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Abstract 
The Bach equations are a version of higher-order gravitational field equa-
tions, exactly they are of fourth-order. In 4-dimensions the Bach-Einstein 
gravitational field equations are treated here as a perturbation of Einstein’s 
gravity. An approximate inversion formula is derived which admits a com-
parison of the two field theories. An application to these theories is given 

where the gravitational Lagrangian is expressed linearly in terms of 22, ,R R Ric , 

where the Ricci tensor d dRic R x xα β
αβ=  is inserted in some formulas which 

are of geometrical or physical importance, such as; Raychaudhuri equation 
and Tolman’s formula. 
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1. Introduction 

In this paper we study the purely metrical fourth-order theories of gravitation in 
4-dimensions which follow from a Lagrangian  

: 2 ,grav matL L Lχ= +                         (1) 

which is the sum of a gravitational Lagrangian of the form [1] [2] [3]:  

( )22
0 1: 2 ,gravL R a R a Ric= − Λ + + +                  (2) 

and an appropriate matter Lagrangian matL . 
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In fact, the most general quadratic gravitational Lagrangian:  
2 22

1 0 1 2: ,L c R c Ric c Riem= + +                   (3) 

effectively reduces to:  
22

2 0 1: ,L a R a Ric= +                       (4) 

with 0 0 2 1 1 2, 4a c c a c c= − = + , because of the fact that the Gauss-Bonnet expres-
sion  

2 22: 4 ,B R Ric Riem= − +                     (5) 

has vanishing variational derivatives with respect to the metric in 4-dimensions 
[4]-[18]. Here 0 1, ,a aχ  are real coupling constants, Λ  is a “cosmological con-
stant” and we abbreviate 2 :Riem R Rαβµν

αβµν= , 2 :Ric R Rαβ
αβ= , where the Ricci 

tensor Ric  has the components :R R µ
αβ µαβ= , and the scalar curvature reads  

:R tr Ric g Rαβ
αβ= ≡ , tr  denotes the trace with respect to the metric:  

2d d d .s g x xα β
αβ=  

We adopt the usual conventions of tensor calculus: Greek letters , , ,α β γ   
take the values 0,1,2,3 . The signature of the metric g is assumed to be ( )+ − − − , 

( )( )d d d dRiem R x x x xα β µ ν
αβµν= ∧ ∧  denotes the Riemann curvature, their 

components R ν
αβµ  are introduced through the Ricci identity for a one-form 

du u xαα=  in terms of the Levi-Civita covariant derivatives α∇  to g [19] [20] 
[21] [22] as:  

( ) .u R uνα β β α µ αβµ ν∇ ∇ −∇ ∇ =  

Equivalently, there holds  

,R ν ν ν λ ν λ ν
αβµ β αµ α βµ αµ λβ βµ λα= ∂ Γ − ∂ Γ + Γ Γ −Γ Γ  

in terms of the Christoffel symbols  

( )1 ,
2

g g g gµ µν
αβ α βν β αν ν αβΓ = ∂ + ∂ − ∂  

while the Weyl conformal tensor, denoted by Weyl, is defined through its com-
ponents [21] [22]:  

[ ] [ ]: .
6
RW R g R g R gαβµν αβµν α µ ν β β ν µ α αβµν= + + −  

Here and in the following ( ) or [ ] indicate the symmetrization or antisym-
metrization respectively of indices and we abbreviate:  

.g g g g gαβµν αµ βν αν βµ= −  

Again in 4-dimensions, one can easily deduce the special quadratic expression 
[3]-[13]:  

2 2 221: 2
3

Weyl W W R Ric Riemαβµν
αβµν= = − +            (6) 

is conformably invariant of weight −2, that means, a conformal transformation 
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g e gφ→ , φ  variable, implies 2 22Weyl e Weylφ−→ . Accordingly, that the 
Gauss-Bonnet expression (5) has vanishing variational derivatives with respect 
to the metric in 4-dimensions, thus (6) is equivalent to:  

2 2 22: 2 .
3

Weyl W W Ric Rαβµν
αβµν= = −                (7) 

The most general Einstein’s equations [21] are given as:  

,G g Tαβ αβ αβχ+ Λ =                        (8) 

where  

1: ,
2

G R Rgαβ αβ αβ= −  

is the Einstein tensor d dG G x xα β
αβ= , and d dT T x xα β

αβ=  is the ener-
gy-momentum tensor. 

It is obviously, that the most general Einstein’s Equations (8) have the alterna-
tive formula [20]:  

.
2

trTR T g gαβ αβ αβ αβχ  = − + Λ 
 

                (9) 

A spacetime for which  

1 , .,
4

R Rg R constαβ αβ= =                  (10) 

is called an Einstein spacetime [22]. Inserting Equation (10) into the identity (7) 
one obtains 

2 21 .
6

Weyl R= −  

In Section 2; we introduce the variation derivatives of the Lagrangian (1) with 
respect to g which produces the fourth-order gravitational field Equations (14). 
It well known that the choice 1 03a a= −  of the gravitational Lagrangian (2), 
yields the so-called Bach-Einstein gravitational field Equations (21). In Section 3; 
a general algebraic structure is discussed, where we show that the Ricci tensor 
components Rαβ  to g can be represented by a covariant linear differential op-
erator applied to a linear combination of , ,T g trT gµν µν µνΛ  plus an error term 
with the factor 2ε , where ε  is a real parameter such that ε  is so small, that 
is 1ε  . In Section 4; the Bach-Einstein gravitational field equations in 4-di- 
mensions are treated as a perturbation of Einstein’s gravity, where we derive an 
approximate inversion Formula (32) which admits a comparison of the two field 
theories. Exactly, we obtain an approximate inversion formula corresponding of 
the Bach-Einstein gravitational field equations similar to the alternative Formula 
(9). Finally, in the last section, an application to both the Einstein gravitational 
field equations and Bach-Einstein gravitational field equations is given where the 
gravitational Lagrangian is expressed linearly in terms of 22, ,R R Ric  (28), 
where the Ricci tensor d dRic R x xα β

αβ=  is inserted in some formulas which are 
of geometrical or physical importance, such as; Raychaudhuri equation and 
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Tolman’s formula. [1] [23]. D. Barraco and V. H. Hamity [1] mention Tolman’s 
expression as a possible application of approximate inversion formulas, where 
the gravitational Lagrangian is expressed linearly in terms of 2,R R . 

2. The Fourth-Order Gravity 

Variation derivatives of the Lagrangian (1) with respect to g produce the field 
equations 

,E Tαβ αβχ=  

where the variational derivative tensor Eαβ  and the energy-momentum tensor 
Tαβ  are defined by 

1 1
2 2: ,gravdet g E det g L

gαβ αβ

δ
δ

 =  
 

 

1 1
2 2: 2 ,matdet g T det g L

gαβ αβ

δ
δ

 = −  
 

 

( ): .det g det gαβ=  

Here the symbol δ  expresses variational derivatives (cf., e.g. [13] [24]). 
Let us now calculate the variational derivative tensor d dE E x xα β

αβ=  in the 
general. Using Buchdahl’s formula: according to [13]-[18] there holds:  

2 1 ,
3 2 gravE Z R Z g Lµ ν νµρ

αβ αβµν αρµν β αβ= ∇ ∇ − −  

where  

( )( ) [ ][ ], 2 , .gravL
Z Y Y X X

Rαβµν αβµν αβµναβ µν αν βµ αβµν

∂
= = =

∂
 

Consequently, the fourth-order gravitational field equations of the Lagrangian 
(1) read  

( ) ( )0 1
0 1 ,E g G a E a E Tαβ αβ αβ αβ αβ αβχ≡ Λ + + + =               (11) 

where  

( ) ( )0 2

2

12 2
2

2 2 2 ,
2

E g R RR R g

RR g R RR g

µ ν
αβ µαβν αβ αβ

α β αβ αβ αβ

= ∇ ∇ + −

≡ ∇ ∇ − + −

            (12) 

( ) 21 12 ,
2 2

g
E R R R R R Ric gαβ µν
αβ α β αβ µαβν αβ= ∇ ∇ − − + − 

     (13) 

where : gαβ
α β= ∇ ∇  is the covariant d’Alembertian operator. 

Thus, the fourth-order field Equation (11) takes the form:  

2
0

2
1

1 12 2 2
2 2

12 .
2 2

g R Rg a R g R RR R g

g
a R R R R R Ric g T

αβ αβ αβ α β αβ αβ αβ

αβ µν
α β αβ µαβν αβ αβχ

 Λ + − + ∇ ∇ − + − 
 

 
+ ∇ ∇ − − + − = 

 



 

  (14) 
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Inserting Equation (10) into the fourth-order tensors (12), (13), one easily 
obtains:  

( ) ( )0 10 ,E Eαβ αβ= =  

anyway, in 4-dimensions, the variational derivative tensor d dE E x xα β
αβ=  that 

corresponding to the most general quadratic Lagrangian (3) on an Einstein 
spacetime (10) identically vanishes [3]. Consequently, the fourth-order field Eq-
uations (14) on an Einstein spacetime and the most general Einstein’s Equations 
(8) are equivalent, where:  

1 , .
4

R g T R constαβ αβχ Λ − = = 
 

 

It is obvious that the choice 0 1 0a a= =  of the gravitational Lagrangian (2), 
leads to the Einstein -Hilbert gravitational Lagrangian, that is:  

: 2 ,EHL R= − Λ +  

which yields the most general Einstein’s Equations (8). On the other hand, the 
choice 1 03a a= −  of the gravitational Lagrangian (4), leads to  

( )22
2 0: 3 .L a R Ric= −                     (15) 

Comparing (7), (15) we obtain the Bach gravitational Lagrangian, that is:  

2
2 0

3: ,
2BachL L a Weyl−

≡ =                   (16) 

which, leads, possibly supplemented by an appropriate choice of matL , to con-
formably invariant fourth-order field equations, namely the equations intro-
duced by R. Bach in 1921 [12]:  

03 ,a B Tαβ αβχ=                       (17) 

that called the Bach field equations, where the Bach tensor d dBach B x xα β
αβ=  

[7]-[13] is given by:  

( )

2

1 .
6 3

B W W R

RR g R W R R g R

µ ν µν
αβ µαβν µαβν

µν
αβ αβ α β µαβν µαβν αµ βν

= ∇ ∇ −

 = − − ∇ ∇ − + − 
 



  (18) 

One can easily show that the Bach tensor (18) is symmetric, trace-free; that is, 
0g Bαβ

αβ = , divergence-free; that is, 0Bα
αβ∇ = , and is conformably invariant 

of weight −1 [3] [8]. 
We can rewrite the gravitational Lagrangian (2) in terms of (16) as  

2
0

3: 2 ,
2gravL R a Weyl−

= − Λ + +                   (19) 

which leads to the Bach-Einstein field equations  

03 .g G a B Tαβ αβ αβ αβχΛ + + =                    (20) 

Using Equations (14)-(17) the Bach-Einstein field Equations (20) can be re-
written as:  
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0

2

1 13
2 2

2 6 .
2

g R Rg a R g R R

LRR R R g T

αβ αβ αβ αβ αβ α β

µν
αβ µαβν αβ αβχ

Λ + − + − −∇ ∇


+ − − =


 

        (21) 

3. Algebraic Structure 

Generally, let us consider fourth-order gravitational field equations take the 
form:  

1 ,
2

R Rg g D R Tµν
αβ αβ αβ αβ µν αβε χ− + Λ + =              (22) 

where ε  is a real parameter such that ε  is so small, that is 1ε  . The ten-
sor field T is assumed to be divergence-free:  

0.Tβ αβ∇ =  

According to that we require the identity  

( ) 0.D Rβ µν
αβ µν∇ =  

We assume, without restriction of generality that, Dµν
αβ  is symmetric in α  

and β  as well as in µ  and ν   

( )
( ) ,D D D µνµν µν

αβ αβαβ= =  

It is easy to see that (22) is a singular perturbation of (8) since the small para-
meter ε  appears as a factor of the higher-order term D Rµν

αβ µν . Now, we show 
that the Ricci tensor components Rαβ  to g can be represented by a covariant 
linear differential operator applied to a linear combination of , ,T g trT gµν µν µνΛ  
plus an error term with the factor 2ε . 

Contraction of (22) with gαβ  yields  

4 .R D R trTµν
µνε χ= Λ + −  

Inserting this value for R in (22), we get  

( ) ,D R T gµ ν µν
α β αβ µν αβ αβδ δ ε χ+ = + Λ                 (23) 

where  

: ,
2

trTT T gαβ αβ αβ= −                       (24) 

1: , : .
2

D D D g D g Dµν µν µν µν αβ µν
αβ αβ αβ αβ= − =             (25) 

The linear tensor-operator with the components Dµ ν µν
α β αβδ δ ε+   on the left- 

hand side in (23) has an approximate inverse with the components ,Dµ ν µν
α β αβδ δ ε−   

in analogy to the formula  

( ) 1 21 1 ,q q rε ε ε−+ = − +  

where the remainder term  

( ) 1 21 ,r q qε −= +  
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is continuous in ε  if q continuously depends on ε  and ε  is so small such 
that 1qε < . Thus, in general, the Ricci tensor components Rαβ  to g can be 
represented approximately by a covariant linear differential operator applied to a 
linear combination of , ,T g trT gµν µν µνΛ  as:  

( )( ) ,R D T gµ ν µν
αβ α β αβ µν µνδ δ ε χ≅ − + Λ                (26) 

where ≅  means equality up to terms with the factor 2ε . It is obvious that for 
0ε =  both (22) and (26) reduce to the most general Einstein’s Equations (8).  

4. Perturbation on the Bach-Einstein Field Equations 

Let us apply the approximation procedure of section 3 to a class of fourth-order 
gravitational field equations in 4-dimensions, whence, the Bach-Einstein field 
Equations (21). Namely, let us consider a Lagrangian  

: 2 ,grav matL L Lχ= +                      (27) 

here the gravitational Lagrangian has the form  

( )22
0 1: 2 ,gravL R a R a Ricε= − Λ + + +               (28) 

ε  is a small parameter. 
Thus, the fourth-order field equations take, simply, the symbol form:  

( ) ( )( )0 1
0 1 ,E g G a E a E Tαβ αβ αβ αβ αβ αβε χ≡ Λ + + + =           (29) 

where ( )0Eαβ  and ( )1Eαβ  are given respectively in (12) and (13). 
The field equations derived from the Lagrangian (27), with the gravitational 

Lagrangian (28) have the form (22) with Dµν
αβ  in the form  

0

1 ( ) ( )

12 2 2
2

1 12 2 .
2 2

D a g R Rg g

a g g R R g

µν µν
αβ α β αβ αβ αβ

µ ν µν ν µ ν µ µν
α β αβ α β α β αβδ δ δ δ

 = ∇ ∇ − + − 
 
 − + − ∇ ∇ − + 
 



 

 

It is noticeable that, the Riemann curvature tensor has been eliminated by 
means of the Ricci identity  

2 2 2 .R R R R R Rµν µ µ
µαβν µ β α α β αµ β= ∇ ∇ −∇ ∇ +  

Applying the results of (24)-(26) to the present situation yields  

( )( ) ,R D T gµ ν µν
αβ α β αβ µν µνδ δ ε χ≅ − + Λ   

where, in this case  

: ,
2

trTT T gαβ αβ αβ= −  

0

1 ( ) ( )

12 2
2

12 2 .
2

D a g R Rg g

a g g g R R g

µν µν
αβ α β αβ αβ αβ

µ ν µν µ ν ν µ ν µ µν
α β αβ αβ α β α β αβδ δ δ δ

 = ∇ ∇ + + − 
 
 − − + ∇ ∇ − ∇ ∇ − + 
 





 

 

We arrive at  
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( )

( )

0

1 ( ) ( )

12 2 4
2

2 2

1 .
2

R T g a g R Rg trT

a R

g g R T g

αβ αβ αβ α β αβ αβ αβ

µ ν ν µ ν µ
α β α β α β

µν µ ν µν
αβ µν µν

χ ε χ

ε δ δ δ δ

χ

 ≅ + Λ + ∇ ∇ + + − − Λ 
 


+ − ∇ ∇ −


 − −∇ ∇ − + Λ  











  (30) 

Since we neglect the terms of order 2ε , then we substitute by the following 
expressions for Rαβ  and R:  

, 4 ,R T g R trTαβ αβ αβχ χ≅ + Λ ≅ − + Λ  

in (30), so we get the perturbation of (29) as:  

( )

( )

( )

( )

0

2
1

( )

2 2

2 2 4
2

1 2
2

2 2 2 2

1 1 ,
2 2

trTR T g g a trT trT T

g trT trT trT a T trT

T T T trT T

g T trT trT

αβ αβ αβ αβ α β αβ

αβ αβ α β

µ µ
α β µ µα β αβ

αβ

χ ε χ χ

χ ε χ

χ χ

χ χ

 ≅ − + Λ + ∇ ∇ + − Λ    
 + − + Λ + +∇ ∇    

− ∇ ∇ − + − Λ

 + − + Λ  

 

 (31) 

up to terms with the factor 2ε . The trace part of (31) reads  

( )( )0 12 3 1 4 .R a a trTχ ε≅ + − + Λ  

Accordingly, (15)-(20), (27)-(29) and (31), we can easily deduce:  

( )

( )

0 ( )

2 2

6
2

33 6
2

4 ,

trTR T g g a trT T

T g trT T trT trT T T

trT T

µ
αβ αβ αβ αβ α β α β µ

µ
αβ αβ µα β

αβ

χ ε χ

χ χ χ

χ

  ≅ − + Λ − ∇ ∇ − ∇ ∇   
 + − − + −Λ − 
 

+ −Λ 

     (32) 

which are a perturbation on the Bach-Einstein field equations. 
Simply, the choice 1 03a a= −  of the perturbation Equation (31), leads to a 

perturbation on the Bach-Einstein field Equations (32). On the other hand, the 
choice 0ε =  or 0 1 0a a= =  of the perturbation Equation (31), leads to the 
most general Einstein’s Equations (9). Of course, the choice 0ε =  or 0 0a =  
of a perturbation on the Bach-Einstein field Equations (32) leads, also, to the 
most general Einstein’s Equations (9).  

5. Conclusions and Discussions 

There is a well-established theory and a broad literature on singular perturba-
tions of differential equations [3]. We circumvent here this theory by assuming 
the existence of solutions regular in the perturbation parameter ε , and we de-
duce the result (32) on the latter. 

The approximate inversion Formulas (31) and (32) derived here stress the role 
of the Ricci tensor in the class of alternative gravitational theories under consid-
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eration. Let us recall that the Ricci tensor d dRic R x xα β
αβ=  appears in several 

formulas of geometrical or physical importance: 
 The volume of geodesic balls in Riemannian geometry can be expanded with 

respect to the radius [25]; analogously the volume of truncated light cones in 
Lorentzian geometry can be expanded with respect to the truncation time 
parameter [7]. The leading terms of the deviations from the flat space or flat 
spacetime values are linear in the Ricci tensor. Moreover, some estimate for 
Ric  leads to estimates for the volume of geodesic balls [26] [27]. 

 The Raychaudhuri equation for the so-called geometrical expansion θ  of a 
family of timelike geodesics with tangent vector field u uα

α= ∂  reads  

2 2 21 ,
3

R u u uα β α
αβ α ω σ θ θ= ∇ + − − −  

where the dot abbreviates the derivative uα
α∇  and where the rotation ω , the 

shear σ , and the expansion θ  of u arise from the decomposition of  
u u uα β α β∇ +   into irreducible parts (cf. e.g., [28] [29] [30]). 

 Singularity theorems of Hawking-Penrose type are based on assumptions on 
the Ricci tensor [31] [32]. 

 Tolman’s formula expresses the total active mass of a static, asymptotically 
flat spacetime as  

2 d ,
S

M R n uα β
αβ σ

χ
= ∫  

where n nα
α= ∂  denotes the unit normal to the spacelike hypersurface, u uα

α= ∂  
is the timelike Killing vector field, and dσ  is the natural volume element of the 
hypersurfaces [1] [23]. D. Barraco and V. H. Hamity [1] mention Tolman’s ex-
pression as a possible application of approximate inversion formulas.  

The Formulas (31) and (32) express the Ricci tensor in terms of the ener-
gy-momentum tensor d dT T x xα β

αβ= . Such a result can be inserted into each of 
the above-mentioned geometrical or physical formulas where the Ricci tensor 
plays a dominant role. By this, the influence of the energy-momentum tensor 
becomes transparent. 
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