Lu R u F u g x+ + =                       (4) 

where L is the highest order derivative in the equation, R is the remainder of the 
differential operator, ( )F u  expresses the nonlinear terms, and ( )g x  is an in-
homogeneous term. If the operator L is a first-order operator, characterized by 

d .
d

L
x

=                               (5) 

The inverse operator L−1 L is given by assuming that L is invertible. 

( ) ( )1
0

d .
x

L x− ⋅ = ⋅∫                           (6) 

So that 

( ) ( ) ( )1 0 .L Lu u x u− ⋅ = −                       (7) 

If, on the other hand, L is a second-order differential operator defined by 
2

2

d ,
d

L
x

=                             (8) 

so that the inverse operator L−1 is regarded a two-fold integration operator de-
fined by 

( ) ( )1
0 0

d d .
x x

L x x− ⋅ = ⋅∫ ∫                       (9) 

So that 

( ) ( ) ( )1 0 0 .L Lu u x u xu− ′= − −                   (10) 

In a parallel manner, if L is a third-order differential operator, we can easily 
show that 

( ) ( ) ( ) ( )1 210 0 0 ,
2!

L Lu u x u xu x u− ′ ′′= − − −             (11) 

For higher-order operators we can easily similarly define the related inverse op-
erators. Applying L−1 to both sides of (4) gives 

( ) ( )( ) ( )1 1
0 ,u x L g x L Ru LF uϕ − −= − − −             (12) 

( ) d0 , for ,
d

u L
x

=  
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( ) ( )
2

2

d0 0 , for ,
d

u xu L
x

′+ =  

( ) ( ) ( )
3

2
3

1 d0 0 0 , for ,
2! d

u xu x u L
x

′ ′′+ + =  

and so on. The Adomian Decomposition Method admits the decomposition of u 
into an infinite series of components. 

( ) 0 ,nnu x u∞

=
= ∑                        (13) 

( ) 0 ,nnF u A∞

=
= ∑                        (14) 

where An are the Adomian polynomials. Substituting (13) and (14) into (12) 
gives 

( )( ) ( ) ( )1 1 1
00 0 0 .n n nn n nu L g x L g u L Aϕ∞ ∞ ∞− − −

= = =
= − − −∑ ∑ ∑       (15) 

The various components un of the solution u can be easily determined by using 
the recursive relation. 

( )( )1
0 0 ,u L g xϕ −= −                      (16) 

( ) ( )1 1
1 , 0.k k ku L Ru L A k− −
+ = − − ≥                 (17) 

Consequently, the first few components can be written as 

( )1
0 0 ,u L g xϕ −= −  

( ) ( )1 1
1 0 0 ,u L Ru L A− −= − −  

( ) ( )1 1
2 1 1 ,u L Ru L A− −= − −  

( ) ( )1 1
3 2 2 ,u L Ru L A− −= − −  

( ) ( )1 1
4 3 3 .u L Ru L A− −= − −  

Having determined the components 1, 0u n ≥ , the solution u in a series form 
follows immediately. As stated before, the series may be summed to provide the 
solution in a closed form. However, for concrete problems, the n-term partial 
sum 

1
0 0 ,n

kk uϕ −

=
= ∑                         (18) 

may be used to give the approximate solution. In this section, we solve some 
examples, and we can compare the numerical results with the exact solution. 

3. Application  

Two examples are given in this section to illustrate the effects of the proposed 
method. 

3.1. Example 1 

Consider the Boussinesq equation 
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( )23 ,tt xx xxxxxx
u u u u= + +                     (19) 

( )
( )

( )
( )

( )

3 22

2 3

1 e e 1e,0 2 , ,0 2 ,
1 e 1 e

kx kxkx

t
kx kx

ak k aaku x u x
a a

+ −
= = −

+ +
 

with the exact solution ( )
( )

2

2

1

2
1

e2
1 e

kx k t

kx k k t
u x

+ +

+ +

=
+

. 

3.2. Example 2 

Consider the Boussinesq equation 

( )23 ,tt xx xxxxxx
u u u u= + +                     (20) 

( ) ( )
2 3 2

2 23 3 1,0 sech , ,0 sech tanh ,
2 2 2 2 2t
k kx k k kx kxu x u x− −     = =     

     
 

with the exact solution ( ) ( )
2

2 23 1sech 1
2 2

u x k k x k t = − + − + 
 

. 

Figure 1 and Figure 2 show the exact and approximate solutions. This prob-
lem was solved by ADM and their results are shown in Table 1 and Table 2 us-
ing maple. 

 

 
Figure 1. Graph showing the correspondence between exact and approximate solutions 
result of Boussinesq equations in Example 1. 
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Figure 2. Graph showing the correspondence between exact and approximate solutions 
result of Boussinesq equations in Example 2. 

 
Table 1. Numerical results and exact solution of Boussinesq equation for Example 1. 

x ( )
2

2

1

2
1

e2Ex
e

act
1

kx k t

kx k k t

+ +

+ +
=

+
 u(x) Error 

0.10000 0.4974729 0.4976949 0.0002221 

0.20000 0.4927250 0.4929399 0.0002148 

0.30000 0.4856248 0.4858283 0.0002035 

0.40000 0.4763090 0.4764976 0.0001886 

0.50000 0.4649528 0.4651236 0.0001707 

0.60000 0.4517627 0.4519132 0.0001505 

0.70000 0.4369689 0.4370975 0.0001286 

0.80000 0.4208171 0.4209230 0.0001059 

0.90000 0.4035609 0.4036438 0.0000830 

1.00000 0.3854539 0.3855143 0.0000605 

 
Table 2. Numerical results and exact solution of Boussinesq equation for Example 2. 

x ( )
2

2 23 1sech 1
2 2

Exact k k x k t = − + − + 
 

 u(x) Error 

0.10000 −1.4962562 −1.4962562 0.0000000 
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Continued 

0.20000 −1.4850994 −1.4850994 0.0000000 

0.30000 −1.4667499 −1.4667499 0.0000000 

0.40000 −1.4415645 −1.4415645 0.0000000 

0.50000 −1.4100223 −1.4100223 0.0000000 

0.60000 −1.3727054 −1.3727054 0.0000000 

0.70000 −1.3302772 −1.3302772 0.0000000 

0.80000 −1.2834582 −1.2834582 0.0000000 

0.90000 −1.2330018 −1.2330018 0.0000000 

1.00000 −1.1796716 −1.1796716 0.0000000 

4. Conclusion 

The Adomian decomposition strategy is used to solve the Boussinesq equations 
using Maple18 software. The results were created using tables and figures. Table 
1 and Table 2 show the numerical solution as well as the right solution. We can 
see that the numerical solution is generally relevant to the precise answer by 
comparing the numerical results, proving the method’s efficacy and the ability to 
obtain the numerical solution relating swiftly and efficiently to the exact solution 
using Maple 18 software. Furthermore, the results obtained are pretty precise. 
The primary goal of the present paper is to mechanize the computing process of 
the decomposition method by the Maple program, so that we can obtain approx-
imate solutions, which makes it easy in the future to expand the use of the Mabel 
program to solve more complex equations as quickly as possible. 
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