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Abstract 
The error distribution testing plays an important role in linear regression as 
distribution misspecification seriously affects the validity and efficiency of 
regression analysis. The least squares (OLS) residuals are often used to con-
struct test statistics; in order to overcome the non-independent and identi-
cally residuals, the best linear unbiased scale (BLUS) residuals are applied in 
this paper, which, unlike OLS residuals, the residuals vector is identically and 
independently distributed. Based on the BLUS residuals, a new test statistic is 
constructed by using the sample random distance between sample quantile 
and quasi sample quantile derived from the null distribution, and the good-
ness-of-fit test of error distribution in the linear model is studied. The powers 
of the new tests under certain alternatives are examined. They are more po-
werful tests for the hypotheses concerned. 
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1. Introduction 

Parametric and nonparametric regression models are widely applied to the fields 
such as biology, chemistry and economics. The general form is often written as 

( ) ,Y m x ε= +                            (1) 

where m is the regression function, the error ε  satisfies ( )E 0ε =  and 

( )2E 0ε > , x are explanatory variables. The following general assumption is that 
the errors corresponding to different observations are independent and identi-
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cally distributed. The most popular model is the linear model, that is, ( ) Tm =x x β , 
β  assumed as unknown parameters, and the error terms of the model are dis-
tributed according to the normal distribution. Under the assumption, the linear 
model has been attracting practical and theoretical workers because of its sim-
plicity and validity. 

Obviously, it is important to test whether the error is distributed as the as-
sumed distribution before using the linear model to analyze the data under a 
certain assumption of the error distribution. On the other hand, even in general 
nonparametric models, additional knowledge of the distribution of errors can 
also improve the effectiveness of statistical analysis. For example, under the as-
sumption of normal error, accurate or optimal tests can be obtained in many 
cases. A typical example is the goodness-of-fit test of regression function (See 
ref. [1] [2] [3]). 

From the above analysis and the existing literature, it is easy to see that there 
are two kinds of important goodness of fit tests to the model. One is the good-
ness-of-fit test of the error distribution; the other is about the goodness of fit test 
of the regression function. That is to test the hypothesis:  

( )2: ~ 0,H Nε σ                          (2) 

and  

( ): ,H m x ∈                           (3) 

where   is a class of regression functions with certain properties. 
There are many kinds of literatures about the two kinds of tests mentioned 

above, especially about the second kind of tests. For example, Of the first kind of 
test are ref. [4] [5] [6], etc., the second kind of test are ref. [7]-[17], etc. 

For Linear regression models, there are usually two kinds of residual con-
struction tests. One is based on the ordinary least square (OLS) residuals, under 
the normal assumption, the residual vector of OLS has a singular normal distri-
bution, and the components of a vector are no longer independently identically 
distributed. The other is best linear unbiased scale residuals (BLUS) (See ref. 
[18]). It is a kind of residuum given by Theil in consideration of such a fact 
where the residuals are neither independent nor identical, even if the error dis-
tribution is independent and identical. Using OLS residuals directly to test the 
sequence independence or the same variance is impossible (See ref. [19]). How-
ever, the BLUS residual vector, under normal assumptions, is different from the 
OLS residual. There is a non-singular normal distribution, and the components 
of the vector are identically and independently distributed. It is a fact that most 
of the existing literature uses the OLS residuals to construct the test. But as you 
can see from the above analysis, using residuals as a new sample, it is not natural 
to construct a test with the existing test, such as the Shapiro-Wilk test, because 
the test of the original structure is based on independent samples from the same 
distribution, at the same time, it was proved that the skewness and Kurtosis of 
OLS residuals cannot exceed the skewness and Kurtosis of the error term (See 
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ref. [20]). So, if the distribution of error terms is not normal, the distribution of 
OLS residuals is always close to the normal form, not the probability distribution 
of error terms. This shows that when the null hypothesis is not true, any normal 
test using the OLS residuals directly seems to have a tendency not to reject the 
null hypothesis. In view of the above analysis, this paper uses BLUS residuals to 
construct test statistics. 

This paper is organized as follows. Section 2 constructs the new tests. Power 
comparisons are given in Section 3. Simulated powers for the new statistics are 
tabulated in this section. Section 4 gives some comments. 

2. Test Statistics Based on BLUS Residuals 

Let’s have a linear model as follows:  
T 2,E ,E ,σ= + = =y X I0β ε ε εε                   (4) 

where y  is a 1n×  random vector, X  is a non-random n k×  matrix with a 
known rank of k, β  is a 1k ×  unknown parametric vector. For the above 
model, the Normality test of the error term distribution is important. Many 
scholars have studied this problem. The early literature includes ref. [20] [21] 
and so on. For the past twenty years, the two papers (See ref. [22] [23]) are based 
on Shapiro & Wilk test statistics (See ref. [24]) to construct tests using OLS re-
siduals. Furthermore, ref. [25] constructs test statistics by the normalized resi-
duals based on Shapiro & Wilk test statistics. While ref. [26] using Bootstrap 
method and based on the process of empirical residuals, constructs a new test 
statistic by using KS and AD statistics. Recently, ref. [27] proposed several tests 
based on partial sums of residuals where the test statistics are based on sums of a 
subset of the (ordered and standardized) residuals (Also see ref. [28] [29]). 

For a linear model (4), the least square estimate of the Regression Coefficient 
is ( ) 1T Tˆ −

= X X X yβ , using e  to represent the OLS residuals associated with 
the error vector ε , we have  

( )( )1T Tˆ .
−

= − = − = =e y X I X X X X y My Mβ ε            (5) 

And from that, T 2E ,E σ= = M0ε εε . 
According to Theil (See ref. [18]), the BLUS residuals are obtained by the fol-

lowing steps: 
First, select the smallest K elements in the main diagonal elements of the ma-

trix M  and rearrange the observed value Y according to the position of the 
row in which the K elements are located. Might as well be, place them in the first 
K position (See ref. [30]). The original model is then divided into blocks:  

0 0 0

1 1 1

     
= +     

     

y X
y X

ε
β

ε
                        (6) 

( ) ( )
( ) ( )

1 1T T T T
0 0 0 1

1 1T T T T
1 0 1 1

,

− −

− −

 − − =  
− −  

I X X X X X X X X
M

X X X X I X X X X
            (7) 
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where the I  in the upper left-hand corner in (7) is the k k×  unit matrix, and 
the I  in the lower right-hand corner is the ( ) ( )n k n k− × −  unit matrix. 

Secondly, compute the eigenvalues, denoted by 2 2
1 , , kd d , of the matrix 

( ) 1T T
0 0

−
X X X X , and the corresponding eigenvectors by 1, , kq q . 

Finally, calculate the BLUS residuals 1 T
1 1 0 01

ˆ
1

k i
i ii

i

d
d

−
=

 
= −  + 

∑e X X q q eε , here,  

0 1,e e  is the block residuals vector corresponding to the error term in (6). At this 
point, under the original assumption (2), the BLUS residual vector is  

( )2ˆ ~ 0, .n kN σ −Iε                         (8) 

The tests in this section and the next are constructed from this new sample. 
Denote ( ) ( )1ˆ ˆ, , mε ε  be an order statistic of BLUS residuals, m n k= − , ( )0F x  
be the normal distribution. 

BLUS residuals were mainly applied to multivariate models (See ref. [31]), the 
cusum and the cusum-of-squares tests (See ref. [19]) which have higher power 
than those based on the more popular recursive residuals for structural break, 
and the Dickey-Fuller unit root test which is based on BLUS residuals (See ref. 
[32]), etc. 

The test statistics constructed in this paper and the competition test statistics 
available in the literature are described below. 

The competition test statistics based on the empirical distribution function are 
KS statistics  

( ) ( )0 01

1ˆ max ,m i m

i iD m F F
m m

ε ε
≤ ≤

 − 
= − − 

 
                (9) 

and AD statistics  

( ) ( ) ( ) ( )( )2
0 0

1

1ˆ 2 1 log 2 1 2 log 1 ,
m

m
i

A i F m i F m
m

ε ε
=

 = − − + + − − − ∑       (10) 

here ( )
2ˆ mi Sε ε= , since the mean of the original hypothesis is 0, the parameter 

estimation of the variance of the error is 2 2

1
ˆ1

m

m i
i

S m ε
=

= ∑ . 

The test statistic based on sample order statistics or sample quantiles is Sha-
piro & Wilk test statistic (See ref. [33]):  

( )

2

1
2

ˆ
m

i i
i

m

a
W

m S

ε
=

 
 
 =

⋅

∑
                         (11) 

where ( )
1

T
1 T 1 1

E, , ,
E E

ma a
−

− −
= =

V Wa
W V V W





 

 ( ) ( )EijV v Var= = −W W  ,  

( ) ( )( )1 , , mW W=W  

  be the sample order statistics from ( )0F ⋅ . 
The test statistic constructed based on De Wet and Venter’ idea (See ref. [34]) 

is  
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( )
2

1
2 0

1

ˆ
ˆ ,ˆ 1

m i

i

iT F
m

ε

θ
−

=

  = −   +  
∑                     (12) 

where ( ) ( ){ }1
0 0inf :F u x F x u− = ≥ , 2ˆ

mSθ =  be the estimation of variance of 
standard error. 

Del Barrio, Couesta-Albertos, Matrán, Rodríguez-Rodríguez (See ref. [35]) 
proposed that the statistic constructed based on the distance of L2-Wasserstein is  



( ) ( ) ( )
2

1
1

=1
2

ˆ d
1 ,

m i m

i i m
i

m

t t
BCMR

S

ε −

−

 Φ 
 = −
∑ ∫

                (13) 

Let ( ) ( )1 , , mX X  be the order statistics of 1, , mX X  and ( ) ( )1 , , mU U  are 
the order statistics from ( )0,1U . If 1, , mX X  is an iid sample from the con-
tinuous cumulative distribution function ( )F x , the following equation holds 
(See ref. [36]).  

( ) ( )( ) ( )( ) ( )( )( )1 1
1 1, , , , ,d

m mX X F U F U− −=               (14) 

where d=  stands for equality in distribution. 
Using this conclusion, Zhao (See ref. [37] [38]) thinks that if 1, , mX X  

doesn't come from the null distribution ( )F x , (14) doesn’t hold and then there 
are differences between ( ) ( )( )1 , , mX X  and ( )( ) ( )( )( )1 1

1 , , mF U F U− −
 . The 

larger the differences are, the greater the evidence against the null hypothesis is. 
Using this idea, Zhao (See ref. [37]) constructed criteria to describe the differ-
ences based on random distance.  

( ) ( )( )( )2
1 2

1

m

ii i
i

ZR X F U σ−

=

= −∑                    (15) 

In this paper, the null hypothesis is that the distribution function is a normal 
distribution function with only scale parameters. So (14) is reduced to  

( ) ( ) , 1, , .d
i iX Z i mσ= =                         (16) 

And then, with respect to the parameter 2σ , take the smallest value of (15), it 
can be obtained that:  

( )
( ) ( )

( )

2

2
 2

11

1
m

m ii

i

i

i m
i i

X Z
ZR Z

X
=

=
=

 
 = +
∑

∑
∑

                    (17) 

where ( ) ( )1 , , mZ Z  is the order statistics for a sample of m size from the normal 
distribution. Note that (8) and above analysis, using ( )ˆ iε  instead of ( )iX , we 
obtain the following test statistics in this paper.  



( )
( ) ( )

( )

1

2

2
 2

11

ˆ
,

ˆ

m
m i

i

i

i
i

i

m
i

Z
ZR Z

ε

ε
=

=
=

 
 = +
∑

∑
∑

                    (18) 

where ZR  is scale-invariant. For the same reason as in Zhao (See ref. [37]), we 
can take the q quantile and expectation of ZR  as the test statistics. Let qZR  
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and ZRµ  be the qth quantile and the expectation of ZR . Here we select only 
0.05q = , 0.50q = , and 0.95q =  as quantile statistics. Using BLUS residuals 

to solve the critical value of each test statistic is the same as Zhao’s (See ref. [37]) 
algorithm, which is omitted here. 

3. Power Comparisons 

In order to compare the power of the above tests, the following linear models are 
considered.  

1 21 2 3 , 1,2, , .i i i iy x x i nε= + − + =                  (19) 

The variable x is independent of iε , which comes from a uniform distribu-
tion, these values are constant for a given sample size. The error variable ε  
follows an alternative distribution. 

Many continuous alternative distributions are chosen which were used in the 
power studying by Shapiro et al. (See ref. [33]), Gan and Koehler (See ref. [39]) 
and Eva Krauczi (See ref. [40]). 

The first group: alternative distributions are the non-normal distribution, 
such as the chi-square distribution with a degree of freedom of 3, denoted by 

( )2 3χ ; the exponential distribution with a mean of 1, denoted by Exp (1); the 
gamma distribution functions with shape parameters of 0.8 and 1.5, Gamma 
(0.8), Gamma (1.5), respectively; the double exponential distribution laplace 
(0,1); the log-normal distribution lognormal (0,1); the Cauchy distribution 
Cauchy (0,1); the student distribution with degree of freedom of 3, t (3); the un-
bounded Johnson’s distribution of the random variable sinh (Z), denoted as SU 
(0,1), where ( )~ 0,1Z N . 

The second group: in heteroscedasticity case, the he model under considera-
tion at this point is  

1 21 2 3 , 1,2, , ,i i i i iy x x i nσ ε= + − + =                (20) 

where iσ  be distributed as uniform distribution ( )0,50U , 1,2, ,i n=  . At 
the same time, the error variable ε  follows logistic (0,1), Cauchy (0,1), N (0,1) 
and Laplace (0,1), respectively. 

The third group: the case of outlier with non-zero mean of regression error, 
such as  

( ) ( )1 ~ 2,1 , 0,1 , 2, , ,iN N i nε ε ∼ =   

and  

( ) ( )~ 2,1 , 1, ,5, ~ 0,1 , 6, , ,i iN i N i nε ε= =   

and also in high Leverage outlier case, like that  

( ) ( )1 11 21~ 8,1 , ~ 0,1 , 2, , , 2.iN N i n x xε ε = = =  

In this section, the selected test level is 5%, the sample size is 20,50n = , and 
the empirical power of the test is based on 10,000 simulations. The results are 
placed in Table 1 and Table 2. From these two tables, you can see that: 
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Table 1. Powers for testing the error distribution is normal, against different non-normal alternative distributions, at significance 
level 5% and 20, 50n n= = . 

Alternatives ( )2 3χ  exp (1) G (0.8)a G (1.5)a laplace ( )1F x b Cauchy ( )3t x  ( )2F x c 

20n =  


0.05qZR =  0.2875 0.3968 0.4744 0.2811 0.1917 0.6167 0.7496 0.2533 0.3166 


0.50qZR =  0.1623 0.2237 0.2881 0.1580 0.1034 0.4444 0.6277 0.1619 0.1994 

ZRµ  0.1349 0.1869 0.2421 0.1320 0.0923 0.3912 0.5880 0.1431 0.1746 


0.95qZR =  0.0710 0.0858 0.1073 0.0709 0.0707 0.2026 0.4134 0.0915 0.1014 

nD  0.0972 0.1160 0.1335 0.1029 0.0756 0.1872 0.3686 0.0792 0.1047 
2
nA  0.0851 0.0997 0.1195 0.0898 0.0666 0.1892 0.3942 0.0790 0.0926 

BCMR 0.1233 0.1722 0.2235 0.1209 0.0836 0.3698 0.5553 0.1273 0.1532 

T2 0.1415 0.1959 0.2511 0.1393 0.0990 0.4031 0.6099 0.1507 0.1856 

W 0.1201 0.1677 0.2161 0.1173 0.0811 0.3609 0.5438 0.1214 0.1463 

50n =  


0.05qZR =  0.7992 0.9136 0.9473 0.7902 0.4586 0.9754 0.9837 0.5928 0.7087 



0.50qZR =  0.6621 0.8316 0.8963 0.6489 0.2760 0.9593 0.9709 0.4426 0.5480 

ZRµ  0.6072 0.7903 0.8692 0.5970 0.2407 0.9478 0.9648 0.4058 0.5080 



0.95qZR =  0.3692 0.5743 0.6866 0.3605 0.1329 0.8736 0.9166 0.2698 0.3318 

nD  0.2440 0.3877 0.4918 0.2503 0.1390 0.7121 0.8728 0.1892 0.2433 
2
nA  0.2518 0.4270 0.5470 0.2566 0.1044 0.7870 0.8969 0.1835 0.2394 

BCMR 0.6081 0.7920 0.8697 0.5974 0.2040 0.9473 0.9570 0.3694 0.4656 

T2 0.6078 0.7890 0.8655 0.5957 0.2740 0.9489 0.9707 0.4435 0.5468 

W 0.6058 0.7928 0.8730 0.5942 0.1579 0.9453 0.9397 0.3106 0.3938 

a ( ) ( )0.8 , 1.5G G : the Gamma distribution with shape parameter 0.8, 1.5. b ( )1F x : the LogNormal(0, 1) distribution. c ( )3F x : 

( )sinhX Z= , ( )~ 0,1Z N .  

 
1) When the alternative distribution is a non-normal distribution function, 

the power of the test  0.05qZR =  is significantly higher than that of other tests. 
When the capacity is 20, the power of ZRµ  and T2 is similar. However, when 
the capacity is 50, for an asymmetric alternative distribution, BCMR, T2, W and 
ZRµ  are not much different, for a symmetric alternative distribution, T2 is the 

best, coming next is ZRµ . In short, Among the opponents of the new tests, the 
order of superiority and inferiority of the tests is T2, BCMR, Shapiro-Wilk test, 

2
nA  and nD . 
2) For an alternate distribution of ( )0,1N  the power of the test is approx-

imately equal to the probability of the first type of error. As can be seen from 
Table 2, under the different sample sizes, all the tests make full use of the ap-
proximately 5% test level. 

3) For the alternative distribution of the second group, the heteroscedasticity 
case, the power of  0.05qZR =  test is significantly higher than the other tests, the  
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Table 2. Powers for testing the error distribution is normal, against Heteroscedasticity, outlier alternative distribution and normal 
alternative distributions, at significance level 5% and 20, 50n n= = . 

Alternatives ( )0,1N  ( )1F x a ( )2F x a ( )3F x a ( )4F x a ( )5F x b ( )6F x b ( )7F x b 

20n =  


0.05qZR =  0.0462 0.7786 0.2011 0.4041 0.2837 0.0461 0.4500 0.0562 


0.50qZR =  0.0483 0.6500 0.1004 0.2233 0.1531 0.0493 0.5529 0.0674 

ZRµ  0.0485 0.6114 0.0896 0.1909 0.1324 0.0496 0.5561 0.0678 



0.95qZR =  0.0484 0.4239 0.0671 0.1037 0.0881 0.0478 0.5561 0.0684 

nD  0.0509 0.3821 0.0772 0.1203 0.0992 0.0482 0.5365 0.0647 
2
nA  0.0504 0.4066 0.0628 0.0967 0.0816 0.0477 0.5921 0.0694 

BCMR 0.0474 0.5769 0.0809 0.1661 0.1184 0.0485 0.5528 0.0684 

T2 0.0482 0.6308 0.0968 0.2086 0.1465 0.0485 0.5560 0.0672 

W 0.0479 0.5628 0.0779 0.1564 0.1122 0.0483 0.5518 0.0685 

50n =  


0.05qZR =  0.0534 0.9851 0.4994 0.8355 0.6521 0.1143 0.6871 0.2844 



0.50qZR =  0.0497 0.9778 0.2760 0.6614 0.4302 0.1392 0.7832 0.3717 

ZRµ  0.0502 0.9731 0.2351 0.6102 0.3818 0.1414 0.7865 0.3761 


0.95qZR =  0.0506 0.9344 0.1195 0.3626 0.1951 0.1427 0.7933 0.3857 

nD  0.0520 0.9062 0.1757 0.3782 0.2203 0.1245 0.7096 0.3036 
2
nA  0.0505 0.9242 0.1102 0.3260 0.1632 0.1394 0.7944 0.3726 

BCMR 0.0500 0.9672 0.1951 0.5548 0.3341 0.1413 0.7868 0.3772 

T2 0.0504 0.9781 0.2777 0.6611 0.4314 0.1410 0.7852 0.3748 

W 0.0519 0.9536 0.1493 0.4584 0.2559 0.1427 0.7870 0.3838 

aThe error σε , ( )1F x : ε  the Cauchy distribution; ( )2F x : ε  the Normal distribution; ( )3F x : ε  the Laplace distribution; 

( )4F x : ε  the Logistic distribution ( )~ 0,50Uσ . b ( )5F x : ( )1 ~ 2,1Nε , ( )~ 0,1i Nε , 2, ,i n=  ; ( )6F x : ( )~ 2,1i Nε , 

1, ,5i =  , ( )~ 0,1i Nε , 6, ,i n=  ; ( )7F x : ( )1 ~ 8,1Nε , ( )~ 0,1i Nε , 2, ,i n=  , 11 12 2x x= = . 
 

other results are similar to those in (1). 
4) For the alternative distribution of the third group, where there are outliers. 

In the new test,  0.95qZR =  performs best, but not much different from  0.50qZR = , 
ZRµ . Compared with the comparative test, the difference is not significant, 2

nA  
is slightly better, while  0.05qZR =  performs worse. 

4. Comments 

Based on the BLUS residuals, using the difference between the residuals order 
statistics and the pseudo-random sample order statistics, the quantile-type and 
the conditional expectation-type test statistics are constructed, which are used in 
the error distribution Normality test of the linear regression model. The simula-
tion results show that the power of the tests provided in this paper is better than 
some tests in the literature. Of course, T2, BCMR and W are also good tests. 
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