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Abstract 
In this paper, we examine the space discretization of time fractional telegraph 
equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease 
and convenience, we deal with the fractional derivative by first converting 
from Caputo’s type to Riemann-Liouville’s type. The proposed method was 
constrained to precise error analysis to establish the accuracy of the method. 
Numerical experimentation was implemented with the aid of MAPLE 18 to 
show convergence of the method as compared with the analytic solution. 
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1. Introduction 

The popularity of fractional partial differential equations (FPDEs) gained mo-
mentum in science and engineering due to its involvement in many areas of ap-
plications ([1]). Many researchers have developed numerical techniques for 
solving FPDEs. Some of the methods include finite difference method ([2] [3] 
[4] [5]), spectral method ([6] [7] [8] [9]), spline function method ([10]), finite 
element method ([11] [12] [13] [14] [15]) variational method ([16]), etc. How-
ever, the development of these enormous numerical procedures for FPDEs still 
poses meaningful challenges such as the use of orthogonal polynomials as basis 
functions. 

A time fractional telegraph equation (TFTE) has the form ([17]) 

( ) ( ) ( ) ( )
2

0
2

, , ,
, , 0 , 0,

C u x t u x t u x t
g x t x T t

tt x

β

β
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with the initial conditions 

( ) ( ) ( ) ( )0 1

,0
,0 , , 0 , 0,

u x
u x u x u x x T t

t
∂

= = ≤ ≤ >
∂

         (1.2) 

and boundary conditions 

( ) ( )0, 0, 0, 0 , 0,u t u T x T t= = ≤ ≤ >               (1.3) 

where 1 2β< < , ( ),g x t  is the source term and 
( )0 ,C u x t

t

β

β

∂

∂
 is Caputo frac-

tional derivative of ( ),u x t . 

The TFTE is a hyperbolic partial differential equation responsible for model-
ing many physical phenomena, such as wave propagation, signal processing, 
random walk theory and so on. Consequently, TFTE has been studied by many 
authors. Riemann-Liouville’s method was adopted by Cascaval et al. ([18]) for 
analyzing the solution of TFTE. Orsingher and Beghin ([19]) studied the TFTE 
governed by a Brownian time. The method of separable variable was used by 
Chen et al. ([20]) for solving TFTE constrained to three nonhomogeneous 
boundary conditions. Momani ([21]) solved the approximate and analytic solu-
tion of space and time fractional telegraph equations via Adomian decomposi-
tion method (ADM). 

In this paper, we solve (1.1)-(1.3) with Mamadu-Njoseh orthogonal basis 
functions in a space discretization approach. Here, the process of discretization 
is quite different from the classical numerical method—finite difference method. 
In FEM, the given differential equation has to be reformulated as a variational 
problem leading to the solution via the following steps: 

1) Finite dimensional space construction, hU . This is the discretization 
process; 

2) Seeking solution to the resultant discrete problem; and 
3) Implementation through a computer programming. 
This paper is organized as follows. Section 2 constitutes preliminaries. Finite 

element method for time fractional telegraph equation is given in Section 3. Er-
ror analysis is given in Section 4. Numerical illustrations, tables of results and 
graphical simulations are given in Section 5 and Section 6. Discussion of results 
and conclusions are presented in Sections 7 and Section 8, respectively. 

2. Preliminaries 

Let’s use the notation 

Aα τ≤  and QAα ≤ , 

where τ and Q are constants free of α and A, and are discretization parameters. 
Let R and γ be two given Hilbert spaces, . R γ→

 is defined as 

( )
, 0

supR
R

G y
G

xγ
θ θ

θ
θ→

∈ ≠
= . 
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2.1. Weak Derivative 

Suppose ( )1 2, , , nβ β β β=   represent a multi-index and 1 ji
nβ β
=

= ∑ . For a 
well defined smooth function U ∈Ω , Dβ, being the differential operator is giv-
en by ([22] [23]) 

D U Uβ β= ∂ . 

Now, an integrable function V is said to possess a weak derivative U, if U sa-
tisfies 

( )d 1 dU x D xβ βφ φ
Ω Ω

= −∫ ∫ , ( )0Cφ ∞∀ ∈ Ω , 

where, ( )0C∞ Ω  denotes the space of infinity differentiable functions supported 
compactly in Ω. We assume Dβ to be weak derivative throughout this research. 

2.2. Sobolev Spaces 

Let U ∈Ω  be a lebesque measurable function and 1q ≥ . The norm ( ). PL Ω
 

be defined by ([24]) 

( ) ( )( )1d ,P

qq

LU u x x
Ω Ω
= ∫

 
where ( )PL Ω  denotes the set of all U such that ( )PLU

Ω
 is finite. Given an 

integer 0k ≥ , we have the Sobolev space ( ),k pW Ω  given as 

( ) ( ) ( ){ }, : ,k p P PW U L D U L kβ βΩ = ∈ Ω ∈ Ω ∀ ≤ . 

Also, 

( )
( )( )1 2

,
P

k p
k L

U W D Uββ ≤ Ω
Ω = ∑ , 

are the corresponding Sobolev and Semi norms of ( ),k pW Ω  respectively. 
Now for 0 1k< < , ( ),k pW⋅ Ω  is defined by 

( )
( ) ( )

( )1, d d
p

pk p
d kp

u x y v
U W x p

x v +Ω Ω

−
Ω =

∀
∫ ∫ , 

called the fractional Sobolev Semi norm with 

( ) ( ) ( ){ }, ,:k p P k pW U L U WΩ = ∈ Ω Ω < ∞
. 

For 0q ≥ , we write q n k= + , n q≥ , ( )0,1k ∈ . 
Thus, the Sobolev space becomes 

( ) ( ){ }, , ,: ,q p n p k pW u W D U W nβ βΩ = ∈ ∈ Ω ∀ = , 

and 

( ) ( ) ( )( )
1
2, , ,pq p p n p k p

nU W U W D U Wβ
β =

Ω = Ω + Ω∑ , 

is the full norm. For 0q ≥ , Sobolev space ( ),q pW Ω  is a Banach space ([25]). 
Similarly, 

when 2p = , the sobolev space ( ),2qW Ω  is a Hilbert space, that is, 
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( ) ( )2 ,2qH WΩ = Ω . 

In particular, to solve our model equation we define the Sobolev space as 

( ) ( ){ }0 0,: 1n nH U H nβ β
∂Ω

Ω = ∈ Ω ∂ ∀ ≤ −= . 

To establish the equivalences of certain norms in the subspaces of ( )0
nH Ω , 

we shall rely in the famous Poincaré inequalities. 
Lemma 2.1. ([26]): For 0C ≥ , then 

( ) ( ) ( )0, .PLV C V H V H
Ω

′ ′≤ Ω ∀ ∈ Ω
 

Lemma 2.2. ([26]): For 0C ≥ , then 

( )
( )

( ) ( )
d

, .
PL

v x
V C V H V H

meas
Ω

Ω

′ ′− ≤ Ω ∀ ∈ Ω
Ω

∫  

Lemma 2.3 ([26]): For 0C ≥ , then 

( ) ( ) ( ), , ,S n nV H C V H s n V HΩ ≤ Ω ∀ ≤ ∀ ∈ Ω  
which is generalized poincare inequality. 

Thus, ,n Ω
⋅  over the space ( )0

nH Ω  is equivalent to ,n Ω
⋅ . 

2.3. Caputo Fractional Derivatives 

Let [ ],a b ∈ , ( ) ( ) ( )( )a aD U t x D U xβ β
+ +≡   , and ( ) ( ) ( )( )b bD U t x D U xβ β

− −≡    
be the Reimann-Liouville (R-L) fractional derivatives of order β. The fractional de-
rivatives of order ( )( )c

aD U xβ
+  and ( )( )c

bD U xβ
−  of order β on [ ], 0a b ∈ > , 

are as ([27]) 

( )( ) ( )
( ) ( ) ( ) ( )1

0 !

k
imc

a a i

u a
D U x D u t t a x

i
β β −
+ + =

  
 = − − 
    

∑        (2.1) 

( )( ) ( )
( ) ( ) ( ) ( )1

0 !

k
imc

b b i

u b
D U x D u t b a x

i
β β −
− − =

  
 = − − 
    

∑        (2.2) 

respectively, where ( ) 1m β= +    for 0β ∉ , m β=  for 0β ∈ . 
The above Equations (2.1) and (2.2) are called left- and right-sided Caputo 

fractional derivatives of order β. 
Lemma 2.4 ([27]): 
Let ( ) 1

nr x C−∈ , { }0n∈  . Then the caputo fractional derivative of ( )r x  
is given as ( ) ( )nD U x I D U xβ λ γ−= , satisfying the following properties: 

(a) ( )( ) ( )D I U x U xβ β =  

(b) ( )( ) ( ) ( )1
1 0

!

i
m k
iU xI D x U

i
xβ β γ − +

=

 
−  

 
= ∑  

(c) ( )
( )

0, ,
1

, ,
1

a a

a a

D x
x

β γ
γ β

γ γ β
γ

γ γ β
γ β

−

∈ <
 Γ + ∈ ≥−Γ −

=

+





,                    (2.3) 

where a aβ ≥  and { }0,1,2,3,a =  . 
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2.4. Mamadu-Njoseh Polynomials 

These are orthoponal polynomials generated with reference to the properties 
([28] [29] [30]) 

( ) 0
j

m
m

jj a xxϕ
=

= ∑ , [ ]1,1x∈ − ,                (2.4) 

[ ] ( ) ( )( )2
1 01 d 0

b j
j jja

mB j x x xx aϕ+ − =
= + =∫ ∑ , ( )1 2j n= ,      (2.5) 

subject to the initial conditions 

( )0 1xϕ =  and ( )1 1nϕ = ,                   (2.6) 

where j+  denotes a unit step increment, ( )w x  is weight function. 
Lemma 2.5: For any { }0Z+   value of j, ∃  a partition  

0 1 2 1n nj j j j j−< < < < <  with a unit step size. 
Theorem 2.1. For m = j, there exists n system of linear algebraic Equations 

generated from using (2.4)-(2.6) at the ( ) ( ) ( ) ( )0 1 1, , , , , , , ,nnj m j m j m j m− , re-
spectively. 

Proof: Let [ ]B j+  be given by lemma (2.5), we have 0 1 1r rj j j j−< < < < . 
Thus, for m j r= = , the grid points of the partition by refinement would 
( ) ( ) ( ) ( )0 1 1, , , , , , , ,rrj m j m j m j m− . Hence, we have 

[ ] ( ) ( ) ( )1 d 0
b

n n ma
xB j w x x xϕ ϕ+ = =∫  at ( ),nj m . 

The first Mamadu-Njoseh polynomials are general via MAPLE 18 via theorem 
2.1, and are presented in Figure 1 and Table 1, respectively. 

 

 
Figure 1. Graphical view Mamadu-Njoseh Polynomials ( )n xϕ . 
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Table 1. First seven Mamadu-Njoseh Polynomials. 

n Mamadu-Njoseh polynomials, ( )n xϕ  

0 
1 
2 
 
3 
 
4 
 
5 
 
6 

1 
x 

( )21 5 2
3

x −
 

( )31 14 9
5

x x−
 

( )2 41 333 2898 3213
648

x x− +
 

( )3 51 325 1410 1221
136

x x x− +
 

( )2 4 61 460 8685 24750 17589
1064

x x x− + − +
 

3. Finite Element Method for Time Fractional Telegraph 
Equation 

We consider the space discretization time functional telegraph Equations (1.1)-(1.3) 
with Mamadu-Njoseh basis function using the finite element method. 

Let a piecewise finite element space that is linear and continuous be given as 

hV . Let [0, 1] be partitioned as 

0 1 20 1nx x x x= < < < < = , 

called the space partitioning of [ ],a b . 

Let ( ) ( ) [ ]{ }: is continuous and linear in 0,1h h hxV S S x= . 

The variational formulation for the time – fractional telegraph Equation (1.1) 
is to compute ( ) ( )1

0 ,bu t H a∈  such that 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

0 0

1
0

, ,

, , ,

, ,

.

R
t t xSD u x t U S x U U

g x t S x S

x S x

x H

β − + −  

= ∈
        (3.1) 

The essence of FEM is to compute ( )h hU t V∈ , such that 

( )( )0 0, , , , , ,R
t h

u uD u x t U V
t x x x

β γ γγ γ γ γ∂ ∂ ∂ ∂     − + − = ∈         ∂ ∂ ∂ ∂     
    (3.2) 

Let :h h h hB V V−∆ →=  satisfies 

( ), , ,h h
u uB U
t x x

γγ γ∂ ∂ ∂   = −   ∂ ∂ ∂   
, hVγ ∈ .            (3.3) 

Suppose :h hG G V→  defined a 2L  operator given by 

( ) ( ), ,hG s sγ γ= , hVγ∀ ∈ , 2s L∈ . 

Thus, Equation (3.2) can be written in the abstract sense as 

( ) ( )( )0 0, ,R
t h h hD u x t U S x B U G gβ − +  =  , 0t > ,         (3.4) 

where 
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( )( ) ( )
( )

( )0 0

1, d
1

tR
t

u s x
D u x t s

t t s
β

ββ −

−∂
=
Γ − ∂ −

∫ , ( )0,1tβ ,        (3.5) 

called the Riemann-Liouville fractional derivative, and Γ is the Gamma function. 
Using quadrative formula (([31])] on (3.4), we obtain 

( ) ( ) ( )
( )0 00

jR
t j rj j r jr

j t
D u t w u t t U G g

t

β
β

β β

−

=
 = − − +  ∆ Γ −

∑ ,     (3.6) 

where rjw  

( ) ( ) ( )1 11

1, 01
2 2 1 1 , 1,2, ,rj

r
w

r r r r jβ βββ − −−

== 
Γ − − + − + + = 

,    (3.6a) 

and ( )jG g  satisfies 

( ) ( )2
0supj j t T J jwG K U tg tβ −
≤ ≤ ′′ −≤ , [ ]0,1w∈ . 

Now, let ( ) ( ) ( )1
1, ,N

j h J j j jJu x t U U t x tα ϕ−

=
≈= = ∑ , be an approximation of 

( )h jU t , where ( )j xϕ , ( )( )0 1 1j N= − , are Mamadu-Njoseh Basis function of 

hV . 

Also, let ( )j jg g t=  defines the time discretization such that 

( )

( )

00 , ,

, , 0 1 ,

,

.

j j
rj j rr

j h

j U U
t w U U

t x x

g j n V
x

β γγ γ

γ γ

−
−=

∂ ∂   ∂
∆ − + −   ∂ ∂ ∂   

∂ = = ∀ ∈ ∂ 

∑
        (3.7) 

Now, we consider the following steps for ( )0 1j n= . 

Step 1: Suppose 0j = , then 0jU = . 
Step 2: Set 1j = , we get, 

( )

( )( ) ( )( )

1 1
0,1 1

1 0 01 01

, ,

,

,

, , .r j h
g
r

U Ut W U
t x x

t W U U W U V

β

β

γγ γ

γ γ γ

−

−
=

∂ ∂ ∂   ∆ −   ∂ ∂ ∂  

− −

+


+ ∆ ∈∑
        (3.8) 

Since ( ) ( )1 ,N
j j r r jr jU a x tu t ϕ−

=
≈ = ∑ , we have that, 

( )( )( ) ( ) ( )

( ) ( )( )

1 1 1

1 11 0 0 01 0,

, ,
, , , ,

, ,,

r j r jN N N
r r j r rr j r j r j

h

x t x t
t a x t a a

t x x

g t W U u W U V
x

β

β

ϕ ϕ γϕ γ γ

γ γ γ γ

− − −−
= = =

−

   ∂ ∂ ∂   ∆ + −
   ∂ ∂ ∂   

∂ = − ∆ − + ∀ ∈ ∂ 

∑ ∑ ∑

 

( )( )( ) ( ) ( )

( ) ( )( )

1 1

1 11 0 0 01 0

, ,
, , ,

, ,

,

, ,

r j r jN N
r r j rr j r j

h

x t x t
t a x t a

t x x

g t W U u W U V
x

β

β

ϕ ϕ γϕ γ γ

γ γ γ γ

− −−
= =

−

    ∂ ∂ ∂    ⇒ ∆ + −
    ∂ ∂ ∂    

∂ = − ∆ − + ∀ ∈ ∂ 

∑ ∑
(3.9) 

Let ( ),k jx tγ ϕ= , ( )( )1 2 1k N= − , we have, 
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( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( )( )( )

1

1

1 11 0 0 01 0, ,

, ,

, , ,
, , ,

, , ,

N
r r k jr j

r j r j k jN
r k jr j

k j h

t a x x t

x t x t x t
a x t

t x x

g t W U u W U x t V
x

β

β

ϕ ϕ

ϕ ϕ ϕ
ϕ

γ γ ϕ γ

−−
=

−

=

−

∆

    ∂ ∂
    + −
    ∂ ∂ ∂    

∂ = − ∆ − + ∀ ∈ ∂ 

∑

∑    (3.10) 

Thus, 

( ) 11 1 1 0
0,1 11 1 00 rrt W M R Q R G t W R t W Uβ β β− − −

=
∆ ∗ + ∗ − ∆ ∆= + ∑    (3.11) 

where, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1 2 1 1 1

1 2 2 2 1 2

1 2 11 1 1

, , , ( , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

j j j j N j j

j j j j N j j

j j j j j jN N N

x t x t x t x t x t x t

x t x t x t x t x t x t

x t x t x t x t x t x t

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

−

−

− − −

 
 
 
 =
 
 
 
 

M





  



, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
1 1

1

1 1 1 1
1 1

, , , , , ,
, , , , , ,

, , , ,
, , , , ,

j j j N j N j N j
j j

j j N j N j
N j N j

x t x t x t x t x t x t
x t x t

x x x t x x

x t x t x t x t
x t x t

x x x t

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ

− − −

− −
− −

       ∂ ∂ ∂ ∂ ∂ ∂
       − −
       ∂ ∂ ∂ ∂ ∂ ∂       

=

     ∂ ∂ ∂ ∂
     −
    ∂ ∂ ∂ ∂     

R



 



( ) ( )1 1, ,
,N j N jx t x t

x x

ϕ ϕ− −

 
 
 
 
 
 

  
 −   ∂ ∂   

 

( )( ) ( )( ) ( )( ) ( )( ) T
1

1 1 1 2 1 3 1 1, , , , , , , ,j j j N jg x t g x t g x t g x tϕ ϕ ϕ ϕ −
 
 =G  , 

( )( ) ( )( ) ( )( ) ( )( ) T
0

0 1 0 2 0 3 0 1, , , , , , , ,j j j N jU x t U x t U x t U x tϕ ϕ ϕ ϕ −
 
 =R  , 

( )( ) ( )( ) ( )( ) ( )( ) T

0 1 0 2 0 3 0 10 , , , , , , , ,j j j N ju x t u x t u x t u x tϕ ϕ ϕ ϕ −
 
 =U  , 

[ ]T0
1

1 2 1Na a a a −=R  . 

Step 3: To compute ( )n h jU U t≈  we repeat the above steps as 1 and 2. Thus, 
with the above idea, the finite element method can be formulated and solve the 
resulting system via MAPLE 18 Software. 

4. Error Analysis 

We consider the lemma below 
Lemma 4.1: Let ju  be the approximate solution of 

( ) ( ) ( )
( )0 00

jR
t j rj j r jr

j t
D t w u t t u Gu g

t

β
β

β β

−

=
 − − +  ∆ Γ −

= ∑       (4.1) 

Then we have 

( )sin2j j j Lu u t gββ β
∞

π
Γ −

π
≤ + . 

Theorem 4.1: Let ( )ju t  and jU  be the solutions (3.4) and (4.1), then we 
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have 

( ) ( )2 2
0 02j j hU u t U Q u O t hβ−≤− − + ∆ +

, 

where h is the space step size. Let 1
0:h hQ H V→  defines an elliptic or Ritz pro-

pectim given by 

( ) ( ), ,hQ s sγ γ∇ ∇ = ∇ ∇ , hVγ∀ ∈ . 

Let ( ) ( ) ( ) ( )j j j j h j h j j j je U u t U Q u t Q u t u t qα= − = − + − = + , 1,2,3,j =   

where, ( )j j h jU Q u tα −= , ( ) ( )j h j jq Q u t u t−= . 
Now, the error equation obtained from (4.1), 

( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

00

0 00

00

j
rj j r h jr

j
rj j r h j h j r h h jr

j
h j h

i

j

j
h j h rj j rr

h j

t
w B

t
w U u B U Q u t u B Q u t

t
G g G B u t Q w u t u

G y

β

β

β

α α α
β

β

β

−

−=

−

− −=

−

−=

− +
Γ −

 = − + − − + Γ −

 
= + − − 

Γ −  
= −

∑

∑

∑

 
where, 

( ) ( ) ( )( )0 0 0 00
jR

j t j h rj rr
j

j j j

t
Y D t u Q w u t u u P Ku

β
β

β

−

−=
− − − +

Γ −
  == − + ∑ , 

where, 

( ) ( ) ( )( )00
j

j h r j rr
j

j

t
P Q t w u t u

β

β

−

−=
= − −

Γ − ∑ , 

( ) ( )( ) ( )0 0 00
j R

j rj j r t jr
jt

K w u t u D t uu
β

β

β

−

−=
− −

Γ −
 = − ∑ . 

Thus, we have, 

( ) ( ) ( )00
ij

rj j r h j h j jr

t
w u B G P K

β

α α α
β

−

−=
=− + +

Γ − ∑ . 

By Lemma 4.1, we have 

( ) ( )0
sin2j j h j jt G P Kββα α β −π

+ + Γ − +
π

. 

Here 

( ) ( )2
j t j j j jK U t t Kt t U t t tβ βα − −=′′ ′′≤ − ∆ − , 

and 

( ) 2 20 0 0
2 j j

j rj j r rjr rG G
K h w t w uK −= =

+≤ ∑ ∑ , 

where 2. G  is Sobolev norm. 
Let denote ( ) ( )j jf t u t t t= − , then, 
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( ) ( ) ( )1 11 1
0 0 0

d dj
rj j r jr j jj t G f t tw t u t t t t Gt β β− − − −

−=
= − +=+∫∑ ∫ , 

obtained via Hamamard d integral formulation ([32]), and 

22 2
2 2 2

j t j tGG GG j f t u t uβ β− −≤ ≤ ∆ ≤ ∆ . 

Let j jq t t t= −  into ( )1 1
0

dt ttf β− −∫ , to obtain, 

( ) ( ) ( )1 1
00

d R
j t jt tt tf t D uβ β β β− − = Γ −∫ . 

Thus, 

( ) ( ) ( ) 22
2

00
j R

rj j r j t j ttr GG
w t t D u t tu Uβ β βα −

−=
Γ −≤ + ∆∑ , 

( ) ( )( )22
2 2

0
R

j j j t j tt GG
t Kh t D u t t Uβ β β βα β −≤ Γ − + ∆ . 

Thus, we have that, 

( ) ( )

( )( )
( )

22

0

22 2 2
0 0

2 2
0

sin2

2

2

j j h j j

R
j tt j t j ttG GG

t G q

Kt t U Kh t D u t t U

O t h

β

β β β β β

β

βα α β α

α

α

−

− −

−

π
≤ + Γ − +

π

≤ + + + ∆

≤ + ∆ +

∆  

Hence, 

( )2 2
02j j j je G O t h Gβα α −≤ + ≤ + ∆ + + . 

Therefore, 

( ) ( ) ( ) 2
2

j h j j j G
G Q u t u t Kh u t= − = . 

Obtained via elliptic projection of error estimation. Thus, we finally obtain 

( )2 22j je B t hβα −≤ + ∆ + . 

5. Numerical Illustration 

In this section, we carry out numerical simulations to verify the accuracy of the 
proposed method. 

Let in (1.1) be given 

( ) ( ) ( )
( ) ( ]

1
2 23

, 2 2 , 0 1, 0,1
3

t
g x t x x t t x t

ββ
β

− Γ − +
= − − ≤ ≤ ∈  Γ − 

    (5.1) 

with initial conditions 

( ) ( ),0
,0 0, 0 1

u x
u x x

t
∂

= = ≤ ≤
∂

                 (5.2) 

and boundary conditions 

( ) ( )0, 1, 0, 0 1.u t u t x= = ≤ ≤                  (5.3) 

The exact solution is given as ( ) ( )2 2,u x t x x t= − . 

Using (3.11) on (5.1) at 3N =  with 3rw , ( )0 1 3r = , estimated using (3.6a), 
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and 1 1000t∆ =  at 1t = , results are presented below with the aid of MAPLE 
18. 

6. Numerical Illustrations 

The proposed method has been successively implemented for the time fractional 
telegraph equation. Maximum errors in 2L  and L∞  were obtained as shown 
in Table 2. The 2L  and L∞  errors and the numerical order are in agreement 
in space for 1.5β =  and 1.8. It can be seen that the order of convergence of the 
proposed method is in total agreement with the theoretical analysis as shown in 
Figure 2 and Figure 3, respectively. 

 
Table 2. Maximum error. 

N L2 Error (Proposed method) L∞ Error β 

20 

40 

80 

160 

3.8141E−006 

1.0594E−005 

3.0311E−005 

4.0142E−005 

3.6141E−006 

1.2242E−005 

4.0311E−005 

3.0142E−004 

1.5 

20 

40 

80 

160 

3.7337E−003 

5.2802E−003 

1.6125E−003 

2.2804E−003 

3.3327E−003 

4.2982E−003 

2.0125E−003 

3.2907E−003 

1.8 

 

 
Figure 2. Comparison of computed solutions and Exact solutions at 1 1000t∆ =  at 

1, 1.5t β= = . 
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Figure 3. Comparison of computed solutions and exact solutions at 1 1000t∆ =  at 

1, 1.8t β= = . 

7. Conclusion 

The space discretization scheme was developed and implemented with the aid of 
Mamadu-Njoseh orthogonal basis functions. Satisfactory numerical evidence 
was obtained as the order of convergence of the proposed method is in total 
agreement with the theoretical analysis. Also, The 2L  and L∞  errors and the 
numerical order are in agreement in space for 1.5β =  and 1.8. 
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