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Abstract 
This paper examines the performance of five algorithms for numerically in-
verting the Laplace transform, in standard, 16-digit and multi-precision en-
vironments. The algorithms are taken from three of the four main classes of 
numerical methods used to invert the Laplace transform. Because the numer-
ical inversion of the Laplace transform is a perturbed problem, rounding er-
rors which are generated in numerical approximations can adversely affect 
the accurate reconstruction of the inverse transform. This paper demon-
strates that working in a multi-precision environment can substantially re-
duce these errors and the resulting perturbations exist in transforming the 
data from the s-space into the time domain and in so doing overcome the 
main drawback of numerically inverting the Laplace transform. Our main 
finding is that both the Talbot and the accelerated Gaver functionals perform 
considerably better in a multi-precision environment increasing the advan-
tages of using Laplace transform methods over time-stepping procedures in 
solving diffusion and more generally parabolic partial differential equations. 
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1. Introduction 

This paper examines the performance of five algorithms for numerically invert-
ing the Laplace transform, in standard 16-digit and multi-precision environments. 
The algorithms, whose derivations are outlined in Section 5, are taken from three 
of the four main classes of numerical methods used to invert the Laplace trans-
form [1]. 

The Abate-Valko [1] and Logan schemes [2] belong to the class of inversion 
algorithms which deform the Bromwich contour [3]. They are closely related 
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versions of this approach as they both use Talbot’s method for deformation of 
the contour [4]. Logan, however, chooses an exponential transform while Ab-
ate-Valko extends the original Talbot formulation expressing the contour in tri-
gonometric form.  

The Stehfest and Salzer-Gaver algorithms [5], are again two closely related 
schemes based on the acceleration of the Gaver functional [6]. Stehfest applied a 
modified Salzer acceleration scheme [7] onto the Gaver functional simplifying 
this result to yield one of the most widely used algorithms for inverting the Lap-
lace transform. We find, however, that when we implement a direct application 
of the Salzer acceleration scheme onto the Gaver functional, (Salzer-Gaver), with 
Stehfest’s modifications, we do not obtain the same results as those produced by 
the Stehfest scheme. We conclude that Stehfest’s simplification process is at least 
in part responsible for the differences in performance of these two versions.  

Finally, we examine the Fourier series method [8], which expresses the inver-
sion integral as a Fourier series and then uses the trapezium rule to evaluate the 
integral numerically. The Fourier series method differs from the other four algo-
rithms as no acceleration scheme is used to force convergence. As such, this is 
only used in a standard 16 digit precision environment and is compared with the 
four other schemes using standard precision.  

2. The Laplace Transform 

The Laplace transform is an integral transform defined as follows: 
Let ( )f t  be defined for 0t ≥ , then the Laplace transform of ( )f t  is given 

by,  

( ){ } ( )
0

e dstf t f t t
∞ −= ∫                      (1) 

Thus ( ){ }f t  is a function of s denoted as ( )F s . The Laplace transform 
can be shown to exist for any function which can be integrated over any finite 
interval 0 t l< <  for 0l > , and for which ( )f t  is of exponential order, i.e.  

( ) eatf t M<                           (2) 

as t →∞ , where 0M >  is a finite real number and a is a small real positive 
number. 

Analytically the inverse Laplace transform is usually obtained using the tech-
niques of complex contour integration with the resulting set of standard trans-
forms presented in tables [9]. 

However, using the Laplace transform can generate data in the Laplace do-
main which is not easily invertible to the real domain by analytical means. Thus 
numerical inversion techniques have to be used to convert the data from the 
s-space to the time domain. 

3. The Inverse Laplace Transform, Perturbation and  
Multi-Precision 

The recovery of the function ( )f t  is via the inverse Laplace transform which is 
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most commonly defined via the Bromwich contour integral,  

( ){ } ( ) ( )1 1 e d
2

i st
i

L F s f t f s s
i

α

α

+ ∞−

− ∞
=

π
= ∫                 (3) 

such that α ∈R . The inversion integral is widely known to be highly perturbed 
[10] [11] [12]. This is due to the est  term in the integral which amplifies small 
changes in the input data. Hence all numerical schemes are vulnerable to this 
perturbation and this has to be taken into account when using the various algo-
rithms to invert the Laplace transform. This suggests that working in a mul-
ti-precision environment can act to reduce errors and the resulting perturba-
tions which exist in the transforming the data from the s-space into the time 
domain.  

As Abate-Valko noted [1], “In the traditional development of the inversion 
methods, most of the effort was directed at controlling round-off errors. This is 
because the process is numerically unstable in a fixed-precision, computing en-
vironment. The problem is that as the user tries to increase the accuracy there 
comes a point where the round off error causes the error to increase dramatical-
ly”. 

In fact Abate-Valko got further and made the claim that “for our purposes, we 
add the proviso that values of the transform can be computed to any desired 
precision as a function of the complex variable”.  

This suggests that working in a multi-precision environment can act to reduce 
errors and the resulting perturbations which exist in transforming the data from 
the s-space into the time domain.  

4. The Algorithms 

Large parts of this section are taken from our earlier work [13]. This is necessary 
to provide sufficient background on the derivation of the algorithms and their 
performance. However, we extend this work to include comments on Salzer ac-
celeration and the subsequent Salzer Gaver scheme’s derivation and compare 
this to the Stehfest inversion scheme. 

However this has been extended to include analysis of the Salzer acceleration 
scheme on the Gaver functional. We also comp There are over 100 algorithms 
available for inverting the Laplace Transform with numerous comparative stu-
dies, examples include, Duffy [14], Narayanan and Beskos [15], Cohen [10] and 
perhaps the most comprehensive by Davies and Martin [16]. However for the 
purposes of this investigation we apply our tests using “Those algorithms that 
have passed the test of time” [1]. These fall into four groups,  

1) Fourier series expansion. 
2) Combination of Gaver Functionals. 
3) Laguerre function expansion. 
4) Deformation of the Bromwich contour.  

4.1. The Fourier Series Method 

In their survey of algorithms for inverting the Laplace transform, Davies and 
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Martin [16] note that the Fourier series method without accelerated convergence 
gives good accuracy on a wide variety of functions. Since the Laplace Transform 
is closely related to the Fourier transform it is not surprising that inversion me-
thods based on a Fourier series expansion would yield accurate results. In fact 
the two sided Laplace transform can be derived from the Fourier transform in 
the following way. We can define the Fourier transform as  

( ){ } ( ) 2e di tf t f t tν∞ −

−∞

π= ∫                       (4) 

Then letting 2v ν= π  we have  

( ){ } ( )e divtf t f t t
∞ −

−∞
= ∫                       (5) 

This Fourier transform exists provided ( )f t  is an absolutely integrable func-
tion, i.e.  

( ) df t t
∞

−∞
< ∞∫                            (6) 

As many functions do not satisfy condition (6), ( )f t  is multiplied by the 
exponential dampening factor e ut−  thus  

( ){ } ( )e e e dut ivt utf t f t t
∞− − −

−∞
= ∫                   (7) 

and letting s u iv= +  we obtain the two sided Laplace Transform of ( )f t  as  

( ){ } ( ){ } ( )e e dut stf t f t f t t
∞− −

−∞
= = ∫                (8) 

Le Page [17] notes that the integral given by (8) can be written in two parts as 
follows:  

( ) ( ) ( )0

0
e d e d e dst st stf t t f t t f t t

∞ ∞− − −

−∞ −∞
= +∫ ∫ ∫            (9) 

The second term on the RHS in the above expression is referred to as the one 
sided Laplace transform or simply the Laplace transform. Thus, s is defined as a 
complex variable in the definition of the Laplace transform. 

As before the inverse Laplace transform is given as:  

( ) ( )1 e d
2

u i st
u i

f t F s s
i

+ ∞

− ∞
=

π ∫                    (10) 

With s u iv= +  in (10) this leads to the result  

( ) ( ){ } ( ) ( ){ } ( )
0

2e Re cos Im sin d
ut

f t F u iv vt F u iv vt v
∞
 = + − + π ∫     (11) 

[8], which can be replaced by the cosine transform pair  

( ){ } ( ) ( )
0

Re e cos dutF u iv f t vt t
∞ −+ = ∫               (12) 

( ) ( ){ } ( )
0

2e Re cos d
ut

f t F u iv vt v
∞

= +
π ∫              (13) 

or by the sine transform pair  

( ){ } ( ) ( )
0

Re e sin dutF u iv f t vt t
∞ −+ = −∫              (14) 
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( ) ( ){ } ( )
0

2e Im sin d
ut

f t F u iv vt v
∞

= − +
π ∫              (15) 

Dubner and Abate [18] applied a trapezoid rule to (13) resulting in the Fouri-
er series approximation,  

( ) ( )
1

2e 1 Re cos
2

ut

k

k i k tf t F u F u
T T T

∞

=

     ≈ + +     
    

π π


∑         (16) 

where ( )f t  is expanded in the interval 0 t T≤ < . For faster computation Si-
mon et al. [19] proposed the following version of (16).  

( ) ( ) ( )
1

e 1 Re 1
2

ut
k

k

k if t F u F u
t t

∞

=

π   ≈ + + −   
   

∑           (17) 

This series can be summed much faster than (16) as there are no cosines to 
compute [20]. This algorithm is relatively easy to implement with u being the 
only real varying parameter. 

However, as Crump [8] points out, for the expression in (17) the transform 
( )F s  must now be computed for a different set of s-values for each distinct t. 

Since this type of application occurs often in practice in which the numerical 
computations of ( )F s  is itself quite time consuming this may not be an eco-
nomical inversion algorithm to use. These drawbacks to some extent can be over-
come by using the fast Fourier transform techniques in [20] [21]. 

Crump [8] also extends this method to one with faster convergence by making 
use of the already computed imaginary parts. There are several other accelera-
tion schemes for example, those outlined by Cohen [10], however these accelera-
tion methods in general require the introduction of new parameters which for 
the purposes of this investigation we wish to avoid. 

4.2. The Stehfest Algorithm 

Davies and Martin [16] cite the Stehfest [5] algorithm as providing accurate re-
sults on a wide variety of test functions. Since that time, this algorithm has be-
come widely used for inverting the Laplace Transform, being favoured due its 
reported accuracy and ease of implementation. 

Here we give a brief overview of the evolution of the algorithm from a proba-
bility distribution function to the Gaver functional whose asymptotic expansion 
leads to an acceleration scheme which yields the algorithm in its most widely 
used form. 

Gaver [6] investigated a method for obtaining numerical information on the 
time dependent behavior of stochastic processes which often arise in queuing 
theory. The investigation involved examining the properties of the three para-
meter class of density functions namely  

( ) ( )
( ) ( ),

!
, 1 e e

! 1 !
nat mat

n m

n m
p a t a

n m
− −+

= −
−

                  (18) 

with ,n m∈ .  
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After the binomial expansion of the term ( )1 e
nat−− , Gaver went on to find 

the expectancy ( ),n mE f T   , where ,n mT  is the random variable with density 
(18). From this Gaver was able to express the inverse Laplace transform in terms 
of the functional  

( ) ( )
( ) ( ) ( ),

0

!ln 2 ln 21
! 1 !

n k
n m

j

n m n
f t F k m

kt n m t=

+    = − +   −   
∑           (19) 

with certain conditions on n and m, Gaver makes n m=  and Expresses (19) as  

( ) ( )
( ) ( ) ( )

0

2 !ln 2 ln 21
! 1 !

n k
n

k

n n
f t F k n

kt n n t=

   = − +   −   
∑            (20) 

While the expression in (20) can be used to successfully invert the Laplace 
transform for a large class of functions its rate of convergence is slow [9] [10].  

However Gaver [6] has shown that (20), with ln 2t
a

=  has the asymptotic  

expansion  

( ) 31 2
2 3

ln 2
nf t f

a n n n
αα α ≈ + + + + 

 
                 (21) 

where the jα ’s are constant coefficients in the asymptotic series. Hence (21) in 
the limit converges to  

( ) ln 2
n
n
f t f

a→∞

 =  
 

 

For the conditions on m and n and justification for the substitution for a re-
ferred to above see Gaver [6]. This asymptotic expansion provides scope for ap-
plying various acceleration techniques enabling a more viable application of the 
basic algorithm.  

Much of the literature alludes to the fact that a Salzer [7] acceleration scheme 
is used on the Gaver functional in (20) which results in the Stehfest algorithm. In 
fact Stehfest’s approach was a little more subtle than a direct application of the 
Salzer acceleration. 

4.2.1. Using Salzer Acceleration 
The Salzer acceleration scheme makes use of the “Toeplitz limit theorem” [7], 
“this concerns the convergence of a transformation of a sequence sζ  where the 
( )1n + th member of the transformed sequence is a weighted mean of the first 
( )1n +  terms”  

0

n

n nk k
k

S Sµ
=

= ⋅∑                         (22) 

Here nS  is the transformed sequence and kS  the original sequence which 
for our purposes ( )nf t=  in (20). The Salzer means are given by  

( ) ( )1
1

!

n
n k

nk

k n
kn

µ + +  
= −  

 
                   (23) 

For the sake of compatibility with (22) we make the change k i→  and 
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n k→  in (20). With this change of variables we also write  

( )
( )

( )2 ! 2 !
! 1 ! ! !

k k k
k k k k

=
−

 

This allows the sum to be taken from 0k =  to n without ( )0 1 !−  in the de-
nominator of (20). So with Salzer acceleration we can express the Salzer-Gaver 
algorithm as  

( ) ( ) ( )
( )

( )
( ) ( ) ( )

0 0

1 2 ! ln 2ln 2 !1 1
! ! ! ! ! !

nn kn k i
n

k i

k k k k ikf t F
t k n k k k i k i t

+

= =

+ +  = − −  
− −   

∑ ∑   (24) 

4.2.2. Stehfest’s Acceleration Scheme 
For the purposes of following Stehfest’s derivation it will be convenient to re-
write (20) as  

( ) ( )
( ) ( ) ( )( )

0

2 !
1

! 1 !

n k
n n

k

n a n
f t F F k n a

kn n =

 
= = − + −  

∑            (25) 

Stehfest [5] begins by supposing we have N values for ( )F k n a+    with 
( )F a , ( )2F a , ( )3F a ,   ( )F Na  for N even. Using (25) we can then  

determine 
2
N  values 1 2 2, , , NF F F . Now each of these 

2
N  values satisfy the  

asymptotic series in (21) with the same coefficients. 
As Stehfest [5] points out, the αj’s are the same for each of the above expansions  

and by using a suitable linear combination the first ( 1
2
N
− ) error terms in (21)  

can be eliminated. That is  

2

11 2 2

ln 2 1
N

n n Nin
f a F O

a
N

 + − =  

 
   = +    

 
∑                  (26) 

which may be achieved by selecting the coefficients to satisfy  

2

,0
1

1 , 1, , 2 1
1

2

N

n kk
n

a k N
N n

δ
=

= = −
 + − 
 

∑               (27) 

which produce the same coefficients as the Salzer acceleration scheme used in 
(22). In fact for any n, Stehfest generates the required coefficients using what is 
in effect a modified Salzer acceleration scheme giving  

( ) 1 1
21

12
2!

2

Nn

n

N
Na n n

N n

− −   −    = + −            
 

                (28) 

Finally, Stehfest substitutes these results into (26) and gets the inversion for-
mula  

( )
1

ln 2 ln 2N

j
j

jf t A F
t t=

 ≈  
 

∑                    (29) 
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for N even and  

( ) ( )

( ) ( ) ( )

min ,
22

2

1
2

2 !
1

! ! 1 ! ! 2 !
2

NNj
N j

j
jk

k k
A

N k k k j k k j

 
 
 +

+ =  

= − =
 − − − − 
 

∑        (30) 

However, a direct application of the modified Salzer acceleration scheme in 
(28) onto the Gaver functional in (25) does not produce the same results for the 
expression in (30) so they are not exactly equal to each other. 

To show this we consider the function ( )sin t  whose Laplace transform is  

2

1
1s +

 

The eight weights produced by the Salzer acceleration for 8n =  are exactly 
the same for 18n =  in Stehfest’s modified Salzer acceleration scheme in (28).  

However, Table 1 shows that for ( )sin t  with these same weights, the Salz-
er-Gaver scheme produces different results when compared to Stehfest’s scheme 
in (30). We believe this is due to Stehfest’s simplification of the Salzer-Gaver 
scheme to the expression in (30).  

This simplification was necessary because as we show in our results in Section 
6, Stehfest’s final expression in (30) is faster and works better in standard double 
precision. As the algorithm was developed in 1970, this would be far more effi-
cient when taking into consideration the computing power available at the time. 
Again as we show in Section 6, a direct application of a Salzer acceleration 
scheme onto the Gaver functional is only advantageous in a multi-precision en-
vironment. 

4.3. The Talbot Algorithm 

Equations (4) to (8) showed that the Laplace transform can be seen as a Fourier 
transform of the function  

( )e , 0ut f t t− >                         (31) 

i.e.  

( ){ } ( ){ } ( )e utF f t f t F s− = =                  (32) 

 
Table 1. Salzer-Gaver stehfest for ( )sin t . 

t Stehfest Salzer-Gaver 

5 0.89 1.02 

10 0.08 0.18 

15 0.002 0.03 

20 0.03 0.02 

25 0.001 0.004 

30 0.001 0.004 
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Hence the Fourier transform inversion formula can be applied to recover the 
function thus:  

( ){ } ( ) ( )1 1e e d
2

ut ivtF F s f t F s v
∞− −

−∞
= =

π ∫                (33) 

as s u iv= +  we have that d ds i v=  and so 

( ) ( )1 e d
2

u i st
u i

f t F s s
i

+ ∞

− ∞
=

π ∫                      (34) 

This result provides a direct means of obtaining the inverse Laplace trans-
form. In practice the integral in (34) is evaluated using a contour  

( )1 e d
2

st
B

F s s
iπ ∫                          (35) 

with B here denoting the Bromwich contour [3]. The contour is chosen so that it 
encloses all the possible singularities of ( )F s . The idea of the contour is intro-
duced so that the Cauchy residue theorem can be used to evaluate the integral. 

However, when ( )f t  is to be calculated using numerical quadrature it may 
be more appropriate to devise a new contour. To ensure that (35) is integrable 
we may wish to control the growth of the magnitude of the integrand est  by 
moving the contour to the left and so giving the real part of s a large negative 
component [1] [22]. 

However, the deformed contour must not be allowed to pass through any 
singularities of ( )F s . This is to ensure that the transform is analytic in the re-
gion to the right of B. 

4.3.1. Derivation of the Fixed Talbot Contour 
In the derivation that follows [1] and [22] are used as the primary basis for ex-
tending the explanation of the derivation of the Talbot algorithm for inverting 
the Laplace Transform. 

Abate-Valko [1] began with the Bromwich inversion integral along the Brom-
wich contour B with the transform 

( ) 1 , 0F s
sα

α= >                         (36) 

So ( )f t  can be expressed as  

( ) ( )ln1 e d
2

t s a s

B
f t s

i
−=

π ∫                       (37) 

with a
t
α

=  in (37). As Abate-Valko [1] indicated, numerically evaluating the  

integral in (37) is difficult due to the oscillatory nature of the integrand. 
However, this evaluation can be achieved by deforming the contour B into a 

path of constant phase thus eliminating the oscillations in the imaginary com-
ponent. These paths of constant phase are also paths of steepest decent for the 
real part of the integrand [1] [22] [23]. 

There are in general a number of contours for which the imaginary compo-
nent remains constant so we choose one on which the real part attains a maxi-
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mum on the interior (a saddle point) and this occurs at ( ) 0g s′ =  at some 
point on the contour. At these saddle points the ( ){ }Im 0g s =  [17]. Where  

( ) lng s s a s= −                           (38) 

in (37). Thus we have  

( ) 1 ag s
s

′ = −                            (39) 

So the stationary point occurs when s a= . 
With s u iv= +  we have  

( ){ }Im ln 0u iv a u iv+ − + =                     (40) 

Expressing u iv+  as eiR θ  we have  

( ) ( ){ }Im ln 0u a R i v aθ− + − =                   (41) 

then  

v aθ=                             (42) 

and as  

( )tan v
u

θ =                           (43) 

Then  

( )cotu aθ θ=                          (44) 

[1]. 
With v aθ=  then s can be parameterized to (44) Talbots contour  

( ) ( )( )cot ,s a iθ θ θ θ= + π− < < +π                (45) 

[4]. 

4.3.2. Conformal Mapping of the Talbot Contour 
While the above parametrization can be used as a basis for inverting the Laplace 
transform we proceed with the algorithm’s development via a convenient con-
formal mapping as follows.  

( )e e
cot

e e

i i

i i

i θ θ

θ θθ
−

−

+
=

−
                      (46) 

Then  

2

2cot
1 e i

ii θ

θθ θ θ −+ =
−

                     (47) 

with 2z iθ=  (47) is equal to  

1 e z

z
−−

                           (48) 

Hence (45) becomes,  

1 e z

az
−−

                           (49) 

https://doi.org/10.4236/am.2022.135027


C. L. Defreitas, S. J. Kane 
 

 

DOI: 10.4236/am.2022.135027 411 Applied Mathematics 
 

The function  

( )
1 e z

azs z −=
−

                          (50) 

maps the closed interval [ ]2 ,2M i iπ= − π  on the imaginary z-plane onto the 
curve L in the s plane giving the integral,  

( ) ( )1 e d
2

st
L

f t F s s
iπ

= ∫                       (51) 

For the details of this transformation one can refer the study of Logan [2]. 
Next we follow the procedure as adopted by Logan [2] for numerically inte-

grating (51). With the change of variable (51) becomes  

( ) ( )( ) ( ) ( )1 e d
2

s z t

M
f t F s z s z z

i
′

π
= ∫                  (52) 

where  

( )
( )
( )2

e e 1

e 1

z z

z

a z
s z

− −

−

− + −
′ =

−
                     (53) 

For convenience we write,  

( ) ( )1 , d
2 M

f t I z t z
iπ

= ∫                       (54) 

where  

( ) ( )( ) ( ) ( ), es z tI z t F s z s z′=                     (55) 

The integral in (54) is then rotated by 
2
π  so the interval of integration is now  

real and becomes [ ]2 ,2− π π  and then we use the trapezoid rule with n odd and 
w iz= −  to obtain  

( ) ( ) ( ) ( )
1

1

1 2 2 2
n

j
j

f t I i T i I iw
n

−

=

 
≅ + − π +π 

 
∑               (56) 

where  

22 1j
jw

n
 = −


π 


                        (57) 

and we note that ( ) ( )2 2 0I i I i= − π =π  [2]. 

4.3.3. Valko 
Abate-Valko [1] deformed the Bromwich contour using the Talbot path which 
has the form,  

( ) ( )( )cot ,s h rh h i h= + π− < < π                  (58) 

Which is the same as (47) with a r=  and h θ=   
So we have  

( ) ( )( )1s h ir ir h′ = +                        (59) 
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where,  

( ) ( )( ) ( )cot 1 cotr h h h h h= + −                    (60) 

Then from (52) we find,  

( ) ( ) ( )( ) ( )( )
0

Re e 1 dts hrf t F s h ir h h
π  +

π
=  ∫              (61) 

They then approximate the value of the integral in (63) by using the trapezoidal  

rule with step size 
m
π  and k

kh
m

=
π ,  

( ) ( ) ( ) ( ) ( )( ) ( )( )
1

1

1, exp Re e 1
2

k
M

ts h
k k

k

rf t M F r rt F s h ir h
m

−

=

  = + +   
∑    (62) 

Based on numerical experiments, Abate-Valko then fixed the parameter r to 
the value,  

2 .
5
Mr
t

=                             (63) 

[1]. We also use this value for a in Logan’s transformation.  

5. Results 

We tested the five algorithms on the functions listed in Table 2 and Table 3  
 
Table 2. Test functions. 

Function No. ( )f s  ( )f t  

1 2

1
1 s+

 ( )sin t  

2 ( )2

1
1s +

 e tt −  

3 2

1
s

 t 

4 
1
s

 1
tπ

 

5 
ln s
s

 ( )ln t γ− +  

6 
1
s

 1 

7 
2

1
1s +

 ( )0,J t  

8 ( )e 1,sK s
s

 ( )2t t +  

9 
1
0.5s +

 2e
t

−
 

10 ( )2

1
0.2 1s + +

 ( )0.2e sint t−  

11 
1arctan
s

 
 
 

 ( )sin t
t
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Table 3. Test functions continued. 

Function No. ( )f s  ( )f t  

12 
1

1s s+ +
 

3

1 e
2

t

t

−

π

−  

13 ( )
1

1s s+
 ( )e erfct t  

14 2e s−  

1

3

e t

t

−

π
 

15 

1
4

3
2

e s

s

−

 ( )2sin t

π
 

16 
1log 1
s

 + 
 

 1 e t

t

−−  

17 
( )

( )
arccos 1

2

s
s s

−

−
 ( )e 0,t K t  

18 
1

e s

s

−

 
( )cos 2 t

tπ
 

19 
2

1

1s s+ +
 ( )

3
2

2 sin

2

t

t π
 

 
below. Functions 1 - 11 and 18 are taken from the 16 functions tested by Davies 
and Martin [16]. The remaining functions are selected from those tested by Ab-
ate-Valko [1].  

The first set of tests were carried out using 16 digits double precision. These 
results are shown in Table 4. The Fourier, Logan and Abate-Valko schemes were 
run with weights 50M = , 100M =  and 200M = , however for brevity we in-
clude only the result for 200M = . 

For the Stehfest and the Salzer-Gaver algorithms best results were obtained 
with weights of 16M =  and 8M =  respectively. This is in keeping with 
Stehfest’s observations on the instability of this method as M increases above an 
optimal level [5]. 

In multi-precision, the number of precision digits N for Abate-Valko were set 
equal to N M=  [1] and for the Slazer-Gaver, and Stehfest schemes, best re-
sults were obtained when the number of precision digits was set equal to 

2N M= .  

( ) ( )
2

30

1 30
i i

i

f t f t
L

=

 − = ∑


                     (64) 

And 
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Table 4. Standard double precision. 

Function 
Fourier Logan Valko Stehfest Salzer-Gaver 

L Le L Le L Le L Le L Le 

1 1.5 (−4) 2.8 (−4) 3.7 (−9) 1.2 (−11) 3.0 (−11) 9.4 (−14) 1.4 (−3) 2.6 (−5) 2.0 (−2) 9.1 (−4) 

2 6.1 (−4) 1.4 (−4) 1.8 (−9) 2.7 (−10) 1.0 (−11) 3.9 (−14) 8.9 (−6) 8.9 (−6) 2.8 (−6) 3.2 (−6) 

3 1.2 (−3) 1.2 (−3) 7.5 (−9) 2.3 (−11) 4.4 (−11) 1.4 (−13) 7.0 (−8) 7.1 (−8) 1.1 (−8) 1.1 (−8) 

4 7.3 (−2) 8.4 (1.0) 7.4 (−9) 2.3 (−11) 4.8 (−11) 1.7 (−13) 5.4 (−8) 6.2 (−7) 2.8 (−6) 3.2 (−6) 

5 6.8 (−2) 6.9 (−2) 4.1 (−11) 1.2 (−11) 6.4 (−12) 2.2 (−14) 2.2 (−8) 1.4 (−7) 2.3 (−5) 8.5 (−5) 

6 6.1 (−4) 6.1 (−4) 7.5 (−9) 2.3 (−11) 6.5 (−11) 2.1 (−13) 0.0 (0) 0.0 (−) 8.7 (−15) 4.8 (−14) 

7 2.8 (−4) 3.4 (−4) Fail Fail Fail Fail 1.9 (−2) 6.7 (−3) 1.7 (−2) 5.1 (−3) 

8 Fail Fail 1.2 (−8) 3.8 (−11) 8.1 (−11) 2.7 (−13) 9.2 (−8) 1.2 (−7) 6.3 (−4) 6.3 (−4) 

9 5.7 (−4) 4.7 (−4) 4.6 (−9) 1.6 (−11) 3.3 (−11) 1.2 (−13) 1.2 (−6) 4.7 (−6) 1.9 (−8) 2.8 (−7) 

10 6.1 (−4) 1.9 (−4) 3.1 (−9) 9.5 (−12) 3.0 (−11) 9.7 (−14) 9.2 (−3) 4.8 (−3) 5.2 (−4) 2.9 (−5) 

11 2.8 (−4) 3.8 (−4) 5.9 (−9) 1.8 (−11) 3.4 (−11) 1.2 (−13) 7.4 (−3) 2.7 (−3) 6.5 (−3) 1.9 (−3) 

 

( ) ( )
230

1

30
1

1

e

e

i

i

t
i

e

i
t

i f t f t
L =

−
=

− − =
∑

∑



                 (65) 

where ( )f t  is the analytical solution and ( )f t  is the numerical solution. Hence 
L is the root-mean-square error and eL  is the same as L but weighted by the 
factor e t−  [14]. 

All computations were done using a 64-bit operating system with an Intel(R) 
Core(TM) i7-855ou CPU processor. The algorithms were implemented in Maple 
2018 using the Maple’s digits command to set the required precision. 

5.1. Standard Double Precision 

Table 4 and Table 5 show that when compared with the other four algorithms, 
the Fourier series method performs with the least accuracy on all the functions 
tested. It also fails to reconstruct functions 8, 15, 17 and 18, with poor results for 
functions 4, 5 and 12. 

However, for the functions which it successfully reconstructs it does so with a 
RMS accuracy of between L = 3.6(−5) and 1.2(−2). We believe that this scheme 
will improve greatly when an acceleration scheme is applied. This is an issue we 
intend to investigate in our future work.  

With the exception of function 7, ( )0J t , Logan’s algorithm successfully in-
verts all the functions given in Table 2 and Table 3 with very good accuracy. We 
found that in SDP best results are obtained by equating 1a =  in (50). Table 3 
and Table 4 show that for these functions the RMS error varies between 3.6(−8) 
to 8.4(−12). 

Except for function 7 the ( )0J t , the Abate-Valko scheme successfully in-
verts all the functions in Table 3 and Table 4. Moreover, it does so with greater  
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Table 5. Standard double precision continued. 

Function 
Fourier Logan Valko Stehfest Salzer-Gaver 

L Le L Le L Le L Le L Le 

12 2.0 (−1) 4.2 (−1) 3.1 (−9) 9.5 (−12) 1.6 (−11) 6.2 (−14) 6.2 (−8) 2.0 (−8) 8.2 (−8) 1.4 (−6) 

13 3.1 (−3) 1.6 (−3) 3.7 (−9) 1.2 (−11) 2.7 (−11) 8.9 (−14) 8.6 (−7) 4.0 (−7) 3.3 (−7) 3.7 (−7) 

14 6.2 (−5) 3.6 (−5) 3.6 (−8) 1.2 (−7) 6.2 (−12) 1.3 (−13) 1.3 (−6) 1.7 (−5) 1.6 (−6) 2.2 (−5) 

15 Fail Fail 3.3 (−9) 1.0 (−11) 3.9 (−11) 1.2 (−13) 5.7 (−7) 1.0 (−7) 7.9 (−6) 1.9 (−5) 

16 5.8 (−4) 4.3 (−4) 5.2 (−9) 1.6 (−11) 2.5 (−12) 9.1 (−14) 2.2 (−8) 1.4 (−7) 4.9 (−7) 8.8 (−6) 

17 Fail Fail 1.2 (−8) 3.9 (−11) 7.3 (−11) 2.5 (−13) 6.0 (−8) 3.0 (−6) 2.6 (−6) 1.1 (−5) 

18 Fail Fail 2.7 (−9) 8.4 (−12) 1.7 (−11) 6.3 (−14) 2.9 (−5) 1.6 (−6) 5.9 (−6) 3.4 (−6) 

 
Table 6. Multi-Precision N = 200. 

Function 
Logan Valko Stehfest Salzer-Gaver 

L Le L Le L Le L Le 

1 6.2 (−63) 1.1 (−63) 6.9 (−110) 1.3 (−110) 6.1 (−41) 8.5 (−43) 7.6 (−124) 1.0 (−125) 

2 7.5 (−63) 1.2 (−63) 6.0 (−110) 1.2 (−110) 7.1 (−77) 9.7 (−79) 1.4 (−184) 2.0 (−184) 

3 7.5 (−63) 1.2 (−63) 6.9 (−110) 1.3 (−110) 5.0 (−92) 5.0 (−92) 3.9 (−184) 3.9 (−184) 

4 1.2 (−60) 2.5 (−60) 3.3 (−107) 6.9 (−107) 6.0 (−94) 7.0 (−93) 5.2 (−132) 6.0 (−132)) 

5 1.1 (−60) 1.7 (−60) 2.0 (−118) 2.8 (−118) 4.8 (−93) 2.6 (−92) 1.1 (−293) 2.0 (−292) 

6 3.6 (−61) 3.6 (−61) 4.5 (−108) 4.5 (−108) 0.0 (0) 0.0 (0) 2.0 (−293) 1.1 (−292) 

8 8.3 (−62) 3.4 (−62) 3.6 (−119) 1.5 (−119) 2.0 (−72) 7.4 (−74) 3.8 (−133) 1.1 (−132) 

9 3.6 (−61) 3.6 (−61) 4.5 (−108) 4.5 (−108) 2.5 (−94) 3.5 (−93) 6.0 (−182) 2.1 (−184) 

10 6.5 (−63) 1.1 (−63) 6.8 (−110) 1.2 (−110) 1.1 (−45) 1.5 (−47) 1.1 (−128) 1.5 (−130) 

11 3.6 (−61) 3.6 (−61) 4.5 (−108) 4.5 (−108) 1.2 (−42) 1.6 (−44) 3.1 (−126) 4.2 (−128) 

 
Table 7. Multi-Precision continued N = 200. 

Function 
Logan Valko Stehfest Salzer-Gaver 

L Le L Le L Le L Le 

12 5.9 (−61) 1.3 (−60) 6.9 (−110) 1.3 (−110) 6.1 (−41) 8.5 (−43) 3.4 (−132) 4.4 (−131) 

13 3.0 (−61) 3.4 (−61) 6.0 (−110) 1.2 (−110) 7.1 (−77) 9.7 (−79) 1.6 (−133) 2.9 (−133) 

14 7.4 (−63) 2.0 (−64) 6.9 (−110) 1.3 (−110) 5.0 (−92) 5.0 (−92) 3.4 (−102) 6.5 (−101) 

15 6.7 (−62) 2.7 (−62) 3.3 (−107) 6.9 (−107) 6.0 (−94) 7.0 (−93) 1.3 (−133) 2.6 (−133)) 

16 3.6 (−61) 3.6 (−61) 2.0 (−118) 2.8 (−118) 4.8 (−93) 2.6 (−92) 2.5 (−131) 3.3 (−130) 

17 1.4 (−60) 2.0 (−60) 2.3 (−107) 3.1 (−107) 0.0 (0) 0.0 (0) 8.5 (−131) 3.5 (−132) 

18 1.1 (−60) 2.5 (−60) 3.2 (−107) 6.9 (−107) 1.4 (−41) 1.9 (−43) 6.3 (−132) 6.8 (−131) 

19 8.3 (−62) 3.4 (−62) 3.6 (−119) 1.5 (−119) 2.0 (−72) 7.4 (−74) 3.8 (−133) 1.1 (−132) 
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accuracy than the Logan scheme. The tables show that the RMS error varied be-
tween 6.5(−11) and 6.2(−12).  

Table 3 and Table 4 show that the Stehfest algorithm shows poor accuracy 
when inverting functions 1, 7, 10 and 11. For these functions the RMS error va-
ries between 2.01(−2) to 9.2(−3). Its poor performance is due to the fact that the 
Stehfest algorithm has difficulty inverting functions of a cyclic nature [5]. How-
ever, it inverts the remaining functions with good accuracy with a RMS error of 
between 0 to 2.9(−5). Table 3 and Table 4 shows that the Salzer-Gaver algo-
rithm shows poor accuracy for functions 1, 7, 10 and 11. These are the very same 
functions that the Stehfest algorithm has problems inverting. Again this is due to 
the difficulties it encounters when inverting cyclic functions. It inverts the re-
maining functions with less accuracy than the Stehfest with an RMS error vary-
ing between 10(−15) to 10(−5). 

5.2. Multi Precision 

With the exception of function 7, the Logan and Abate-Valko algorithms suc-
cessfully inverted the remaining functions to a high degree of accuracy, see Ta-
ble 6 and Table 7. Duffy [14] also remarks that when using the Talbot contour 
he had difficulties accurately inverting the Bessel function. This may related to 
the combination of the singularity on the imaginary axis and the branching na-
ture of the square root function.  

Abate-Valko [1] stated that they were able to overcome this by increasing the 
weights and hence the precision as a function of t. However, we were unable to 
replicate their results for this function.  

Overall, the Abate-Valko scheme showed far greater accuracy than Logan’s 
across all the functions tested. However, Logan’s algorithm was still able to 
produce highly accurate results with RMS errors varying between 10(−60) to 
10(−63). Moreover, Table 8 shows that Logan’s scheme was able to perform the 
inversion of these functions with shorter elapsed times. 

The Stehfset and Salzer-Gaver algorithms were able to invert all the functions 
to a high degree of accuracy. The Salzer-Gaver scheme was in general about 
twice as accurate as the Stehfest algorithm which, was less accurate than Ab-
ate-Valko’s scheme. Nevertheless, the Stehfest scheme inverted the functions  
 
Table 8. Elapsed time τ  for 100t = . 

Function 
Logan Valko Stehfest Salzer-Gaver 

τ  τ  τ  τ  

2 0.89 1.44 0.43 2.37 

8 0.55 0.88 0.41 3.06 

11 0.94 3.87 1.74 2.56 

13 0.72 0.94 0.41 0.99 

18 0.56 1.05 0.52 1.27 
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well within any generally desired accuracy with the RMS error varying from 0.0 
to 10(−41). Moreover, as Table 8 shows it in terms of the elapsed time it was the 
fastest of all the algorithms for the most part twice as fast as the Abate-Valko 
scheme which in turn was at least twice as fast as the Salzer-Gaver scheme. 

6. Conclusions 

In standard-double-precision, the Abate-Valko algorithm provides the best re-
sults for the numerical reconstructions for the functions tested in this paper. The 
Fourier algorithm had the worst performance of the five algorithms tested. Both 
the Stehfest and Salzer-Gaver algorithms had difficulty reconstructing functions 
of a cyclic nature. None of the algorithms was able to invert the ( )0J t  function 
accurately. 

In multi-precision, the Stehfest and the Salzer-Gaver schemes inverted all the 
functions with high accuracy. The Logan and Abate-Valko schemes were only 
able to invert the ( )0J t  with limited accuracy. However they were both able to 
reconstruct all the other functions with a high degree of accuracy. The most ac-
curate algorithm in multi-precision was the Salzer-Gaver scheme. However, as 
Table 8 shows it also had the longest elapsed times. On the other hand, the 
Stehfest algorithm had the shortest elapsed times for the selected functions in 
Table 8. The algorithms that used the Abate-Valko were the most accurate, but 
Logan could reconstruct the functions with shorter elapsed times. Therefore we 
conclude that when working in standard-precision Valko’s algorithm performed 
best. However, in multi-precision, the Stehfest algorithm is best as it inverted all 
the functions with a high degree of accuracy and the shortest elapsed times. 
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