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Abstract 
Nonparametric and parametric subset selection procedures are used in the 
analysis of state homicide rates (SHRs), for the year 2005 and years 2014- 
2020, to identify subsets of states that contain the “best” (lowest SHR) and 
“worst” (highest SHR) rates with a prescribed probability. A new Bayesian 
model is developed and applied to the SHR data and the results are contrasted 
with those obtained with the subset selection procedures. All analyses are ap-
plied within the context of a two-way block design. 
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1. Introduction 

The United States experienced its biggest one-year increase on record in homi-
cides in 2020, according to new figures released by the F.B.I. There is no simple 
explanation for the steep rise. A number of key factors are driving the violence, 
including the economic and social toll taken by the pandemic and a sharp in-
crease in gun purchases. However, how does the homicide rate appear before 
2020? As reported in a Wall Street Journal article [1], “the rate of 6.5 homicides 
per 100,000 residents is the highest since 1997, but still below historic highs of 
the early 1990s”. This article further explores possible causes for the recent in-
creasing trends in homicide rates. 

This article focuses on the application of nonparametric (or distribution-free), 
parametric subset selection procedures and the Bayesian approach to analyze 
state homicide rate (SHR) data for the year 2005 and years 2014-2020. With the 
Bayesian approach, a probability distribution is derived over all possible permu-
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tations of the population means. Thus, the probability that any particular state is 
characterized by the largest (or smallest) mean can be easily obtained by appro-
priate summing of the permutation probabilities. The variability of SHRs is 
herein analyzed with advanced statistical techniques. While root causal analysis 
is also very important, it requires different investigative approaches. 

The state homicide rate data is obtained from CDC:  
https://www.cdc.gov/nchs/pressroom/sosmap/homicide_mortality/homicide.ht
m 

There is an existing gap from the year 2005 to 2014 while addressing the data. 
The rate of 0.00 is not actually zero since we kept 2 decimal points for the data. 

2. Formulation of Nonparametric Subset Selection Rules 

The description of this selection rule will follow that given by Green and McDo-
nald [2], Let Π1, Π2, ∙∙∙, Πk be k(≥2) independent pupulations. The associated 
random variables, Xij, j = 1, ∙∙∙, n; i = 1, ∙∙∙, k, are assumed independent and to 
have a continuous distribution Fj(x; θi) where θi belong to some interval Θ on the 
real line. The basic model assumption is that Fj(x; θi) is a stochastically increas-
ing family of distributions for each j. The additive model of the following form is 
used: 

 ij i j ijX = + + +µ θ β ε                         (1) 

where βj indicates the particular block effect, θi indicates the population effect, 
and εij is the random error. The distribution of εij is any continuous distribution 
function Fj(x) with mean 0. The distribution of Xij will be stochastically ordered 
in θ as it is a location parameter in Equation (1). So, for example, Fj(x) could be a 
normal distribution with mean 0 and standard deviation σj. The assumption of 
negligible interaction between population and block must be satisfied. Let θ[i] 
denote the ith smallest unknown parameter, then for all x 

 [ ]( ) [ ]( ) [ ]( )1 2; ; ;j j j kF x F x F x≥ ≥ ≥θ θ θ              (2) 

where θ[1] (θ[k]) characterizes the best (worst) population. 
Let Rij denote the rank of the observation Xij among X1j, X2j, ∙∙∙, Xkj. The va-

riables Rij take values from 1 to k. The selection procedures considered here are 
based on the rank sums, Ti = ΣjRij, associated with Πi, i = 1, ∙∙∙, k. The structure 
for this process is outlined in Table 1. 

Any subset selection procedure based on the rank sums should have the 
property that the probability that a correct selection (CS) occurs, i.e., the worst 
population (or best population) is included in the selected subset, is bounded 
below by P*(k−1 < P* < 1). That is, for a given selection rule R, the probability of a 
CS should satisfy the inequality, 

 ( ) *inf CS | RP P
Ω

≥ ,                       (3) 

where ( ){ }1, , : , 1, ,k i i kΩ = = ∈Θ = θ θ θ θ . In some cases, as noted later, in-
equality may only hold on a subspace Ω' of Ω. 
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Table 1. Structure for determining ranks and rank sums. 

Block/Π Π1 Π2 … Πk SUM 

Block 1 X11 ≈ R11 X21 ≈ R21  Xk1 ≈ Rk1 k(k + 1)/2 

Block 2 X12 ≈ R12 X22 ≈ R22  Xk2 ≈ Rk2 k(k + 1)/2 

. 

. 

. 

. 

. 

. 
  

. 

. 

. 

. 

. 

. 

Block n X1n ≈ R1n X2n ≈ R2n  Xkn ≈ Rkn k(k + 1)/2 

Rank SUMS (Ti) T1 T2  Tk nk(k + 1)/2 

 
The two selection rules for choosing a subset containing the worst population, 

as described in McDonald [3], are given by: 
R1: Select Πi iff Ti ≥ max(Tj) – b1 
R2: Select Πi iff Ti > b2. 
Similarly, the two selection rules for choosing a subset containing the best 

population are given by: 
R3: Select Πi iff Ti ≤ min(Tj) + b3 
R4: Select Πi iff Ti < b4. 
Note that the rules R1 and R2 could be written in the form that select Πi iff Ti > 

b, where b is a stochastic quantity for R1 and a deterministic quantity for R2. A 
similar statement can be made for the rules R3 and R4. 

As developed by McDonald [4] [5] [6], R1 and R3 are justified over a slippage 
space, Ω', where all parameters θi are equal with the possible exception of θ[k] in 
case of rule R1 or θ[1] in case of rule R3; and R2 and R4 are applicable over the en-
tire parameter space. The constants b1, b3, and b4 are chosen as small as possible 
and b2 is chosen as large as possible preserving the probability goal. For large 
values of n, the selection rules are determined by the asymptotic formulae as de-
scribed in McDonald [5] and are computed as: 

 ( ) 1
1

2
3 1 6b b h nk k= = +   ,                     (4) 

 ( ) ( ) ( )
1 22 1 *

2 1 12 1 1 2b n k P n k− = − Φ − + +  ,           (5) 

 ( )4 21b n k b= + − ,                          (6) 

where the h-solution to be used in Equation (4) is given by: 

 ( ) ( ) *1 2 dk x h x x P−

−∞

∞
Φ + =∫ φ .                    (7) 

Here, Φ and φ  represent the standard normal cumulative distribution function 
(CDF) and probability density function (PDF), respectively. 

Taking P* to be particular confidence level, the h-solution is given in Table 1 
of Gupta et al. [7], and can be used to determine the constants b1 and b3. The 
above integral can also be calculated to determine P* for a given value of h, using 
a TI-83+ (or similar) calculator with numerical integration capability as shown 
in Green and McDonald [2]. The integral can be shown to be the probability that 
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the maximum of Ui, i = 1, ∙∙∙, k, is less than h where the Ui are normally distri-
buted random variables with zero means, unit variances, and covariance of 0.5 
(see Gupta et al. [7]). With confidence level P*, it can be asserted (using these se-
lection rules) that the chosen subset of the populations contains the one charac-
terized by θ[k] (θ[1]). 

Since there is only one observation for each state for each year, there is no 
general test for additivity, i.e., lack of interaction between states and years. Tukey 
developed a one degree-of-freedom test for nonadditivity when there is a single 
observation per cell, as given here. This test is used to establish the plausibility of 
model (1) for a power transformation of the SHRs. Table 2 shows the Tukey one 
degree-of-freedom test for nonadditivity for the SHRs and for these rates raised 
to the 0.4 power. The test indicates significant evidence of interaction with the 
untransformed rates, and no significant evidence of interaction with the power 
transformation of the rates. The Tukey test is testing for interaction of the form 

( )ij i j i jE X = + + +µ θ β λθ β . And the one degree of freedom test is given by 
testing for the one parameter λ. For the purpose of the nonparametric analyses 
to follow, the original SHR data will be used because ranks are invariant to mo-
notone increasing transformations. 

3. Nonparametric Subset Selection of States  

The goal is now to choose a subset of the 50 states that can be asserted, with a 
specified confidence, to contain the state with the highest SHR (worst popula-
tion), and similarly a state with the lowest SHR (best population) using the non-
parametric ranking and selection procedures. Ranks k = 1, ∙∙∙, 50 are assigned to 
states for each of n = 8 years, with a rank of “1” being the state with the lowest 
SHR. Based on these ranks, the selection procedure for choosing a subset of the 
50 states asserts that the best state (or worst state) is contained with a specified 
confidence level P*. 
 
Table 2. Tukey’s one degree-of-freedom test. 

Tukey’s 1 DF Test of 
Nonadditivity—SHR 

Tukey’s 1 DF Test of 
Nonadditivity—SHR0.4 

SS (Nonadditivity): 47.463 SS (Nonadditivity): 0.252 

SS (Error): 211.477 SS (Error): 20.575 

MS (Error): 0.722 MS (Error): 0.070 

Significance Level: 0.050 Significance Level: 0.050 

Test Statistic: 65.759 Test Statistic: 3.584 

Critical Value: 3.873 Critical Value: 3.873 

The test statistic is greater than the  
critical value, so there is significant  

evidence of interaction. 

The test statistic is not greater than the  
critical value, so there is no significant  

evidence of interaction. 
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Similar to the structure as outlined in the second section, let Rij denote the 
rank of the observation Xij within the jth block. The variables Rij take values from 
1 to k and the selection procedure is based on the rank sums, i ijjT R= ∑ , asso-
ciated with Πi, i = 1, ∙∙∙, k. In the case of ties, each tied state receives an average of 
their rank for that year. This is done for all 7 years. Ranks are then summed for 
each state and the rank sums Ti’s, are orderd. The selection rule constants are 
determined by the asymptotic formulae as described in the second section.  

Taking P* = 0.90, the h-solution as given in Table 1 of Gupta et al. [7], is h = 
2.581. This can be used to determine the constants b1 and b3. Using n = 8, k = 50, 
and h = 2.581, we obtain b1 = b3 = 150.5. Since n = 8 is not a particularly large 
sample size, the asymptotic values are compared with simulated values as de-
scribed in McDonald [8]. The simulated value would yield b1 = b3 = 148 vs. 150.5 
using the asymptotic formula. The other two constants are calculated to be b2 = 
151.7 and b4 = 256.3. The data yields max(Tj) = 397, and min(Tj) = 17.5. The 
choice of P* = 0.90 is determined by the degree of assurance one wishes to have 
concerning the goal of the chosen subset of states. This is similar to the choice of 
the level of confidence, an analyst would have concerning a confidence interval 
for a population parameter, e.g., the mean or variance. 

With confidence level P* = 0.90, it can be asserted that the following subsets of 
states contain that one characterized by θ[k]: 

Rule R1: Select the ith state iff Ti ≥ max(Tj) – 150.5 = 246.5. Twenty-one are 
chosen for “worst”. 

Rule R2: Select the ith state iff Ti > 151.7. Thirty-two are chosen for “worst”. 
With the same 0.90 confidence level, it can be asserted that the following sub-

set of states contain that one characterized by θ[1]: 
Rule R3: Select the ith state iff Ti ≤ min(Tj) + 150.5 = 168.0. Twenty-two are 

chosen for “best”. 
Rule R4: Select the ith state iff Ti < 256.3. Thirty-one are chosen for “best”. 
The identification of the specific states chosen with these four selection rules 

is given in Appendix B. 

4. Parametric Subset Selection of States  

In this section, a normal means parametric selection procedure will be used to 
contrast the inference with that of the nonparametric approach. This approach 
to subset selection was developed by Gupta [9]. With the additive model (1) 

 ( )ij i jE X = + +µ θ β                        (8) 

Letting ( )i ijjX X n= ∑ , then ( ) ( )i i jjE X n= + + ∑µ θ β . Since the quan-
tity ( )jj n+ ∑µ β  is constant for all i, inference on the ordered θi can be effi-
ciently based on the ordering of the means, iX . 

The additive model (1) will be used with Xij replaced with ( ) 0.4
ij ijf X X=  

based on the results given in Table 2. Here, the εij are assumed independent 
identically distributed normal variates with mean 0 and standard deviation σ. 
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Residual displays from a two-way additive analysis of variance (ANOVA) are 
given in Figure 1. 

The residuals are with some outliers on the lower and upper ends. The data at 
lower ends looks piled up, however, as mentioned in section one, the rate data of 
0.00 is not actually zero and not all the 0.00 are equal to each other. The “raw” 
data now will be the SHR to the 0.4 power. Since our interest is selection of “best” 
and “worst” subsets, we will retain the “outliers” and continue with a normal 
means selection process using the selection rule R5 for the “worst” population 
subset and R6 for the “best” population defined as follows: 

R5: Select the ith state iff [ ]i kX X d≥ − , d > 0 
R6: Select the ith state iff [ ]1iX X c≤ + , c > 0. 
The iX ’s are the respective sample means of the “raw” data and the [ ]iX ’s 

are the ordered sample means. The positive constants d and c are chosen so that 
the P(CS) ≥ P* for any configuration of the population (state) parameters, θi’s. It 
can be shown that for a fixed P*, d = c, and 

 ( )1 22d h n= σ ,                          (9) 

where h is defined by the integral Equation (7). 
For k = 50, n = 8, and P* = 0.90, the constants d = c = 1.2905σ. The value of σ 

is chosen to be 0.261 based on the two-way additive ANOVA of the transformed 
SHRs (i.e., the square root of the Mean Square for Error) as shown in Table 3.  
 

 
Figure 1. Residual plots for SHR0.4 from a two-way additive ANOVA. (a) Distribution of transformed data; (b) Resi-
dual probability plot. 

 
Table 3. Two-way ANOVA table for the transformed SHRs. 

Source DF SS MS F Ratios P Values 

STATE 49 137.043 2.79679 41.07 0.000 

YEAR 7 4.528 0.64681 9.50 0.000 

Error 343 23.356 0.06809   

Total 399 164.926    
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Both the factors state and year are shown to be highly significant in affecting the 
variability of the transformed SHRs, i.e., their p-values are approximately zero. 

Then d = c = 1.2905 × 0.261 = 0.34. The means of the transformed rates are 
given in Appendix C. The maximum sample mean is 2.88 (LA) and the mini-
mum sample mean is 0.00 (VT). 

For selecting the “worst” subset, 
R5: Select the ith state iff [ ] 2.88 0.34 2.54i kX X d≥ − = − = . 
The three states AL, MS, LA are chosen. 
For selecting the “best” subset, 
R6: Select the ith state iff [ ]1 0.00 0.34 0.34iX X c≤ + = + = . 
Only the state of VT is chosen for the selected subset. 
An advantage of the parametric approach over the nonparametric approach is 

that the parametric analysis explicitly utilizes the magnitudes of the data rather 
than simply their rank values. Thus, in this analysis, the normal means parame-
tric approach results in a dramatic reduction in the number of states chosen for 
the selected subsets. These results are displayed in Figure 2. 

5. Bayesian Approach to the Selection Problem 

In this section, a Bayesian approach is adopted and the population means are 
assumed to be stochastic. The idea is quite straightforward. A posterior distribu-
tion on the population means is used to simulate a large number of random 
draws, or realizations, of those means. With those draws, ordering probabilities 
of the population means can be estimated. And from these estimates, simple cal-
culations can provide estimates of, e.g., the probability that a specific population  
 

 
Figure 2. Selected states using parametric rules. 
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mean is greater than all the other population means. There are many choices 
that can be made for the posterior distributions. One such approach, utilizing 
flat (or noninformative) prior distributions on the population means is illu-
strated here. 

As shown in Gill [10] and many other Bayesian texts, the posterior distribu-
tion of the mean of the ith population (state), μi, is normal with mean iX  and 
standard deviation nσ , i = 1, ∙∙∙, k. In this situation, the Bayesian and fre-
quentist results (via Central Limit Theorem) are very similar in form. The rele-
vant calculations become 

 ( )1 2 km m mP ≤ ≤ ≤µ µ µ ,                 (10) 

where (m1, m2, ∙∙∙, mk) is any of the k factorial permutations of the integers (1, 2, 
∙∙∙, k). For example, for k = 4, there would be 4! = 24 such probabilities to calcu-
late. This can be easily handled with WinBugs (an MCMC simulator) or R. For 
frequentists, these calculations are meaningless. This approach is used in both of 
the following subsections. In section “Example with k = 4”, all of the permuta-
tion probabilities (10) can be estimated with simulated draws of the posterior 
mean as k is small. In section “Bayesian Analysis of SHR0.4” using R, with large k, 
applicable to the analysis of SHR0.4, a convenient function in R is used to identify 
which population (state) realizes the largest and smallest posterior mean on each 
simulation pass. 

5.1. Example with k = 4 

Suppose we have k = 4 populations with three observations from each of the 
populations yielding sample means of 2, 3, 4, and 5. Assume a common known 
standard deviation equal to 1 and a flat (noninformative) prior distribution on 
the population means. Using, for example, WinBugs, all 24 values of the proba-
bilities given in Equation (10) can be computed. By appropriate summing, the 
estimated values of P[μi = max(μj)], i = 1, 2, 3, 4, are obtained. Table 4 gives the 
results of such computations for 6 of the 24 parameter permutations. These are 
the 6 permutations, where μ4 is the largest of the four means. 

The tabled values were generated with WinBugs using the model code given 
in Appendix D and specifying a large number (105) draws on the posterior 
means. The probabilities of the permutations, ( )1 2 3 4m m m mP ≤ ≤ ≤µ µ µ µ , are 
denoted by P1.2.3.4 in Table 4. 

Given the probabilities in Table 4, it now follows that P(μ4 is max) = 0.6844 + 
0.1031 + ∙∙∙ + 0.0012 = 0.8873, i.e., the sum of the six probabilities in the Table. 
In a similar manner, the calculations yielded P(μ1 is max) = 0.00006, P(μ2 is max) 
= 0.00364, and P(μ3 is max) = 0.10900. A complete probability distribution over 
all possible ordering of the population means is realized. This approach of cal-
culating all the permutation probabilities is, from a practical vantage, limited to 
small values of k (say k ≤ 5 or 6). In our application to homicide rates where k = 
50, another Bayesian approach is more useful as described in the next subsec-
tion. 
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Table 4. A sampling of WinBugs estimates 
for selection from four populations. 

P1.2.3.4 = 0.6844 

P1.3.2.4 = 0.1031 

P2.1.3.4 = 0.09304 

P2.3.1.4 = 0.00274 

P3.1.2.4 = 0.00278 

P3.2.1.4 = 0.0012 

 

 
Figure 3. Selected states using Bayesian rules. 

5.2. Bayesian Analysis of SHR0.4 Using R 

The power transformation makes plausible the negligible interaction assumption 
for the additive model. The “state effects”, assuming flat normal priors, have a 
normal distribution centered at iX  and standard deviation nσ , i = 1, ∙∙∙, k. 
We now simulate in R a draw from each state, rank the results (using “which.max” 
and “which.min”), and repeat a large number of times (e.g., 106) to obtain P(LA 
is worst) = 0.74702, P(MS is worst) = 0.20606, P(AL is worst) = 0.04209, P(VT is 
best) = 0.99768. These results are displayed in Figure 3. The R code for these 
calculations is given in Appendix E. 

The results of the Bayesian analysis herein presented are in close agreement 
with the results given by the parametric selection procedure. This is as expected 
since the choice of a noninformative prior distribution results in an analysis 
based on the likelihood function as is the parametric selection procedure. 
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6. Concluding Remarks  

The subset selection procedures, parametric or nonparametric, select a random 
number of populations to include in the subsets on which a confidence state-
ment can be attached. Subset size is a random variable dependent on the ob-
served data. Determining the constants required to implement the selection rules 
does require the determination of the Least Favorable Configuration (LFC), i.e., 
the configuration of population parameters minimize the probability of a CS. 
With two of the procedures used in this article, R1 and R3, that determination 
has been made only in the situation where the underlying parameter space is a 
“slippage” space, i.e., all population parameters are equal with the possible ex-
ception of one.  

The nonparametric selection rules choose a much larger subset than the pa-
rametric procedures. And the conclusions from the Bayesian analyses are quali-
tatively closely aligned with those from the parametric selection procedures. This 
is not surprising as the nonparametric approach uses the ranks of the data, not 
the magnitudes. And as seen in Figure 1, there are outliers on the lower and 
upper end of the residual probability plot. 

Bayesian procedures can yield a complete probability distribution over all or-
derings of the population parameters (e.g., means). There is a curse of dimen-
sionality—k! gets large very quickly. However, using simulation capability in 
WinBugs and R, it is straightforward to generate a probability distribution over 
the populations as to which has the maximum (minimum) parameter. This was 
illustrated with SHRs from k = 50 states. 

The SHR results have been compared to MVTFRs conducted by McDonald 
[11]. The “worst” states selected for SHR are AL, MS, and LA while SC, MT, and 
MS for MVTFR. The “best” states selected for SHR is VT while MA for MVTFR. 
This is some consistency since the “worst” states are mostly from the Southeas-
tern states and the “best” states are both from the Northeast. 
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Appendix A. State Homicide Rates Raised to 0.4 Power 

State 2005  2014  2015  2016  2017  2018  2019  2020  
AK  1.93  1.86  2.30  2.21  2.57  2.24  2.59  2.21 
AL  2.47  2.31  2.53  2.68  2.78  2.72  2.77  2.89 
AR  2.30  2.26  2.23  2.38  2.49  2.42  2.45  2.79 
AZ  2.41  1.90  1.98  2.09  2.13  2.06  2.03  2.24 
CA  2.17  1.84  1.90  1.95  1.92  1.87  1.83  2.06 
CO  1.71  1.61  1.69  1.79  1.84  1.86  1.79  2.02 
CT  1.59  1.53  1.67  1.49  1.59  1.51  1.57  1.84 
DE  2.13  2.13  2.24  2.18  2.17  2.15  2.06  2.50 
FL  2.02  2.07  2.09  2.15  2.10  2.13  2.14  2.27 
GA  2.19  2.13  2.21  2.29  2.29  2.26  2.31  2.56 
HI  1.29  1.37  1.37  1.51  1.44  1.57  1.44  1.61 
IA  1.21  1.44  1.44  1.51  1.63  1.49  1.49  1.67 
ID  1.59  1.42  1.32  1.29  1.55  1.40  1.24  1.44 
IL  2.15  2.07  2.17  2.43  2.41  2.30  2.31  2.63 
IN  2.03  2.01  2.05  2.25  2.20  2.23  2.20  1.48 
KS  1.72  1.67  1.86  1.95  2.11  2.03  1.89  2.18 
KY  1.96  1.86  2.02  2.20  2.21  2.06  2.03  2.46 
LA  2.77  2.67  2.74  2.90  2.91  2.82  2.93  3.31 
MA  1.51  1.32  1.35  1.35  1.47  1.40  1.40  1.49 
MD  2.55  2.14  2.54  2.52  2.53  2.44  2.51  2.65 
ME  1.24  1.32  1.24  0.00  0.00  0.00  1.27  1.21 
MI  2.17  2.09  2.10  2.14  2.09  2.11  2.11  2.38 
MN  1.49  1.29  1.51  1.42  1.37  1.40  1.51  1.67 
MO  2.21  2.24  2.47  2.50  2.64  2.65  2.59  2.87 
MS  2.41  2.65  2.64  2.71  2.76  2.82  2.99  3.35 
MT  1.63  1.53  1.74  1.79  1.79  1.78  1.69  2.13 
NC  2.25  1.99  2.06  2.23  2.17  2.10  2.18  2.36 
ND  0.00  0.00  1.57  0.00  0.00  1.44  1.57  1.81 
NE  1.44  1.63  1.74  1.61  1.49  1.29  1.57  1.76 
NH  0.00  0.00  0.00  0.00  0.00  1.27  1.51  0.00 
NJ  1.92  1.81  1.83  1.84  1.76  1.69  1.63  1.79 
NM  2.29  2.15  2.30  2.45  2.35  2.59  2.68  2.59 
NV  2.27  2.09  2.14  2.23  2.25  2.26  1.98  2.21 
NY  1.86  1.63  1.63  1.67  1.55  1.59  1.59  1.86 
OH  1.99  1.93  2.05  2.11  2.24  2.15  2.13  2.42 
OK  2.06  2.13  2.35  2.36  2.35  2.18  2.39  2.41 
OR  1.53  1.42  1.63  1.61  1.57  1.44  1.55  1.71 
PA  2.09  1.93  1.99  2.05  2.13  2.10  2.06  2.35 
RI  1.57  1.44  1.51  1.40  0.00  0.00  1.44  1.55 
SC  2.29  2.25  2.46  2.41  2.44  2.53  2.61  2.76 
SD  1.53  1.57  1.78  1.86  1.78  1.72  1.67  2.11 
TN  2.33  2.11  2.20  2.39  2.39  2.43  2.43  2.66 
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TX  2.11  1.93  1.99  2.05  2.02  1.96  2.03  2.25 
UT  1.42  1.32  1.32  1.44  1.47  1.37  1.47  1.53 
VA  2.10  1.76  1.83  1.98  1.96  1.92  1.95  2.10 
VT  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
WA  1.67  1.57  1.63  1.53  1.67  1.69  1.59  1.78 
WI  1.79  1.55  1.83  1.87  1.69  1.72  1.78  2.06 
WV  1.96  2.03  1.83  2.09  2.11  2.02  2.01  2.18 
WY  0.00  1.81  0.00  0.00  0.00  1.76  1.81  1.89 

Appendix B. State Rank Sums and Subsets of States Chosen by Nonparametric Rules 
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Appendix C. Ordered Means of State SHR0.4  
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Appendix D. WinBugs Code for Calculations Related to Table 4 

# Ranking & Selection for k = 4 populations 
model {  
 for (i in 1:3) { 
  x1[i] ~ dnorm(m1,tau1) 
  x2[i] ~ dnorm(m2,tau2) 
  x3[i] ~ dnorm(m3,tau3) 
  x4[i] ~ dnorm(m4,tau4) 
 }  
 m1 ~ dnorm(a,b) 
 m2 ~ dnorm(a,b) 
 m3 ~ dnorm(a,b) 
 m4 ~ dnorm(a,b) 
 tau1 <- pow(sigma1,-2) 
 tau2 <- pow(sigma2,-2) 
 tau3 <- pow(sigma3,-2) 
 tau4 <- pow(sigma4,-2) 
 p1.2.3.4 <- step(m2-m1)*step(m3-m2)*step(m4-m3)   
 p1.2.4.3 <- step(m2-m1)*step(m4-m2)*step(m3-m4) 
 p1.3.2.4 <- step(m3-m1)*step(m2-m3)*step(m4-m2) 
 p1.3.4.2 <- step(m3-m1)*step(m4-m3)*step(m2-m4) 
 p1.4.2.3 <- step(m4-m1)*step(m2-m4)*step(m3-m2) 
 p1.4.3.2 <- step(m4-m1)*step(m3-m4)*step(m2-m3) 
 p2.1.3.4 <- step(m1-m2)*step(m3-m1)*step(m4-m3) 
 p2.1.4.3 <- step(m1-m2)*step(m4-m1)*step(m3-m4) 
 p2.3.1.4 <- step(m3-m2)*step(m1-m3)*step(m4-m1) 
 p2.3.4.1 <- step(m3-m2)*step(m4-m3)*step(m1-m4) 
 p2.4.1.3 <- step(m4-m2)*step(m1-m4)*step(m3-m1) 
 p2.4.3.1 <- step(m4-m2)*step(m3-m4)*step(m1-m3) 
 p3.1.2.4 <- step(m1-m3)*step(m2-m1)*step(m4-m2) 
 p3.1.4.2 <- step(m1-m3)*step(m4-m1)*step(m2-m4) 
 p3.2.1.4 <- step(m2-m3)*step(m1-m2)*step(m4-m1) 
 p3.2.4.1 <- step(m2-m3)*step(m4-m2)*step(m1-m4) 
 p3.4.1.2 <- step(m4-m3)*step(m1-m4)*step(m2-m1) 
 p3.4.2.1 <- step(m4-m3)*step(m2-m4)*step(m1-m2) 
 p4.1.2.3 <- step(m1-m4)*step(m2-m1)*step(m3-m2) 
 p4.1.3.2 <- step(m1-m4)*step(m3-m1)*step(m2-m3) 
 p4.2.1.3 <- step(m2-m4)*step(m1-m2)*step(m3-m1) 
 p4.2.3.1 <- step(m2-m4)*step(m3-m2)*step(m1-m3) 
 p4.3.1.2 <- step(m3-m4)*step(m1-m3)*step(m2-m1) 
 p4.3.2.1 <- step(m3-m4)*step(m2-m3)*step(m1-m2) 
 p[1] <- p1.2.3.4 
 p[2] <- p1.2.4.3 
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 p[3] <- p1.3.2.4 
 p[4] <- p1.3.4.2 
 p[5] <- p1.4.2.3 
 p[6] <- p1.4.3.2 
 p[7] <- p2.1.3.4 
 p[8] <- p2.1.4.3 
 p[9] <- p2.3.1.4 
 p[10]<- p2.3.4.1 
 p[11]<- p2.4.1.3 
 p[12]<- p2.4.3.1 
 p[13]<- p3.1.2.4 
 p[14]<- p3.1.4.2 
 p[15]<- p3.2.1.4 
 p[16]<- p3.2.4.1 
 p[17]<- p3.4.1.2 
 p[18]<- p3.4.2.1 
 p[19]<- p4.1.2.3 
 p[20]<- p4.1.3.2 
 p[21]<- p4.2.1.3 
 p[22]<- p4.2.3.1 
 p[23]<- p4.3.1.2 
 p[24]<- p4.3.2.1 
 p.sum <- sum(p[]) 
} 
list(a=0,b=0.001,x1=c(1,2,3),x2=c(2,3,4),x3=c(3,4,5),x4=c(4,5,6), 
 sigma1=1,sigma2=1,sigma3=1,sigma4=1) 

Appendix E. R Code for Bayesian Simulations Described in the Bayesian Analysis of  
SHR0.4 Section 

# R-code for Bayesian simulations of Rate^0.4 
# k = number of populations; n = number of simulations 
# sigma = model sd ; m = number of years 
k=50; n=100000; sigma=0.261; m=8 
# sigma value is estimate from two-way ANOVA of Rate^0.4 
# mu values are means of (Rate^0.4) 
x <- c(rep(0,k)) 
y <- c(rep(0,n)) 
z <- c(rep(0,n)) 
err <- sigma/sqrt(m) 
mu <- c(2.24, 2.64, 2.41, 2.10, 1.94, 1.79, 1.60, 2.19, 2.12, 2.28, 1.45, 1.48,  
1.41, 2.31, 2.18, 1.93, 2.10, 2.88, 1.41, 2.49, 0.78, 2.15, 1.46, 2.52, 2.79,  
1.76, 2.17, 0.80, 1.57, 0.35, 1.78, 2.43, 2.18, 1.67, 2.13, 2.28, 1.56, 2.09,  
1.11, 2.47, 1.75, 2.37, 2.04, 1.42, 1.95, 0.00, 1.64, 1.79, 2.03, 0.91) 
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names(mu) <- c("AK","AL","AR","AZ","CA","CO","CT","DE", 
               "FL","GA","HI","IA","ID","IL","IN","KS", 
               "KY","LA","MA","MD","ME","MI","MN","MO", 
               "MS","MT","NC","ND","NE","NH","NJ","NM", 
               "NV","NY","OH","OK","OR","PA","RI","SC", 
               "SD","TN","TX","UT","VA","VT","WA","WI", 
               "WV","WY") 
mu 
for (i in 1:n){ 
  for (j in 1:k) {x[j] <- rnorm(1, mean = mu[j], sd = err)} 
  y[i] <- which.min(x) 
  z[i] <- which.max(x) 
} 
table(y) 
table(z) 
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