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Abstract 
This article is concerned with a strongly coupled elliptic system modeling the 
steady state of two or more populations that compete in some regions. We 
prove the uniqueness of the limiting configuration as the competing rate tends 
to infinity, under suitable conditions. The proof relies on properties of limit-
ing solution and Maximum principle. 
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1. Introduction 

In this paper, we consider the following strongly coupled system of elliptic equa-
tions: 

( ) ( ) in ,

, 1, , on ,

k k k k k k
i ij j i i i i i i jj j i

k
i i

d u u a b u u ku u

u i m

β

φ
≠

  −∆ + = − − Ω  
 = = ∂Ω

∑ ∑


    (1.1) 

where iu  denotes the density of the i-th population, 1, ,i m=  , 2m ≥  is the 
number of the species and Ω  is a bounded domain in ( )1n n ≥  with smooth 
boundary. id  is the diffusion rate, ia  the intrinsic growth rate, ib  the intras-
pecific competition rate and ijb  the interspecific competition rate, iiβ  repre- 
sents the self-diffusion rate, and ( )ij i jβ ≠  represents the cross-diffusion rate, 

iφ  are given Lipschitz continuous functions on ∂Ω , which satisfy 0iφ ≥  and 
0i jφ φ =  for i j≠ . k is a free positive parameter, which is sufficiently large (or 

its limit at k = ∞ ). 
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System (1.1) represents a model of the steady state of m competing species 
with self- and cross-population pressures. In the case when 0ijβ ≡  for every i 
and j, system (1.1) is the classic Lotka-Volterra competition model: 

( ) in ,

, 1, , on .

k k k k k
i i i i i i i jj i

k
i i

d u a b u u ku u

u i mφ
≠

− ∆ = − − Ω


= = ∂Ω

∑


          (1.2) 

While if 0ijβ >  for some ,i j , the system becomes strongly coupled. Sys- 
tem (1.1) (or its parabolic case) has been investigated by many workers [1]-[6], 
and various existing results have been developed. In particular, when 2m = , 
Lou and Ni [2] characterized the existence of nonconstant positive solutions 
both for the small and large competition cases, while those in [4] [5] were con-
cerned with the existence of positive solutions in relation to a pair of curves in 
the ( )1 2,a a -plane for both large and small cross-diffusion cases. For the exist-
ing results concerning the case when 3m ≥ , we refer to [6] and references 
therein. 

According to Gause’s principle of competitive exclusion, two competing spe-
cies cannot coexist under strong competition. The migration or the spatial dis-
tribution changes the situation and all the species survive but have disjoint ha-
bits, which is called spatial segregation [7]. To investigate such a phenomenon, 
we will focus on the so called strong competition regime, that is when the para-
meter k diverges to +∞ , while the positive coefficients ijb  remain fixed. 

In the classic Lotka-Volterra competition model (1.2), it is proved that k- 
dependent solutions ( )1 , ,k k

k mu u u=   of system (1.2) satisfy uniform bounds in 
Hölder norms and converge, up to a subsequence, to some limit ( )1, , mu u u=  , 
having disjoint supports: 0i ju u =  for i j≠  [8]. In the limiting configuration, 
the common zero set ( ) { }0u uΓ = =  can be considered as a free boundary (see 
for example [8]-[13]). When ij jib b=  for all i and j (symmetric interactions case), 
it is proved that the free boundary consists of two parts: a regular set, which is a 

1,C α  locally smooth hypersurface, and a singular set of Hausdorff dimension 
not greater than 2n − ; furthermore, in dimension 2, then free boundary con-
sists in a locally finite collection of curves meeting with equal angles at a locally 
finite number of singular points, see for example [8] [9] [14]. Unlike the sym-
metric case, the asymmetric case (i.e. when ij jib b≠  for some ,i j ) shows the 
emergence of spiraling nodal curves, still meeting at locally isolated points with 
finite vanishing order [15]. 

A further related problem is the study of the uniqueness and least energy 
property of the limiting configuration as k → +∞ . In the case of three species 
and in dimension 2, Conti et al. [16] proved the uniqueness and least energy 
properties for the limiting state. That is, the solution of system (1.2) (when 

0i ia b= = ) converges, as k → +∞ , to the minimizer of a variational problem. 
In [13], Wang and Zhang generalized the result to arbitrary dimensions and ar-
bitrary number of species. In [17], Arakelyan and Bozorgnia also proved the un-
iqueness of the limiting solution to system (2). 
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On the other hand, coming back to the strongly coupled system, Zhou et al. 
[18] [19] study the asymptotic behavior of solutions to system (1.1). They ob-
tained the similar spatial segregation results and established the uniform Cα  
( 0 1α< < ) bounds for solutions to system (1.1). 

In this paper, we continue the study of system (1.1), we are concerned with 
the uniqueness of the limiting configuration of system (1.1). In order to simplify 
the notations, throughout the paper we assume 1ij jib b= ≡ , for i j≠ . We only 
consider nonnegative solutions, that is, those 0k

iu ≥  in its domain for all i. 
First we observe that, as proved in [19], the segregated limit ( )1, , mu u u=   sa-
tisfies in distributional sense that 

( ) ( )

( ) ( ) )
( ) ( )
( ) ( ) { }

in  ,

in ,

in 0 ,

on .

i ii i i i i i i

i ii i i j jj j jj i

i i i i j j j jj i

i ii i i i i i i i

i i

d u u a b u u

d u u d u u

a b u u a b u u

d u u a b u u u

u

β

β β

β

φ

≠

≠

  −∆ + ≤ − Ω 
 −∆ + − + 
≥ − − − Ω

  −∆ + = − > 

= ∂Ω

∑
∑       (1.3) 

Define the singular space 

( ) ( )( ){ }1
1: , , : 0,  and 0 for  .

m

m i i i i ju u H u u u u i jφ
∂Ω

= ∈ Ω ≥ = = ≠
 

Our result is as follows. 
Theorem 1.1. Assume that 

{ } ( )1max ,i ii
a d λ< Ω                     (1.4) 

where ( )1λ Ω  denotes the first eigenvalue of the operator −∆  with zero Dirchlet 
boundary condition on Ω . Then there exists a unique vector ( )1, , mu u ∈   sa-
tisfying (1.3) 

We note that Theorem 1.1 has already been proved in [19], where the uni-
queness, also the least energy properties for the limiting state has been estab-
lished. Their method originally stated in [13], is based on computing the deriva-
tive of the energy functional with respect to the geodesic homotopy between u 
and a comparison to an energy minimizing map v with same boundary values. 
Our proof is different from the one in [13] [19]. In fact, our method follows the 
mainstream of [17], based on the properties of limiting solutions and Maximum 
principle. Compared with the work of [19], we in fact give a new proof of the 
uniqueness of the limiting configuration. Our proof doesn’t require regular re-
sults of the free boundary. So in this sense, our proof is straightforward and sim-
ple. 

Note that the study of strong-competition limits in corresponding elliptic or 
parabolic system is of interest not only for questions of spatial segregation in 
population, as here and in [20] [21], but also is key to the understanding of 
phase separation of Gross Pitaevskii systems of modeling Bose-Einstein conden-
sates, see [22]-[27] and reference therein. Furthermore, the study on other as-
pects of segregation triggered by strong competition, starting from two pioneer-
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ing papers by Dancer and Du in [20] [21], is now very vast; besides the papers 
quoted above, we mention [28] [29] [30] [31] for analogue studies in nonlocal 
contexts, [32] [33] for long-range interaction models. 

The rest of the paper is organized as follows: In section 2, we introduce a 
transformation and recall some preliminary results, which are essential to the 
proof of the main results. In Section 3, we prove the uniqueness of the system 
(1.1) in the limiting case as k tends to infinity. 

2. Some Preliminary Results 

In this section, we mention some known results for the solutions of system (1.1), 
which play an important role in our study. To begin with, for every index i, we 
define 

1
.

m
k k k
i i j i

j
z d u u

=

 
= + 
 

∑                      (2.1) 

Then the Jacobian determinant 

( )
( )

1

1

1 11 1 1 12 1 1 11

1 2

1 2

, ,

, ,

2

2

0.

k k
m

k k
m

k k k k
j j mj

k k k k
m m m m m mm m mj jj m

m

z z
J

u u

d u u u u

u u d u u

d d d

β β β β

β β β β

≠

≠

∂
=
∂

+ +

=
+ +

> ⋅⋅⋅ >

∑

∑







   



 

So there exist inverse functions ( )1 , ,k k k
i i mu f z z=   for 1, ,i m=  , which are 

continuous and have continuous partial derivatives. 
To simplify the notations we denote by ( ) ( )1 , ,k k

i k i Mf f z z=z   and using (2.1) 
we may write system (1.1) in the following equivalent form: 

( )( ) ( ) ( ) ( )
( )

in 

on .

k
i i i i k i k i k j kj i

k
i i ii i i

z a b f f kf f

v d β φ φ
≠

−∆ = − − Ω


= + ∂Ω

∑z z z z
     (2.2) 

Now we recall some estimates and compactness properties of solutions to sys-
tem (1.1). 

Lemma 2.1 ([19]) Let ( )1 , ,k k
k Mu u= u  be a nonnegative solution of (1.1) for 

some k ∈ , and ( )1 , ,k k
k Mz z=z   be defined as in (2.1). Then kz  is a nonnega-

tive solution of (2.2), and for every 0 1α< < , there exists a constant 0Cα >  
independent of k such that 

( ) ( )0, 0,,  .k kC CC Cα αα αΩ Ω
≤ ≤u z

 
Moreover, there exists ( ) ( )( )1

1, ,
m

mu u u H= ∈ Ω  such that for all  
1,2, ,i m=  , 

1) up to subsequences, k
i iu u→  in ( ) ( )1 0,H C αΩ ∩ Ω ; 

2) if we define for each index i: 

( ) ,i i ii i iz d u uβ= +                       (2.3) 
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then up to subsequences, k
i iz z→  in ( ) ( )1 0,H C αΩ ∩ Ω ; 

3) 0i ju u =  and 0i jz z =  in Ω , for i j≠ . Furthermore, in distributional 
sense, iz  satisfies 

( )
( ) ( ) ( )

( ) { }
( )

in ,

in ,

in 0 ,
on ,

i i i

i j i i j jj i j i

i i i i

i i ii i i

z h z

z z h z h z

z h z z
z d β φ φ

≠ ≠

−∆ ≤ Ω

−∆ − ≥ − Ω

−∆ = >
 = + ∂Ω

∑ ∑        (2.4) 

where 

( )
2 24 4

.
2 2

ii i i ii i i
i i i

ii ii

s d d s d d
h s a b

β β
β β

 + − + −
 = −
 
 

         (2.5) 

Remark 2.1. By (2.4) and Theorem 8.2 in [14], we have that each element of 
( )1, , mz z z=   is actually global Lipschitz continuous on Ω . 

3. Uniqueness of the Limiting Configuration 

In this section, we prove Theorem 1.1. We perform a change of variable in order 
to deal with the problem in a different setting. Let ( )1, , mu u u=   and 

( )1, , mz z z=   be as the statement in Section 2. Assume that (1.4) holds. We 
define 

( )

( )
0

: max sup
L

i

i s z

h s
s

λ
∞ Ω< ≤

  =  
  

                  (3.1) 

with ( )ih s  be given in (2.5). It is obvious that for each i, ih  is Lipschitz con-

tinuous and ( )0 0ih = , so (3.1) is well defined. By assumption (1.4), we have 

( )1max i
i

i

a
d

λ λ
 

≤ < Ω 
 

, and, this implies the existence of a positive function 

( ) ( )2p x C∈ Ω  such that 

in  ,
0 on .

p p
p

λ−∆ = Ω
 > ∂Ω

                     (3.2) 

Indeed, the monotonicity of the first eigenvalue of the Dirichlet problem with 
respect to the domain implies that there exists 1Ω Ω  such that  

( ) ( )1 1 1λ λ λ= Ω < Ω . Let ( )1
0 1Hη ∈ Ω  be the corresponding eigenfunction of 

the operator −∆  with zero Dirchlet boundary condition on 1Ω . Then 0η >  
in 1Ω , and by the elliptic regularity theory ( )2

1Cη ∈ Ω . So if we let ( )p x  be 
the restriction of ( )xη  to Ω , then ( ) ( )2p x C∈ Ω  (note that ∂Ω  is regular) 
and satisfies (3.2). In particular, there exists a constant 0 0p >  such that 
( ) 0p x p>  for all x∈Ω . We now define 

( ) ( ) ,  1, , ,i i i ii i iv u d u p z x p i mβ= + = =             (3.3) 

then 0iv =  if and only if 0iz = . By Remark 2.1, for every index i, iv  is Lip-
schitz continuous and, by Lemma 2.1, iv  satisfies in distributional sense that 
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( )
( )( )

( ) ( ) ( )
( ) ( ) { }
( )

2 2

2

2

2 2

div ( ) in ,

div

in ,

div in 0 ,

on .

i i i i

i jj i

i i j j i jj i j i

i i i i i

i i ii i i

p v ph pv p v

p v v

p h pv h pv p v v

p v ph pv p v v

v d p

λ

λ

λ

β φ φ

≠

≠ ≠

− ∇ ≤ − Ω

− ∇ −


  ≥ − − − Ω 
− ∇ = − >

 = + ∂Ω

∑

∑ ∑    (3.4) 

By the definition of ( )1, , mv v v=  , we have 0i jv v ≡  for i j≠ . In this set-
ting, we consider the corresponding singular space 

( ) ( )( ) ( ){
}

1
1: , , : 0, 

and 0 for .

m

m i i i ii i i

i j

v v H v v d p

v v i j

β φ φ
∂Ω

= ∈ Ω ≥ = +

= ≠



 
By above construction, we know that if there exists a unique vector  

( )1, , mv v ∈   satisfying (3.4), the uniqueness for the original system (1.3) then 
follows by the definition of the change of the variables, and the proof of Theo-
rem 1.1 is complete. In the following, we focus on the analysis of system (3.4). 
To begin with, for every index i, we denote 

( ) ( ) ( )ˆ : .i i p
p i

w x w x w x
≠

= −∑                   (3.5) 

Lemma 3.1. Let two elements ( )1, , mv v  and ( )1, , mw w  belong to   
and satisfying (3.4). Then the following equation for each 1 i m≤ ≤  holds: 

( ) ( )( )
( ) ( ){ }

( ) ( )( )ˆ ˆ ˆ ˆmax max .
i i

i i i iv x w x
v x w x v x w x

Ω ≤
− = −

 
Proof We argue by contradiction. Let there exists some 0i  such that 

( )
{ }

( )
{ }

( )0 0 0 0 0 0
0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆmax max max
i i i i

i i i i i i
v w v w

v w v w v w
Ω > ≤

− = − > −         (3.6) 

Assume ( ) ( ){ }0 0
: i ix v x w x= ∈Ω > , then in   we have 

( ) ( )
( ) ( ) ( ) ( )

0 0 0

0 0 00 0

2 2

2 2

ˆdiv ,

ˆdiv .

i i i i

i i i j j i jj i j i

p v ph pv p v

p w p h pw h pw p w w

λ

λ
≠ ≠

− ∇ = −


 − ∇ ≥ − − −   ∑ ∑
 (3.7) 

We claim that: 

( )0 0

2 ˆ ˆdiv 0.i ip v w − ∇ − ≤   
In fact, by (3.7) 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0 0 0
0 0

0 0 0 0
0 0

2

2 2

2 2

1 2 3

ˆ ˆdiv

.

i i

i i i i i j j i j
j i j i

i i i i j j j i i
j i j i

p v w

ph pv p v p h pw h pw p w w

ph pv ph pw p h pw p w p v w

I I I

λ λ

λ λ

≠ ≠

≠ ≠

 − ∇ − 
   

≤ − − − + −  
   

  = − + − − −    
+ −

∑ ∑

∑ ∑



 (3.8) 
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Since ih  is Lipschitz continuous and ( )0 0ih = , by the definition of λ  (see 
(3.1)) we have 

( ) ( ) ( )0 0 0 01 3 ,i i i i i iI ph pv ph pw p pv pw Iλ= − ≤ − =
 

Similarly 

( )

( )

( )

0 0

0

0

2
2

0,

j j j
j i j i

j j j
j i

j j
j i

I p h pw p w

p h pw pw

p pw pw

λ

λ

λ λ

≠ ≠

≠

≠

= −

 = − 

≤ − =

∑ ∑

∑

∑
 

and the claim follows. We can now use the weak maximum principle to con-
clude that 

( ) ( )
{ }

( )
{ }

( )0 0 0 0 0 0 0 0
0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆmax max max max ,
i i i i

i i i i i i i iD D v w v w
v w v w v w v w

∂ = ≤
− ≤ − ≤ − ≤ −

 
which contradicts (3.6). Then we can interchange the role of îv  and ˆ iw . Thus, 
we also have 

( ) ( )( )
( ) ( ){ }

( ) ( )( )ˆ ˆ ˆ ˆmax max ,
i i

i i i iw x v x
w x v x w x v x

Ω ≤
− = −

 
for all 1 i m≤ ≤ , and we complete the proof of Lemma 3.1.   

In view of Lemma 3.1 we define the following quantities 

( ) ( )( )( ) { }
( ) ( )( )

1 1
ˆ ˆ ˆ ˆ: max max max max ,

i i
i i i ii m i m v w

P v x w x v x w x
≤ ≤ Ω ≤ ≤ ≤

 = − = − 
 

 

( ) ( )( )( ) { }
( ) ( )( )

1 1
ˆ ˆ ˆ ˆ: max max max max .

i i
i i i ii m i m w v

Q w x v x w x v x
≤ ≤ Ω ≤ ≤ ≤

 = − = − 
   

Lemma 3.2. Let two elements ( )1, , mv v  and ( )1, , mw w  belong to   
and satisfying (3.4). We set P and Q as defined above. If 0P >  is attained for 
some index 1 i m≤ ≤ , then we have 0P Q= > . Moveover, there exist another 
index 0 0j i≠  and a point 0x ∈Ω , such that: 

{ }
( )

{ }
( ) ( ) ( )

0 0 0 0 0 0
0 0 0 0

0 0
0

ˆ ˆ ˆ ˆmax max .
i i i i

i i i i j j
v w v w

P Q v w v w w x w x
≤ = =

= = − = − = −
 

Proof Let the maximum 0P >  be attained for the 0
thi  component. Accord-

ing to the previous lemma, we know that ( ) ( )( )0 0
ˆ ˆi iv x w x−  attains its maximum 

on the set ( ) ( ){ }0 0i iv x w x≤ . Let that maximum point be  
( ) ( ){ }0 0i ix v x w x∗ ∈ ≤ . So, if ( ) ( )0 0

* *ˆ ˆ 0i iv x w x P− = > , then we have 

( ) ( )0 0
0.i iv x w x∗ ∗= =

 

Indeed, if ( ) ( )0 0
0i iv x w x∗ ∗= > , then in the light of disjointness property of the 

components of iv  and iw  we get ( ) ( ) ( ) ( )0 0 0 0

* * * *ˆ ˆ 0i i i iP v x w x v x w x= − = − =  
which is a contradiction. If ( ) ( )0 0

* *
i iv x w x< , then again due to the disjointness 

of the densities iv , iw , we have 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0

* * * * * *ˆ ˆ ˆ0 0.i i i i i iP v x w x v x w x v x w x< = − = − ≤ − <
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This again leads to a contradiction. Therefore ( ) ( )0 0
0i iv x w x∗ ∗= = . 

Now assume by contradiction that 0Q ≤ . Then by definition of Q we should 
have 

( ) ( )ˆ ˆ , , 1, , .j jw x v x x j m≤ ∀ ∈Ω =   
This apparently yields 

( ) ( ) , , 1, , .j jw x v x x j m≤ ∀ ∈Ω =   
If ( ) ( )j jw x v x> , then ( ) ( ) ( ) ( )ˆ ˆj j j j h jh jw x w x v x v x v v

≠
= ≤ = − ≤∑ , ob-

taining a contradiction. 
Let ( ) ( ){ }0 0 0

0i i iv x w x= = = , then we have 

( ) ( )( ) ( ) ( )( )0 0
0 0 0

ˆ ˆ0 max max 0.
i i

i i j j
j i

P v x w x w x v x
≠

 
< = − = − ≤ 

 
∑

 
 

This contradiction implies that 0Q > . By analogous proof, one can see that if 
P be non-positive then Q will be non-positive as well. Next, assume the maxi-
mum P is attained at a point 

00 ix ∈ . Then we get 

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )
0 0 0 0

0

0

0 0 0 0 0 0

0 0

ˆ ˆ0

.

i i i i j j
j i

j j
j i

P v x w x v x w x w x v x

w x v x
≠

≠

< = − = − + −

= −

∑

∑
 

This shows that 

( ) ( )
0 0

0 0 0.j j
j i j i

w x v x P
≠ ≠

= + >∑ ∑
 

Since ( )1, , mw w ∈  , then there exists 0 0j i≠  such that ( )
0 0 0jw x > . This 

implies 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0 0 0
0

0 0 0
0

0 0 0
0 0

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0
,

0 0 0

0 0

ˆ ˆ0

ˆ 2 2

ˆ 2

ˆ ˆ 2

ˆ ˆ .

i i j j
j i

j j j j
j i

j j j j
j i j

j j j

j j

P v x w x w x v x

w x v x v x v x

w x v x v x v x

w x v x v x

w x v x Q

≠

≠

≠

< = − = −

= − + −

= − + −

= − −

≤ − ≤

∑

∑

∑

 
The same argument shows that Q P≤  which yields P Q= . Hence, we can 

write 

( ) ( ) ( ) ( )
0 0 0

0

0 0 0 0ˆ ˆ .j j j j
j i

P w x v x w x v x Q
≠

= − = − =∑
 

This gives us ( )
0 02 0jj j v x

≠
=∑ , and therefore 

( )0 00,  ,jv x j j= ∀ ≠  

which completes the last statement of the proof.   
We are ready to the proof of Theorem 1.1. As already mentioned, it is suffi-

cient to prove the following unique result for system (4). 
Theorem 3.1. There exists a unique vector ( )1, , mv v ∈  , which satisfies 
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system (3.4). 
Proof Let ( )1, , mu u u=   and ( )1, , mu u u′ ′ ′=   be two m-tuples of the li-

miting solutions of system (1.1) as k → +∞ . Then we define 

( ) ( )  and , 1, , .i i i ii i i i i ii iv u d u p w u d u p i mβ β′ ′= + = + =   

It is now clear that ( )1, , mv v v=   and ( )1, , mw w w=   are belong to the 
class   and satisfy (3.4). For them, we set P and Q as above. Then, we consider 
two cases 0P ≤  and 0P > . If we assume that 0P ≤  then Lemma 3.2 im-
plies that 0Q ≤ . This leads to 

( ) ( )ˆ ˆ0 0,i iQ v x w x P≤ − ≤ − ≤ ≤  
for every 1 i m≤ ≤ , and x∈Ω . This provides that 

( ) ( )ˆ ˆ ,  1, , ,i iv x w x i m− =   
which in turn implies that 

( ) ( ).i iv x w x=  

Now, suppose 0P > , we show that this case leads to a contradiction. Let the 
value P is attained for some 0i , then due to Lemma 3.2 there exist 0x ∈Ω  and 

0 0j i≠  such that: 

( ) ( )
{ }

( ) ( )( ) ( ) ( )
0 0 0 0 0 0

0 0
0 0 0 0

0
ˆ ˆ ˆ ˆ0 max .

i i
i i i i j j

v w
P Q v x w x v x w x w x v x

= =
< = = − = − = −

 
Let Γ  be a fixed curve starting at 0x  and ending on the boundary of Ω . 

Since Ω  is connected, then one can always choose such a curve belonging to 
Ω . By the disjointness and smoothness of 

0j
v  and 

0j
u , there exists a ball cen-

tered at 0x , and with radius 0r  ( 0r  depends on 0x ) which we denote it 
( )

0 0rB x , such that 

( ) ( ) ( )
0 0 0 00 in .j j rw x v x B x− >

 
This yields 

( ) ( )( )( ) ( )
0 0 0

2
0ˆ ˆdiv 0 in .j j rp w x v x B x− ∇ − ≤

 
The maximum principle implies that 

( )
( ) ( )( )

( )
( ) ( )( )0 0 0 0

0 00 0

ˆ ˆ ˆ ˆmax max .
r r

j j j jB x B x
w x v x w x v x P

∂
− = − ≤

 
On the other hand, in view of Lemma 3.2 we have 

( ) ( ) ( ) ( )
0 0 0 00 0ˆ ˆ ,j j j jw x v x w x v x P− = − =

 
which implies that P is attained at the interior point ( )

00 0rx B x∈ . Thus, 

( ) ( ) ( )
0 0 0 0ˆ ˆ 0 in .j j rw x v x P B x− ≡ >

 
Next let ( )

01 0rx B x∈Γ∩∂ . We get ( ) ( )
0 01 1ˆ ˆ 0j jw x v x P− = > , which leads to 

( ) ( )
0 01 1j jw x v x≥ . We proceed as follows: If ( ) ( )

0 01 1j jw x v x> , then as above 

( ) ( ) ( )
0 0 1 1in .j j rw x v x B x>

 
This in turn implies 
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( ) ( )( )( ) ( )
0 0 1

2
1ˆ ˆdiv 0 in .j j rp w x v x B x− ∇ − ≤

 
Again following the maximum principle and recalling that ( ) ( )

0 01 1ˆ ˆj jw x v x P− =  
we conclude that 

( ) ( ) ( )
0 0 1 1ˆ ˆ 0 in .j j rw x v x P B x− = >

 
If ( ) ( )

0 01 1j jw x v x= , then clearly the only possibility is ( ) ( )
0 01 1 0j jw x v x= = . 

Thus 

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )
0 0 0 0

0

0

1 1 1 1 1 1

1 1

ˆ ˆ0

.

j j j j j j
j j

j j
j j

P w x v x w x v x v x w x

v x w x
≠

≠

< = − = − + −

= −

∑

∑
 

Following the lines of the proof of Lemma 3.2, we find some 0 0k j≠ , such 
that 

( ) ( ) ( ) ( )
0 0 0 01 1 1 1ˆ ˆ .k k k kP v x w x v x w x= − = −

 
It is easy to see that there exists a ball ( )

1 1rB x  (without loss of generality one 
keeps the same notation) 

( ) ( )( )( ) ( )
0 0 1

2
1ˆ ˆdiv 0 in .k k rp v x w x B x− ∇ − ≤

 
In view of the maximum principle and above steps we obtain: 

( ) ( ) ( )
0 0 1 1ˆ ˆ 0 in .k k rv x w x P B x− = >

 
Then we take ( )

12 1rx B x∈Γ∩∂  such that 1x  stands between the points 0x  
and 2x  along the given curve Γ . According to the previous arguments for the 
point 2x  we will find an index { }0 1, ,l m∈   and corresponding ball  

( )
2 2rB x , such that 

( ) ( ) ( )
0 0 2 2ˆ ˆ in .l l rv x w x P B x− =

 
We continue this way and obtain a sequence of points nx  along the curve 

Γ , which are getting closer to the boundary of Ω . Since for all 1, ,j m=   
and x∈∂Ω  we have 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ 0,j j j jv x w x w x v x− = − =  
then obviously after finite steps N we find the point Nx , which will be very close 
to the ∂Ω  and for all 1, ,j m=   

( ) ( )ˆ ˆ 2.j N j Nv x w x P− <
 

On the other hand, according to our construction for the point Nx , there ex-
ists an index 1 Nj m≤ ≤  such that 

( ) ( )ˆ ˆ ,
N Nj N j Nv x w x P− =

 
which is a contradiction. This completes the proof of the uniqueness.  

4. Conclusions and Further Works 

The study of the asymptotic behavior of singular perturbed equations and sys-

https://doi.org/10.4236/am.2022.135028


L. Liu, S. Zhang 
 

 

DOI: 10.4236/am.2022.135028 429 Applied Mathematics 
 

tems of elliptic or parabolic type is very broad and subject of research. In this 
paper, we study a strongly coupled elliptic system arising in competing models 
in population dynamics. We give an alternative proof of the uniqueness of the 
limiting configuration as k → +∞  under suitable conditions. We remark that 
the approach here is different from the one in [19]. Our proof doesn’t require 
regular results of the free boundary. So in this sense, our proof is straightforward 
and simple. 

Finally, we mention that there are many interesting problems for further study. 
Note that we prove the uniqueness of the limiting solutions to a strongly coupled 
elliptic system, naturally to ask whether this result can be extended to the cor-
responding parabolic system? Up to our knowledge, the uniform Hölder bounds 
for parabolic setting is unknown, and both the asymptotics and the qualitative 
properties of the limit segregated profiles remain a challenge, this will be the ob-
ject of a forthcoming paper. 
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