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Abstract 
In the practical problems such as nuclear waste pollution and seawater intru-
sion etc., many problems are reduced to solving the convection-diffusion eq-
uation, so the research of convection-diffusion equation is of great value. In 
this work, a spectral method is presented for solving one and two dimension-
al convection-diffusion equation with source term. The finite difference me-
thod is also used to solve the convection diffusion equation. The numerical 
experiments show that the spectral method is more efficient than other me-
thods for solving the convection-diffusion equation. 
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1. Introduction 

In recent decades, with the increasing attention of human beings to environ-
mental problems, environmental pollution problems have become an increasing 
object of concern. Such as groundwater pollutants transfer, diffusion problem of 
pollutants in the ocean; absorption of chemical substances in riverbeds, distribu-
tion of pollutants in nuclear pollution, long-range propagation of pollutants in 
the atmosphere, etc., all of these phenomenon can be modelling by the convec-
tion-diffusion equation. The study of convection-diffusion equation can provide 
theoretical support for pollution prediction and the development trend of pollu-
tants, therefore the numerical analysis of convection-diffusion equation has im-
portant theoretical and practical value. 
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In general, nearly all the partial differential equations are difficult or cannot 
give the analytical solutions. So many scholars have proposed various numerical 
algorithms to cope with such problems, the traditional numerical algorithms in-
cluding finite difference method, finite element method, finite volume method, 
especially for finite difference method, many scholars have proposed various 
compact schemes, i.e., using equal number of nodes with different coefficients to 
construct some new schemes with high precision. These numerical methods 
have greatly enriched the numerical solution of the convection-diffusion. 

Next, we will focus on the following convection-diffusion equation,  

( ), , .u u u f xε α β γ− ∆ + ⋅∇ + = ∈Ω                    (1) 

The above Equation (1) is the convection-diffusion equation, where the 
second derivative i.e. u∆  is the diffusion term, the first derivative term u∇  is 
the convective term, f is the source term, ε  is the coefficient of diffusion term, 
α  and β  are constants. 

In general, it is difficult to give an analytical solution for the convec-
tion-diffusion equation, so the numerical solution becomes a good way to cope 
with it. Many scholars proposed many different methods such as finite differ-
ence method, finite element method, finite volume method, etc. for solving the 
convective diffusion equation. Dennis and Hundson [1] proposed a 4th-order 
compact finite difference method for the Navier-stokes type convection-diffusion 
equation. Lele [2] proposed a compact finite difference format with pseudo-spectral 
resolution. Fu and Ma [3] proposed an upwind compact difference method. Cock-
burn and Shu [4] constructed the nonlinear compact format with fourth-order ac-
curacy, etc. For some other methods and discussions of the convection-diffusion 
equation we can refer to [5]-[16]. 

Compared with the methods mentioned earlier, the spectral method has a 
higher accuracy in solving partial differential equations [17] [18]. In particular, 
for convection-dominated convective diffusion equations, the spectral method is 
effective in overcoming the numerical oscillation phenomenon in addition to 
giving numerical solutions with higher accuracy. In this paper we will consider 
the Chebyshev spectral method to give numerical solutions of two convective 
diffusion equations. For more applications of the Chebyshev spectral method 
and the related theory, we can refer to [17]-[23]. 

2. Preliminaries 

Some basic contents including Chebyshev polynomials and Chebyshev points 
will be introduced in this part. The Chebyshev points will be used to construct 
the differentiation matrices, which is the key point to obtain high-precision so-
lutions. 

Definition 1. [17] When the weight function ( )
2

1

1
x

x
ρ =

−
, the Chebyshev 

polynomials can be expressed as follows  
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( ) ( )( )cos arccos ,nT x n x=                      (2) 

where 1x ≤ .  
Figure 1 shows the Chebyshev polynomials when 1,2,3,4n = . Using the tri-

gonometric constancy relation, we also have the following Chebyshev polynomi-
al recurrence relation,  

( ) ( ) ( )1 12 , 1.n n nT x xT x T x n+ −= − ≥                 (3) 

This Chebyshev polynomial recurrence relation (3) is equivalent to the expli-
cit expression (2). The first several terms of the Chebyshev recurrence relation 
are as follows  

( )
( )
( )
( )

0

1
2

2
3

3

1,
,

2 1,
4 3 .

T x
T x x
T x x
T x x x

=
 =

= −
 = −
 

                       (4) 

Clearly, when cos , 0,1, ,k
kx k n
n

= =
π

 , the Chebyshev polynomials equal to  

zero. All these points are called Chebyshev points. For some finite difference 
schemes, the equidistant nodes are used widely because of their simplicity and 
convenience. But for the equidistant nodes, with the number of nodes increases, 
a major disadvantage is the Runge phenomenon. Especially near the end of the 
interval, the Runge phenomenon is very obvious. Therefore, to avoid the Runge 
phenomenon, equidistant nodes are not a suitable choice, and non-equidistant 
nodes are a way to cope with this problem. Chebyshev points are dense near the 
ends of the interval and relatively sparse in the middle, so interpolation with 
Chebyshev nodes can better avoid the Runge phenomenon. 
 

 

Figure 1. Chebyshev polynomials, n = 1, 2, 3, 4. 
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Property 1. 

( ) ( ) ( )1

1

0, ,

d , 0,
2
, 0.

m n

m n

x T x T x x m n

m n

ρ
−

≠
= = =

=π



≠

π




∫               (5) 

where the weight function is ( )
2

1

1
x

x
ρ =

−
. 

Since the studied convective-diffusion equation contains derivative terms, it is 
necessary to consider the Chebyshev derivative matrix to approximate the deriv-
ative terms, and next we give the specific representation of the Chebyshev deriv-
ative matrix. 

( ) ( )

( )

( )
( )

( )

( )

( ) ( )

2

2

2

12 1 12 1
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1 11 1
2 1 2 12 1
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i j
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D
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N
x

+

+

+

 −+ − −
− − 

 
− 

 − 
 −− −
 − −=

+ − −
 
 −
 

− 
 

− + − − 

 

   

 

   

 

      (6) 

where D is the Chebyshev matrix of first order derivative. For each element of 
the Chebyshev first order derivative matrix, the following is shown 

( )
( )
( )

2

0,0

, 2

,

2

,

2 1,
6

, 1, 2, , 1,
2 1

1
, , , 0,1, , ,

2 1,
6

i
i i

i

i j
i

i j
j i j

N N

ND

x
D i N

x

c
D i j i j N

c x x

ND

+

 +
= −


− = = − −


− = ≠ = −

 + =






               (7) 

where  
2, 0, ,
1,else.i

i N
c

=
= 


                         (8) 

For the second order and higher order derivatives, we approximate them by 
, 2kD k ≥  i.e. we have the following approximate representation,  

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )

1 1

22 .

k

k
k

k
nn

u x u x
u xu x

D

u xu x

      
   =   
        





                    (9) 
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There are some other polynomials such as Legendre polynomials, Laguerre 
polynomials, Jacobi polynomials etc. For a specific discussion of special polyno-
mials and their related properties, one can refer to [17] [18]. 

Theorem 1. [24] Suppose u is analytical, ρ  is sum of semimajor and semi-
minor axis lengths, P is the interpolation function on the Chebyshev points, 
Then,  

( ) ( ) ( ).N
NP x u x O ρ−− =                     (10) 

One of the advantages of spectral methods is that they have high accuracy. 
Theoretically speaking, Chebyshev spectral method can achieve any order of ac-
curacy. In fact, the accuracy of the Chebyshev spectrum method depends on the 
smoothness of the solution of the original problem. If the solution u of the orig-
inal problem is an analytic function in the complex plane, then the convergence 
efficiency completely depends on the analytic ellipse of u. 

3. Nunmerical Algorithms for Two Types of  
Convection-Diffusion Equations 

In the following part, we will discuss the numerical solutions of several different 
types of convection-diffusion equations. For each convection-diffusion equation, 
we will use the finite difference method and the Chebyshev spectral method to 
get the numerical solution, respectively. 

3.1. One Dimensional Convection-Diffusion Equation 

In this part we will consider the following one dimensional convection-diffusion 
equation,  

( ) , ,

.
xx xu u f x x

u g

ε α

∂Ω

− + = ∈Ω


=
                   (11) 

where the diffusion coefficient ε  and convection coefficient α  are constants. 
( )f x  is the cource term. 
Using the central finite difference method, the second order derivative term 

xxu  has the following approximate format  

( )21 1
2

2
.

i

i i i
xx x

u u u
u O h

h
+ −− +

= +                  (12) 

For the first order derivative term xu , there are many different ways to ap-
proximate it, such as the central finite difference method, the upwind finite dif-
ference method, and the modified finite difference method, etc. Finally, we will 
discuss several different numerical algorithms and compare the advantages and 
disadvantages of these algorithms. 

Example 1. 

( )
( )

1,
0 0,

1 0.

xx xu u
u

u

ε− + =


=
 =

                        (13) 
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In this case, we will give the corresponding numerical solution by finite dif-
ference method. In the interval [ ]0,1  we will use 1n +  nodes and give a equi-

distant discretization, i.e. each subinterval the length 1h
n

= . Then each point of 

the interval can be expressed as , 1, 2, ,i
ix i n
n

= =  . 

For the first order derivative term xu , we use  

( )21 1 .
2i

i i
x x

u u
u O h

h
+ −−

= +                    (14) 

Then for this problem, the following central finite difference scheme is ob-
tained.  

1 1 1 1
2

2
1,

2
i i i i iu u u u u

hh
ε + − + −− + −
− + =                 (15) 

The trunction error is ( )2O h . 

Let’s denote 2

2
h
ε α= , 2

1
2hh

ε β− + = , 2

1
2hh

ε γ− − = , then we can write the 

discrete form of convection-diffusion equation as the following expression, 

1 0

2

3

2

1

10 0 0 0
10 0 0
10 0 0 0

.

10 0 0
10 0 0 0

n

n n

γα β
γ α β

γ α

γ α β
βγ α

−

−

−    
    
    
    

=    
    
    
        −    

u u
u
u

u
u u







       





          (16) 

Figures 2-5 show the numerical and exact solutions of the convection diffu-
sion equation for different ε  respectively. Figure 2 and Figure 3 show that 
when 1ε > , the numerical solution agrees very well with the exact solution, and  
 

 

Figure 2. The numerical solution and exact solution for 100ε = . 
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Figure 3. The numerical solution and exact solution for 2ε = . 
 

 

Figure 4. The numerical solution and exact solution for 0.05ε = . 
 

 

Figure 5. The numerical solution and exact solution for 0.01ε = . 
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there are no significant errors from the plots. Figure 4 and Figure 5 show that 
the numerical and exact solutions agree well with relatively small errors in the 
left half of the interval, but the errors become larger in the right side of the in-
terval, especially near the right endpoint of the interval [ ]0,1 . 

As shown in Table 1, the absolute error between the exact and numerical so-

lutions when ε  takes different values, i.e. 1 1100,2, ,
20 100

ε = . When the  

coefficient ε  is less than 1, the numerical solution of the convective diffusion 
equation deviates significantly from the exact solution at the discrete points on 
the right side of the interval, and the numerical format has a significant oscilla-
tion at these points. When ε  is less than 1, the smaller ε  is, the larger the er-
ror is. 

The traditional differential format produces numerical oscillations when the 
coefficient is less than one, especially when the coefficient is much less than one. 
This is mainly because, when the coefficient is much less than 1, the equation at 
this point becomes a convective dominance problem. 
 
Table 1. Absolute error with different ε . 

x Error ( 100ε = ) Error ( 2ε = ) Error ( 1 20ε = ) Error ( 1 100ε = ) 

0.05 4.92637E−12 5.24816E−07 2.96805E−09 1.45661E−07 

0.1 9.34349E−12 1.01082E−06 1.08744E−08 1.94215E−07 

0.15 1.32465E−11 1.4557E−06 3.18815E−08 5.98828E−07 

0.2 1.66317E−11 1.85707E−06 8.75302E−08 1.2516E−06 

0.25 1.94932E−11 2.21244E−06 2.34436E−07 3.06607E−06 

0.3 2.18422E−11 2.51923E−06 6.20679E−07 7.00851E−06 

0.35 2.36706E−11 2.77474E−06 1.63133E−06 1.64988E−05 

0.4 2.49811E−11 2.97619E−06 4.26076E−06 3.83516E−05 

0.45 2.57732E−11 3.12067E−06 1.10549E−05 8.96328E−05 

0.5 2.60395E−11 3.20517E−06 2.84631E−05 0.000208998 

0.55 2.57855E−11 3.22656E−06 7.26028E−05 0.000487807 

0.6 2.50155E−11 3.18159E−06 0.000183045 0.00113807 

0.65 2.37175E−11 3.06689E−06 0.000454633 0.002655643 

0.7 2.19049E−11 2.87895E−06 0.001107008 0.006196354 

0.75 1.95584E−11 2.61414E−06 0.002622719 0.014458306 

0.8 1.67001E−11 2.26869E−06 0.005969958 0.033735899 

0.85 1.33124E−11 1.83869E−06 0.01275003 0.078717554 

0.9 9.40247E−12 1.32008E−06 0.024224171 0.183628034 

0.95 4.96446E−12 7.08634E−07 0.034546107 0.435309438 

https://doi.org/10.4236/am.2022.1312061


P. Guo et al. 
 

 

DOI: 10.4236/am.2022.1312061 976 Applied Mathematics 
 

In order to overcome numerical oscillations, scholars have proposed upwind 
finite difference method (16), corrected finite difference method (17), characte-
ristic finite difference method and other methods based on the traditional finite 
difference method. 

Upwind finite difference method,  

1 1 1
2

2
1.i i i i iu u u u u

hh
ε + − −− + −
− + =                 (17) 

Corrected finite difference method,  

( )1 1 1 1 1
2

2
1 1.

2
i i i i i i iu u u u u u u

h hh
ε λ λ+ − − + −− + − − − + + − =  

       (18) 

For the corrected finite difference method, is a combination of central differ-
ence method and upwind difference method with weight λ  and 1 λ−  sepa-
rately, where 0 1λ≤ ≤ . 

Similarly, the traditional finite element method also has numerical oscillations 
for the convection dominant equation. Many scholars have proposed a series of 
correction techniques to combine the finite element method with other methods, 
and proposed the characteristic finite element method, characteristic hybrid 
element method, etc. 

Figure 6 and Figure 7 show the numerical solutions of various different algo-
rithms when ε  takes different parameters. For the central differential format, 
the numerical oscillation is obvious when ε  is smaller. The upwind differential 
format and the modified upwind differential format can overcome the numerical 
oscillation phenomenon, but the accuracy of these methods is not good enough. 
Therefore, an algorithm that can avoid numerical oscillations and at the same 
time obtain high numerical accuracy is necessary for solving the convec-
tion-diffusion equation. 

Table 2 shows the absolute errors between the numerical solution and the ex-
act solution obtained with different numerical algorithms. Error1, Error2, and  
 

 

Figure 6. The numerical solution and exact solution for 1
100

ε = . 
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Figure 7. The numerical solution and exact solution for 1
200

ε = . 

 
Table 2. Absolute errors for different methods. 

x Error1 Error2 Error3 

0.05 1.45661E−07 1.38084E−15 6.93889E−18 

0.1 1.94215E−07 9.58955E−15 2.77556E−17 

0.15 5.98828E−07 5.88696E−14 2.77556E−17 

0.2 1.2516E−06 3.54244E−13 0 

0.25 3.06607E−06 2.12655E−12 8.32667E−17 

0.3 7.00851E−06 1.27607E−11 1.66533E−16 

0.35 1.64988E−05 7.65654E−11 9.99201E−16 

0.4 3.83516E−05 4.59393E−10 1.33782E−14 

0.45 8.96328E−05 2.75636E−09 1.90792E−13 

0.5 0.000208998 1.65382E−08 2.73237E−12 

0.55 0.000487807 9.9229E−08 3.9163E−11 

0.6 0.00113807 5.95374E−07 5.61335E−10 

0.65 0.002655643 3.57225E−06 8.04581E−09 

0.7 0.006196354 2.14335E−05 1.15323E−07 

0.75 0.014458306 0.000128601 1.65295E−06 

0.8 0.033735899 0.000771603 2.36905E−05 

0.85 0.078717554 0.004629324 0.000339287 

0.9 0.183628034 0.027732378 0.004822096 

0.95 0.435309438 0.15992872 0.063029495 
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Error3 in the table are the absolute errors between the analytical solution and the 
numerical solution obtained in the central difference format, upwind difference 
format, and the corrected upwind difference format, respectively. For the same 
points as shown in Table 2, especially at the points near the right end of the in-
terval, Errors2 and Error3 are significantly smaller than Error1, which also means 
that there is no numerical oscillation for the corresponding numerical format. 

Algorithm 1: Chebyshev spectral method for one dimentional convection- 
diffusion equation 

For the convection-diffusion equation, we can obtain the following numerical 
format, using the Chebyshev spectral method,  

2 ,D u Du fε− + =                       (19) 

where D is the Chebyshev matrix, ( )T1,1, ,1f =  . If we denote L as the coeffi-
cient matrix 2D Dε− + , then we have  

.Lu f=                           (20) 

Next, we consider the boundary conditions ( ) ( )0 1, 1 0u u= = . We need to 
make a small modification to the coefficient L. After replacing the first and last 
row of the matrix L with ( ) ( )1,0, ,0,0 , 0,0, ,0,1   respectively, we denote the 
new coefficient matrix as L̂ . For the right-hand side term f of the Equation (18), 
we also need to modify the first and last terms to 0, we denote the modified f as 
f̂ . Finally, we get the numerical format for the convection-diffusion equation 

with Chebyshev spectral method,  

ˆˆ .Lu f=                          (21) 

Figure 8 shows the numerical solutions given by the Chebyshev spectral me-
thod and several of the previously discussed finite difference methods. It is clear 
that the Chebyshev spectral method does not have numerical oscillations while 
being able to obtain higher accuracy. This is mainly because the Chebyshev 
points are not uniformly distributed and are more concentrated at the two ends 
of the interval, so there is no numerical oscillation near the interval endpoints. 

In Table 3, Error1, Error2, Error3 and Errorch are the errors of cerntral differ-
ence method, upwind difference method, corrected difference method and Che-
byshev spectral method respectively and 21 nodes are used for each format. 
From Table 3, it is clear that the numerical solution calculated with the central 
difference format has the largest error and the numerical solution calculated by 
the Chebyshev spectral method has the smallest error. 

Table 4 shows the absolute errors between the numerical results calculated by 
the Chebyshev spectral method and exact solutions when different parameters 
are taken. It is obvious that when the coefficients are fixed, the larger the num-
ber of nodes, the smaller the error, meanwhile, when the coefficients are very 
small there is no numerical oscillation. When the node N is large enough, the 
absolute error values in the table are already very small and exceed the minimum 
value of the system, so some of the data values in the table are 0. 
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Figure 8. Numerical results with different methods for 1
100

ε = . 

 

Table 3. Maximum error of different methods. ( 1
100

ε = ). 

1Error
∞

 2Error
∞

 3Error
∞

 chError
∞

 

4.353E−01 1.599E−01 6.303E−02 6.017E−03 

 
Table 4. Maximum errors of Chebyshev spectral method with different nodes N and ε . 

 chError
∞

 

10ε =  

chError
∞

 

1ε =  

chError
∞

 

1
40

ε =  

chError
∞

 

1
80

ε =  

chError
∞

 

1
100

ε =  

chError
∞

 

1
200

ε =  

N = 41 4.61E−16 2.62E−16 0 6.07E−10 2.39E−08 7.26E−05 

N = 51 5.28E−16 2.05E−15 9.99E−16 2.29E−14 5.01E−12 6.79E−07 

N = 81 5.30E−16 2.98E−15 3.33E−16 2.50E−16 5.27E−16 4.22E−15 

N = 101 5.22E−16 3.38E−17 1.07E−15 1.24E−15 0 0 

N = 201 4.62E−16 1.97E−14 4.80E−15 1.06E−14 1.11E−15 0 

3.2. Two Dimensional Convection-Diffusion Equation 

In this part we will focus on the two dimensional convection-diffusion equation. 
The specific equation format is as follows,  

( ) ( ) ( ) ( ) ( ), , , , , ,xx yy x yu u x y u x y u u f x y x yε α β− + + + + = ∈Ω      (22) 

where the diffusion coefficient ε  is a constant, ( ) ( ), , ,x y x yα β  are the con-
vection coefficients, and ( ),f x y  is the source term. The convection-diffusion 
satisfies Dirichlet boundary condition, i.e. ( ),u g x y

∂Ω
= . 

Both in x and y directions we use the central difference method respectively, 
we have 
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( )1, , 1, 2
2,

2
,

i j

i j i j i j
xx x y

u u u
u O h

h
+ −− +

= +                 (23) 

( ), 1 , , 1 2
2,

2
,

i j

i j i j i j
yy x y

u u u
u O h

h
+ −− +

= +                 (24) 

( )1, 1, 2
,

,
2i j

i j i j
x x y

u u
u O h

h
+ −−

= +                    (25) 

( ), 1 , 1 2
,

.
2i j

i j i j
y x y

u u
u O h

h
+ −−

= +                    (26) 

Then we have the following numerical scheme. 

1, , 1, , 1 , , 1
2 2

1, 1, , 1 , 1
, , , ,

2 2

.
2 2

i j i j i j i j i j i j

i j i j i j i j
i j i j i j i j

u u u u u u
h h

u u u u
u f

h h

ε

α β

+ − + −

+ − + −

− + − + 
− + 

 
− −

+ + + =

            (27) 

In the above numerical format ( ), ,i j i jx yα α= , ( ), ,i j i jx yβ β= ,  

( ), ,i j i jf f x y= . Both in x and y directions, we use the same step size h. 
Example 2. 

( ) ( ) [ ] [ ]

( )
( )

( ) ( )

( ) ( )

1

1

1 11

1 111

1 , , , 0,1 0,1 ,
1

,0 e 2 ,

,1 e 2,

0, e 2 1 ,

1, e 2 1 .

xx yy x

x

x

y

y

u u u f x y x y
y

u x

u x

u y y

u y y

ε

ε ε

ε ε

ε

−−

−

− +

− +−

− + + = ∈ × +


= +


= +

 = + +


= + +


         (28) 

On the right hand side of the above equation  

( ) ( )
1 1 11 1, 2 e 2 1 1

1
y xf x y y

y
ε εε

ε
− −−   = − − − + +   +   

. 

The numerical solution of Example 2 using the central finite difference algo-
rithm (26) is shown in Figure 9, and the analytic solution of the corresponding 
problem is shown in Figure 10. It is clearly that when ε  is small, there is a sig-
nificant difference between the numerical solution and the exact solution at the 
points near the end of the definition domain. Figure 12 shows the absolute er-
rors of the numerical and exact solutions at the nodes, which are smaller when x 
and y are near the left endpoint 0 and have become quite large when x and y are 
near the right endpoint 1. 

Figure 11 and Figure 12 show the errors between the numerical solution 
given by the central difference method and the exact solution when the diffusion 
coefficient ε  takes different values. When the diffusion coefficient ε  is large, 
the numerical solution given by the central difference algorithm agrees better 
with the exact solution, but when the diffusion coefficient is small, the error be-
tween the numerical solution and the exact solution is larger. 
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Figure 9. Numerical solution ( )ˆ ,u x y  with 1 , 21
100 x yN Nε = = = . 

 

 

Figure 10. Exact solution ( ),u x y  with 1
100

ε = . 

 

 

Figure 11. The absolute error of central difference method for 10, 21x yN Nε = = = . 
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Figure 12. The absolute error of central difference method for 1 , 21
100 x yN Nε = = = . 

 
Table 5 shows the maximum error in the definition domain when the nodes 

and diffusion coefficients take different values. From Table 5 we can clearly see 
that when the diffusion coefficient 1ε ≥ , the maximum error is relatively small 
regardless of the number of nodes, but when the diffusion coefficient ε  is small,  

as shown in the table when 1
100

ε =  or 1
200

ε = , the maximum error has 

reached an unacceptable level even if the number of nodes is large. 
Algorithm 2: Chebyshev spectral method for two dimenditional convection- 

diffusion equation 
For the Chebyshev derivative matrix D, as discussed in the previous section, 

we will not expand the discussion in detail here. If we arrange the solution u into 
a column vector along the y direction. Then xx yyu u+  can be expressed as 

( )2 2D I I D u⊗ + ⊗ , where ⊗  is the Kronecker product. The first order term  

1
1 xu

y+
 can be writen as ( )

0

1 1, ,
1 1 n

diag D I U
y y

 
⊗ + + 

 . Similarly, for the  

right end term f of the equation we rearrange it and denote it as F. Then for two 
dimenditional convection-diffusion Equation (27) we have the following Che-
byshev spectral numerical format.  

( ) ( )2 2

0

1 1, , .
1 1 n

D I I D diag D I U F
y y

ε
  
− ⊗ + ⊗ + ⊗ =   + +  

      (29) 

If we denote ( ) ( )2 2

0

1 1, ,
1 1 n

D I I D diag D I
y y

ε
 

− ⊗ + ⊗ + ⊗ + + 
  as L, then 

the above format can be simply written as  

.LU F=                           (30) 

However, this Format (28) or (29) only considers the internal nodes, and the 
boundary conditions are not yet considered. If we take the boundary conditions 
into account, then we need to make a small modification to (28) or (29), i.e., re-
place the coefficient matrix and the corresponding row of the right terminal 
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term with the corresponding relationship at the boundary. If we denote the 
modified coefficient matrix and the right terminal term as L̂  and F̂ , respec-
tively, then we have, 

ˆ ˆ .LU F=                          (31) 

We use the Chebyshev spectral method given above to calculate the numerical 
solution of Example 2. Figure 13 and Figure 14 show the errors when ε  is  

taken as 10 and 1
100

 respectively, and 21 nodes are taken in the x and y direc-

tions. 
Figure 13 shows that when 10ε = , the maximum absolute error is less than 

1.5 × 10−9. When the diffusion coefficient is 1
100

ε = , the absolute error of the  

numerical solution given by the spectral method becomes larger but is still less 
than 4 × 104. This result is much better than the numerical solution given by the 
central difference format, and there is no numerical oscillation. 

Table 6 gives the absolute errors of the numerical solutions obtained by the 
Chebyshev spectral method for example 2 when different parameters are taken.  
 

 

Figure 13. The absolute error of Chebyshev spectral method for 10, 21x yN Nε = = = . 

 
Table 5. Absolute error of central difference method with different parameters. 

 cdError
∞

 

10ε =  

cdError
∞

 

1ε =  

cdError
∞

 

1
10

ε =  

cdError
∞

 

1
100

ε =  

cdError
∞

 

1
200

ε =  

21x yN N= =  3.59E−05 5.43E−05 0.003404 0.614740 1.585612 

41x yN N= =  9.01E−06 1.36E−05 0.000856 0.171562 0.662713 

51x yN N= =  5.77E−06 8.70E−06 0.000547 0.111182 0.421548 

81x yN N= =  2.25E−06 3.40E−06 0.000214 0.045283 0.186831 

101x yN N= =  1.44E−06 2.18E−06 0.000137 0.029173 0.123285 
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Figure 14. The absolute error of Chebyshev spectral method for 1 , 21
100 x yN Nε = = = . 

 
Table 6. Absolute error of Chebyshev spectral method with different parameters. 

 chError
∞

 

10ε =  

chError
∞

 

1ε =  

chError
∞

 

1
10

ε =  

chError
∞

 

1
100

ε =  

chError
∞

 

1
200

ε =  

21x yN N= =  1.26E−09 1.12E−10 6.66E−12 3.63E−05 0.004378 

41x yN N= =  1.22E−08 1.77E−09 1.22E−10 1.46E−11 4.93E−09 

51x yN N= =  5.72E−08 4.54E−09 4.76E−10 4.06E−11 1.51E−11 

81x yN N= =  5.04E−07 5.04E−08 3.83E−09 3.73E−10 2.54E−10 

101x yN N= =  1.76E−06 1.53E−07 1.46E−08 9.47E−10 5.89E−10 

 
The errors are all better than the finite difference method when the diffusion 
coefficient is smaller, which also shows that the spectral method is better 
adapted than the finite difference method for solving the convective dominance 
equation. 

4. Conclusions 

In this work, we mainly focus on the one and two dimensional convec-
tion-diffusion equation. For the one dimensional convection-diffusion equa-
tion, we give the Chebyshev spectral format, in addition the central difference 
format, the upwind format, and the correction format are also given. Through 
specific numerical case, it is obvious that the finite difference format has nu-
merical oscillations in the convection dominant case and the accuracy of the 
differential format is not very satisfactory. In contrast, the numerical solution 
given by the Chebyshev spectral method is in good agreement with the exact 
solution and has no numerical oscillations. For the two-dimensional convec-
tion-diffusion equation, we mainly discuss the numerical format corresponding 
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to the two dimensional Chebyshev spectral method, and also give the central 
difference format. Through specific numerical results, it is obvious that the 
Chebyshev spectral method not only obtains higher accuracy, but also has sig-
nificant advantages over the difference method in suppressing numerical oscilla-
tions. 

The Chebyshev spectral method mentioned above is generally only adapted to 
rectangular regions, and it is difficult to extend it to general regions. Therefore, 
the spectral method is combined with other methods, such as the finite element 
method, to extend its adaptation to the general area, which is very useful when 
dealing with practical problem models, not only to give more accurate solutions, 
but also to save the computational workload significantly. 
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