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Abstract

In this paper, we examine the space discretization of time fractional telegraph
equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease
and convenience, we deal with the fractional derivative by first converting
from Caputo’s type to Riemann-Liouville’s type. The proposed method was
constrained to precise error analysis to establish the accuracy of the method.
Numerical experimentation was implemented with the aid of MAPLE 18 to
show convergence of the method as compared with the analytic solution.
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1. Introduction

The popularity of fractional partial differential equations (FPDEs) gained mo-
mentum in science and engineering due to its involvement in many areas of ap-
plications ([1]). Many researchers have developed numerical techniques for
solving FPDEs. Some of the methods include finite difference method ([2] [3]
[4] [5]), spectral method ([6] [7] [8] [9]), spline function method ([10]), finite
element method ([11] [12] [13] [14] [15]) variational method ([16]), etc. How-
ever, the development of these enormous numerical procedures for FPDEs still
poses meaningful challenges such as the use of orthogonal polynomials as basis
functions.
A time fractional telegraph equation (TFTE) has the form ([17])
50%u(xt) . au(xt) du(xt)
at’ ot ox?

=g(xt),0<x<T,t>0, (1.1)
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with the initial conditions

,0
u(x,O):uo(x),%zul(x),03xsT,t>0, (1.2)
and boundary conditions
u(0,t)=u(0,T)=0,0<x<T,t>0, (1.3)
50%u(x,t)

where 1< <2, g(X,t) is the source term and is Caputo frac-

ot”
tional derivative of u(xt).

The TFTE is a hyperbolic partial differential equation responsible for model-
ing many physical phenomena, such as wave propagation, signal processing,
random walk theory and so on. Consequently, TFTE has been studied by many
authors. Riemann-Liouville’s method was adopted by Cascaval et al ([18]) for
analyzing the solution of TFTE. Orsingher and Beghin ([19]) studied the TFTE
governed by a Brownian time. The method of separable variable was used by
Chen et al ([20]) for solving TFTE constrained to three nonhomogeneous
boundary conditions. Momani ([21]) solved the approximate and analytic solu-
tion of space and time fractional telegraph equations via Adomian decomposi-
tion method (ADM).

In this paper, we solve (1.1)-(1.3) with Mamadu-Njoseh orthogonal basis
functions in a space discretization approach. Here, the process of discretization
is quite different from the classical numerical method— finite difference method.
In FEM, the given differential equation has to be reformulated as a variational
problem leading to the solution via the following steps:

1) Finite dimensional space construction, U, . This is the discretization
process;

2) Seeking solution to the resultant discrete problem; and

3) Implementation through a computer programming.

This paper is organized as follows. Section 2 constitutes preliminaries. Finite
element method for time fractional telegraph equation is given in Section 3. Er-
ror analysis is given in Section 4. Numerical illustrations, tables of results and
graphical simulations are given in Section 5 and Section 6. Discussion of results

and conclusions are presented in Sections 7 and Section 8, respectively.

2. Preliminaries
Let’s use the notation
a<tA and a<QA,

where 7and Qare constants free of aand A, and are discretization parameters.
Let Rand y be two given Hilbert spaces, ||.||R%V is defined as

ey
R Tl
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2.1. Weak Derivative

Suppose B=(p,f,, . 3,) represent a multi-index and |B|=Y" f, . Fora
well defined smooth function U e Q, I¥, being the differential operator is giv-

en by ([22] [23])
DU =d"U .

Now, an integrable function V'is said to possess a weak derivative U if U sa-

tisfies
[ Ugdx=(-1)"[ D/gdx, vgpeCy(Q),

where, C; (Q) denotes the space of infinity differentiable functions supported
compactly in Q2. We assume ¥ to be weak derivative throughout this research.

2.2. Sobolev Spaces

Let U cQ be a lebesque measurable function and ¢>1. The norm |.|
be defined by ([24])

(@)

Y
[Vl (; u(x)f dx) .

where L°(Q) denotes the set of all U such that ||U ||LP -
integer k >0, we have the Sobolev space W*'” (Q) given as

W P(Q)={U e’ (Q): DU e L (Q), V|| <k}.

12
O (@)=(2 070, )

are the corresponding Sobolev and Semi norms of W*P (Q) respectively.
Now for O0<k <1, |-|Wk‘p Q) is defined by

is finite. Given an

Also,

D?U

uwe (@), 2 e

d+kp
[xov |

called the fractional Sobolev Semi norm with

WP (Q)={Uuel® (Q):|U|Wk’p(Q)<oo}.

For 4>0,wewrite g=n+k, n>q, ke(0,1).

Thus, the Sobolev space becomes

W (Q)=fu W™ ;DU eW*? (@), |4 =n}

and
1

||U||W‘“’(Q)=(U WP (Q)+ pW“‘(Q))E,

is the full norm. For (>0, Sobolev space W*? (Q) is a Banach space ([25]).
Similarly,
when P =2, the sobolev space W*?(Q2) is a Hilbert space, that is,
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H?(Q)=W**(Q).
In particular, to solve our model equation we define the Sobolev space as
Hy (Q)={U e H"(Q):08],, =0,v|p| <n-1}.

To establish the equivalences of certain norms in the subspaces of Hg(Q),
we shall rely in the famous Poincaré inequalities.
Lemma 2.1. ([26]): For C >0, then
"V"LP(Q) = CM H'(Q), YV € Hg (Q).

Lemma 2.2. ([26]): For C >0, then
”\/ [ vax
_ Q
meas(Q
( ) ()

Lemma?2.3 ([26]): For C >0, then
IV[H® (Q)<C|V|H"(Q),Vs<n, WV e H"(Q),

<C|V|H'(Q), ¥V e H'(Q).

which is generalized poincare inequality.
Thus, ||n , over thespace Hg (Q) is equivalent to ||||n 0"

2.3. Caputo Fractional Derivatives

Let [a,b]eR, D/ [U(t)](x)=(DLU)(x), and Df [U(t)](x)=(D4U)(x)
be the Reimann-Liouville (R- L) fractional derivatives of order f. The fractional de-
rivatives of order (°D£U )(X) and (CDbﬂ_U )(x) of order fon [a,b]eR>0,
are as ([27])

: @)
(*DLU)(x)= Df{u(t)—zi_o . <t—a>}<x) e

<°Df.u)(x){Df.{u(t)—zrs“(k?.(b><b—a>‘D<x> 22)

respectively, where m = [R(ﬁ)]+1 for fe¢N,, m=/f for BeN,.

The above Equations (2.1) and (2.2) are called left- and right-sided Caputo
fractional derivatives of order f.

Lemma 2.4 ([27]):

Let r(x) €C", neNU{0}. Then the caputo fractional derivative of r(x)
is given as D”U (x)=1"7D"U (x), satisfying the following properties:

(@) D”(1"U(x))=U(x)
®) 1”7(DU(x)=7(x)-2 1 U*(0 )(T.]

0,7eN,, y<p,

(c) DX =1 T(r+1) s , (2.3)
T-p+) 7eN,r2pB,

where B, >a and Na={0,1,2,3,---}.
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2.4. Mamadu-Njoseh Polynomials

These are orthoponal polynomials generated with reference to the properties
([28] [29] [30])

P (X) = ZT:oanj . xe[-11], (2.4)
. b - .
B[J]=[}(1+X)o. ()Xo Jax=0, j=12)n, @9
subject to the initial conditions
@ (x)=1 and ¢, (1)=1, (2.6)

where |, denotes a unit step increment, w(x) is weight function.

Lemma 2.5: Forany Z, U{0} valueof 3 apartition
Jo < Ji <y <-+<lny <], witha unit step size.

Theorem 2.1. For m = j, there exists n system of linear algebraic Equations
generated from using (2.4)-(2.6) at the (j,,m),(j,,m),--,(j,_;,m),(J,,m), re-
spectively.

Proof Let B[j,] be given by lemma (2.5), we have j, < j <---<j_; <] .
Thus, for M= j=r, the grid points of the partition by refinement would
(jo»m),(jm),-, (i, m),(j;,m). Hence, we have

B[ Jn] :j:w(x)gon (X)@n (x)dx=0 at (j,,m).

The first Mamadu-Njoseh polynomials are general via MAPLE 18 via theorem

2.1, and are presented in Figure 1 and Table 1, respectively.

i =

0,(x) 0,(x) 0,(x) 0,(x)

e (P4(X)

Figure 1. Graphical view Mamadu-Njoseh Polynomials ¢, (X) .
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Table 1. First seven Mamadu-Njoseh Polynomials.

n Mamadu-Njoseh polynomials, ¢, (X)
0 1
e
2
1(5x2 -2)
3
3

%(14x3—9x)

4
414(333——2898x24—3213x4)
648

5
—JE—(325x-—1410x34—1221x5)
136

Ajhf(—460—r8685x2——24750x4+17589x6)
1064

3. Finite Element Method for Time Fractional Telegraph
Equation

We consider the space discretization time functional telegraph Equations (1.1)-(1.3)
with Mamadu-Njoseh basis function using the finite element method.

Let a piecewise finite element space that is linear and continuous be given as
V, . Let [0, 1] be partitioned as

0=X, <X <X, <---<X, =1,
called the space partitioning of [a,b].
Let V, ={S,(x):S,(x)is continuous and linear in [0,1]} .

The variational formulation for the time - fractional telegraph Equation (1.1)
is to compute U(t)eHg(a,b) such that

(SD{’ [u(x,t)—Uo],S(x))+(Ut,S(x))—(UX,S(x))
=(9(xt),S(x)), S(x) e Hy.

The essence of FEM is to compute U, (t) €V, , such that
ou ou o 0
"D/ [u(x,t)-U, |, +(—, —[—,—yj:[ —7j eV, 3.2
(ot[() 0]7’) 8’[7/ o ox 7/6)(7 h (3.2)

Let B, =-A,:V, >V, satisfies

ou ou o0
(BhUh,y)=(E,7j—[&,a—Q, 7ev,. (3.3)

(3.1)

Suppose G, :G —V, defineda L, operator given by
(Gis.7)=(s7), YreV,, sel,.
Thus, Equation (3.2) can be written in the abstract sense as

(5D [u(xt)-U, ],8(x))+BU, =G,g, t>0, (3.4)

where
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1 8 pu(s—x)
kD’ 1)) = ds, At(0,1), 3.5
DF (u(x1)) F(l—ﬂ)at'[o(t—s)_ﬂ s A0 (32)
called the Riemann-Liouville fractional derivative, and I is the Gamma function.
Using quadrative formula (([31])] on (3.4), we obtain
) t7#
j
SDtﬁu(tj)= r:OW"i [u(tj—tr)—UoJ+W(_ﬁ)Gj(g), (3.6)
where W,

1 1, r=
W, . (36
" r(2-p) {—Zrlﬂ +H(r=1)" +(r+1)”, r=1,2,,j (62

and G;(g) satisfies

||Gj (9 )|| <K/ supg.or

u"(t, -t
Now, let U(X,t)=Uj zUh(tJ) Zg‘;llaj(pj(x,tj), be an approximation of
j

U, (tj ), where ¢, (x),
V.
Also,let g; =g (t i ) defines the time discretization such that

' oU, ouU .
At_ﬁz::Oer (Uj—r _U017)+[ ! ,}/J—[—J %J

, We[O,l].

=0(1)(N —1), are Mamadu-Njoseh Basis function of

ot x ' ox
(3.7)
0 .

:(gj a_ij j=0(1)n, vy eV,.
Now, we consider the following steps for j=0(1)n.
Step 1: Suppose j=0,then U;=0.
Step 2: Set j=1, we get,

AtﬁWM(Ul,;/)—i—[aUl ,d{%ﬁlj

+AL? (zfﬂwﬂ ((Uj —UO),;/)—W01 (Uo,y)), yeV,.

Since U; ~u (tj ) = Z::.largor (X,tj ) , we have that,

A (S0, (g (x)7))+ 0 [%@z [M@J

oX OX

0 -
:(gv&]/j_m ﬁ(Wu(Uo _Uo’7)+W01(U0:7))v Vy eV,

= A (X a (o (xt)) 7))+ 20 [[6“* ‘(;ltj ),7}[6“* ‘g:’tj | %J] (3.9)

0 _
:(gl-a_i/j_At ﬁ(Wn(Uo _u0’7)+W01(Uo'7))! Vy eV,

Let 7=, (xt;), k=1(2)(N-1), we have,
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A (0 (o (%), (x))
+z:-1ar [[%,% (X,tj )]_[a(ﬂr(g;(,tj ) , 2 (a);,tj )JJ (3.10)

:(gl’g_}):j_mﬂ (W11 (U0 —Uo,j/)-i-WOl (UO,(pk (X,tj ))), VyeV,

Thus,
AW, (M *RY)+Q#R =G - AU/W, R + ALY WU, (3.11)

where,

(a(xti)a(xt))  (@(ot)e(xt)) o (oea(xt)alxy))
M = (%(X’tj)’.%(x'tj)) (("Z(X’ti)’%(x'tj)) ((p’\‘—l(x’ti?’¢2(x’ti))

{M,%(x,tj) ~ 8¢1(X,tj),a¢1(xltj)J

R' =

OX

[M,%l(x,tj) _E on(xt) a%l(x’ti)J | PPt

-
R :[ao a a - aN—l] .
Step 3: To compute U, =U, (t i ) we repeat the above steps as 1 and 2. Thus,
with the above idea, the finite element method can be formulated and solve the
resulting system via MAPLE 18 Software.

4. Error Analysis

We consider the lemma below

Lemma4.1: Let U; be the approximate solution of

_ g
SD7u(ty) = 2wy [u(t =t ) -y, |+ Y 6,(g) (4.1)

Atﬂrj(—ﬂ) :
Then we have
ol =20+ 52 (-p)ef o],

Theorem 4.1: Let u(tj) and U; be the solutions (3.4) and (4.1), then we
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have

Ju;—u(t;)] < 21V, —Quug| +O(at* # +1?)

>

where 4 is the space step size. Let Q, :Hg —V, defines an elliptic or Ritz pro-

pectim given by

(VQ,s,Vy)=(Vs,Vy), VyeV,.
Let ej=Uj—u(tj)zuj—Qhu(tj)+Qhu(tj)—u(tj)=aj+qj, =123,

where, a; =Uj —Qhu(tj), q; = Qhu(tj )—u(tj )
Now, the error equation obtained from (4.1),

t” :
) B
5 G

= F(_ﬂ) r—o Wi |:(Ujfr —U0)+ BhUj -Q, (u(tj,r)_uo)-f- BthU(tj ):|
t? _

:thj +GhBhu(ti)_Qh F(l_ﬂ) :zowrj(u(tjfr)_uo)

:_Ghyj

where,
t# )
Yj Z_EDﬁ [u(tj)—UoJ+th ::OW”- (u(tj—r —uo)—uo)z Pj + K,— ,

where,

=@y o )

3=y ot ()= 507 [u(t) -]

Thus, we have,
LI
F(’_ﬁ)Z‘”:Owrju(ozjfr —aty)+Bya; =G, (P, +K;).

By Lemma 4.1, we have

Jo |+ 2l |+ 2 () (P + K, )

Here

-5
o<

U”(t, -t;t)] = Kat”

" (t, 1))
and

i
+ r=0 ij Uo

G2

<

::o Wy (tj—r )

GZ
where ||||G2 is Sobolev norm.
Let denote f (t)= u(tj —tjt) , then,
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Lo (t ) = Lu(t, -t e dt+ G = [ f () dt+ G,

r=0
obtained via Hamamard d integral formulation ([32]), and

G5 < 37 ile < A Julle < AG ful
Let q=t, —t;t into .[: f (t)t™"dt, to obtain,
[, f ()t 7dt =t/ 5Du(t; )T (-p).

Thus,

“Z::o wu(t)

t/ | < k027 ([P (=) 5D7u (8 )] o +AC Ualle )-

<t/[r (-a)5D¢u(t; ). + A Ui

Thus, we have that,

Jexi]| < 2l 1+ Sin:ﬂ Ir(-p)t” HGh (@ +q; )”

< 2o+ Kt A U, [+ khf (| 5DPu(t)

o AU
< 2||a0||+O(At2‘ﬁ +h?)

Hence,
e[| < s+ & | = 2l + O (a8 +0%) [

Therefore,

63/ =JQu(t; ) -ult; ) = kb7 Ju (s,
Obtained via elliptic projection of error estimation. Thus, we finally obtain

e[ = 2)e; |+ B(At7 +1).

G2’

5. Numerical Illustration

In this section, we carry out numerical simulations to verify the accuracy of the
proposed method.
Let in (1.1) be given
g(x,t)= 2(x2 - x){

r(3-p)+t”

_ 2
r(3-4) J 2t?,0<x<1te(0,1] (5.1)

with initial conditions

ou(x,0
u(x,0)= U(a)t( )=0,05xsl (5.2)
and boundary conditions
u(0,t)=u(Lt)=0, 0<x<1. (5.3)

The exact solution is givenas u(X,t) = (x2 —~ X)tz.

Using (3.11) on (5.1) at N =3 with W, r=0(1)3, estimated using (3.6a),
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and At=1/1000 at t=1, results are presented below with the aid of MAPLE
18.

6. Numerical Illustrations

The proposed method has been successively implemented for the time fractional
telegraph equation. Maximum errors in L, and L, were obtained as shown
in Table 2. The L, and L_ errors and the numerical order are in agreement
in space for =15 and 1.8.It can be seen that the order of convergence of the
proposed method is in total agreement with the theoretical analysis as shown in

Figure 2 and Figure 3, respectively.

Table 2. Maximum error.

N L, Error (Proposed method) L Error B
20 3.8141E-006 3.6141E-006

40 1.0594E-005 1.2242E-005 Ls
80 3.0311E-005 4.0311E-005 .
160 4.0142E-005 3.0142E-004

20 3.7337E-003 3.3327E-003

40 5.2802E-003 4.2982E-003 L8
80 1.6125E-003 2.0125E-003 .
160 2.2804E-003 3.2907E-003

u(x,1)

Exact Solution Il Compued Solution I

Figure 2. Comparison of computed solutions and Exact solutions at At=1/1000 at
t=1/4=15.
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u(x,1)

Figure 3. Comparison of computed solutions and exact solutions at At=1/1000 at
t=14=18.

Exact Solution Ml Compued Solution |

7. Conclusion

The space discretization scheme was developed and implemented with the aid of
Mamadu-Njoseh orthogonal basis functions. Satisfactory numerical evidence
was obtained as the order of convergence of the proposed method is in total
agreement with the theoretical analysis. Also, The L, and L_ errors and the

numerical order are in agreement in space for =15 and 1.8.
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