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Abstract

Ellipses can be constructed by folding disks. These folds are forming an envelope
of tangents to the ellipse. In the paper of Gorkin and Shaffer, it was shown that
the ellipse constructed by folding can be circumscribed by an arbitrary triangle
of tangents, the vertices of which are lying on the circumference of the disk.
They offered two non-elementary methods of proof, one using Poncelet’s Theo-
rem, the other employing Blaschke products. In this paper, it is the intention to
present an elementary proof by means of analytic geometry.
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1. Introduction

The disk with which the folding is performed shall be represented by a circle
x* +y* =1’ with radius »>0 and center C= (0,0). The point D inside the
circle and different from the center C shall be described as D =(d,0) with
|d| <. The fold performed by laying a point A4, of the circumference of the
disk on top of D can be described by the perpendicular bisector of the line seg-
ment AO_D, where 4, = (50»770) fulfills & +7; =7 . The straight line running
through D=(d,0) and 4, hasthe form

nox_(é:o_d)y:nod (1)
The perpendicular bisector of line segment @ is given by
1
(§O—d)x+770y:5(r2—d2). )

The point of intersection of both straight lines (1) and (2) is

M, :(%(§0+d ),%770). They are perpendicular to each other because their

normal vectors are orthogonal: 7, (& —d)—(& —d)n, =0. See Figure 1.
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Figure 1. Perpendicular bisector of @

The term “sequential folding” was established by Gorkin and Shaffer [1] and
means: After the first fold, proceed in such a way as to start the next fold where
the previous fold ended. In contrast to Gorkin and Shaffer [1] in this paper after
the first fold, the second fold and the third fold are starting at the two different
ends of the first fold on the circle x*+y° =77, at (x,») and (x,,y,) re-
spectively. This shall be named “bidirectional folding”. In the second fold,
A =(&.m) has to be chosen on the circle x*+y> =7 in such a way that

(x1 , J’1) is a point on the perpendicular bisector of AI_D :
1
(él_d)xl"'m)ﬁzg(”z_dz), §12+7]12=r2. (3)

In the third fold, a point 4, =(&,,7,) has to be chosen on the circle
x*+y* =" such that (xz, yz) is a point on the perpendicular bisector of

A,D:
| 2, .2 2
(iz—d)xﬁﬂzyz:E(V —-d )= & +ny =17, (4)

The final problem will be, to show that perpendicular bisectors of AI_D and
A,D
1
(fl —d)x+771y :—(r2 —dz)
2
1 )
(52 _d)x+772y =E(r2 _dz)

have a point of intersection (x;,y;) on the circle x* +y* =r". Because of the
quadratic Equations in (3) and (4) involved in the calculation of ((,‘1,771) and

(&.m,) we get two solutions ((51 ). »(m )¢) and ((52 ). (7, ):) respectively.
The number of solutions can be reduced, however, looking at two straight lines:
one passing through ((fl ). - (m )7) and ((éfl ). (m )+) the other through
((5‘2 ), »(m )_) and ((g‘2 ). (1, )+) . It will be shown that the point of intersec-
tion (xy,ys) of both straight lines is located on the circle x*+y*=r" and is
equalto A4, =(&.7,).

The procedure described above constructs an arbitrary triangle circumscrib-
ing an ellipse and having vertices on a circle. This is in contrast to the approach

in [1], where a special triangle was chosen to circumscribe an ellipse and have
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vertices on a circle. The generalization to an arbitrary triangle is accomplished
by employing Poncelet’s Theorem [2]. In a remark in [1], a different way of proof
is indicated with a Blaschke product of degree three, treated more extensively in

(3].

2. Preliminaries

Next we want to find the points of intersection of (2) with the circle X2+ y2 =%,

Assuming 7, #0 Equation (2) can be rewritten as

—d 2 _ g2
y= _S—d Pl (6)
o 21,
which gives after substitution into the equation of the circle and multiplication
with 7;
2.2 1/, 2 ’ 2.2
nex’ + —(fo—d)x+5(r —d ) —nor’ =0.
So we get

1 2
((&=a) +m ) x> =(& —a)(r ~d)xro (P =d?) —mirt =0 @)
The highest coefficient in (7) is different from zero for (50,770) with
E+m; =1’ because
(&—d) +n2=r* —2&d +d* 2 ~2rld|+d® = (r=[d|) >0. (8
So we get
1 2

X (fo—d)(rz—dz) Z(},2_6112) _7737’2

- 2 2 X+ 2 2

(éo_d) +1 (éo_d) +1
Before writing down the solutions of (9) we are introducing the expression

R(fo,ﬂ0)=4r2((§0—d)2+77§)—(r2—d2>2_ (10)

=0. 9)

Lemma 1

R(&,.m,) is positive for (&,1,) with & +n; =7,
Proof: The expression (fo—d)2+77§ is bounded below according to (8).
Thus

R(&m) 2 47 (r—a | ~(r =" (r+ld])" = (=[] (4 ~(r+a])").
For the expression 47’ —(r+|d|)2 holds
4r° —(r +|d|)2 = (2r —(r+|d|))(2r +(r +|d|)) = (r +|d|)(3r+|d|) > 0.

Therefore R(&,,7,) is positive for (&,7,) with Exne=r. O
With expression (10) the solutions of (9) have the form

X, :;2)((50 —d)(r—d%) 7, /R(go,no)), (11)

2((&-a) +m
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where the index 1 of x shall correspond to the +sign and the index 2 to the
—sign. Substituting (11) into (6) we obtain

1 )(no(rz_dz)I(fo_d) R(foano))a (12)

D R Y
2((&-a) +m

where the index 1 of y corresponds to the —sign and the index 2 to the +sign.
For ie{l,2} thismakesfor x’+y’ =r’.

Although the derivation of (11) was carried out under the assumption 7, %0,
the case 7, =0 can be recovered from (11). For 7, =0 follows &, ==£r. For
&, =+r we get x, :%(r+d) and for & =-r we have x, =—%(r—d). In

. 2 2 2
each case we are getting from x;, +y;, =r" two y -values:

5 =20\ Gred)(r=d) and y, =2 Gr=d)(r+d)

From (11) and (12) we can deduce for i€ {1,2} :

(fo_d)xi"'ﬂoyi =%<r2—d2), (13)

3. Construction of the Gardner Ellipse

The term “Gardner ellipse” has been used in [1] for the ellipse constructed by
folding disks, going back to Gardner’s publication [4]. In order to calculate the
point of intersection (x,,y,) of the straight line through C=(0,0) and
Ay, =(&,.m,) and straight line (2) we are looking at the linear system

MoXg =60 Vs =0
1 (14)
(50 _d)xB T170)p =5(r2 _dz)-
For the determinant D, of the linear system (14) holds:
Dy :775 +(§0 _d)fo :773 +§02 = &od =7 —&d
and we have the following positive lower bound
Dy=r*=&d>r’ —|§0||d| >’ —r|d| = r(r—|d|) > 0.
The solutions of the linear system (14) are
5 r2 _d2 77 r2 _d2
alea) () ,

o mgd) T ()

Since B=(x,,y;) islying on straight line (2), the perpendicular bisector of
4,D, the line segments DB and A,B have the same length. Thus

DB+BC=4B+BC-A4C—r. 16)

See Figure 2.
Letting point 4, =(&,7,) move on circle x*+y* =7’ we obtain a se-
quence of points B =(x,y,) which have a constant sum of distances from

two fixed points C'and D. According to (16) this sum of distances is equal to r.

DOI: 10.4236/am.2022.132012

150 Applied Mathematics


https://doi.org/10.4236/am.2022.132012

P. P. Klein

Figure 2. Gardner ellipse with tangent.

Therefore the so generated points are forming an ellipse, the so-called “Gardner

ellipse”. It has foci Cand D and midpoint (%d ,Oj . The semi axes of the Gard-

ner ellipse are given by « =% and b= %\/rz —d* . The formula of the ellipse

)
X=7 2
No2) LYy (17)

The coordinates of B =(x,,y,) given in (15) fulfill Equation (17), if the

values for the semi axes a and b are substituted.

is

The tangent to the ellipse (17) at the point (x,,y B) has the form

) )
Xp—— || x——=
#JFM:]_ (18)

a b
Proposition 1

The tangent to ellipse (17) at the point (x,,;), given by (18), is equivalent

to the perpendicular bisector (2) of line segment A,D.
Proof: From (15) we get

d_ &(r-d?)-d(r -&d) (& -d)

.x =
) 2(r* -¢,d) 2(r* =4,d)
and
L d
5 2_2 é:O_d y_B_2 770
2 T T 2 > 2T % 2 :
a r-=&d b r-=&d
This leads to
) )
b2 2) VY _ 5 d[—i}rz T,
a p* T =&d\ 2) rr-&dT T

(&0 -d)xmy =2 ~5d) + $(& -d) =5 (" =),
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which is the perpendicular bisector (2) of line segment 4,D.
Remark: Because of the relations for the semi axes of the Gardner ellipse

a =§ and b= %\/rz —d* an arbitrary ellipse with semi axes 2 and b can be in-

terpreted as Gardner ellipse, choosing r» =2a as radius of the surrounding cir-

cleand d =./r? —(Zb)2 =2+4a® —b* as distance of the foci.

4. Bidirectional Folding

Having obtained the points (x,,)) and (x,,»,) according to (11) and (12)
the second fold is starting from (x;,»,) and the third fold from (x,,,), de-
scribed by Equations (3) and (4) respectively.

The calculation of the points 4, =(&,7,) and 4, =(&,,7,) is combined by
looking for 4, =(&,n,) for ie{l,2} with

(é—d)xi"'myi:%(”z_dz)’ &l =rt (19)

For y, =0, because of x, =+r, we obtain from (19) for ie {1,2}
&= dizi(rz —d*) and 7, =+r’ - &
r

In the case y, #0 we use the expansion

& =(&-d+d) =(&-d) +2d(&-d)+d?

and multiply the second Equation of (19) with y’

((&-d) +2d (& -d)+d )y} +n7y? =13}, (20)

Solving the first Equation of (19) for 7,y, and substituting in (20) gives

(&-d) ¥ +2dy> (& —d)+[—(§,. -d)x, +%(r2 _dz)j _(rz —dz)y,-z =0,

(&-dY (xl2 +yl.2)+(2dyl.2 —xi(r2 —dz))(fi -d)
+i(r2 &) ~(r—a?)y? =0,

Because of x/ +y’ =7’ we obtain a quadratic equation for & —d :

AR TCTRII,

(3] - o

Before writing down the solutions of (21) we are introducing the expression

21)

S(xi):r4—[dxi+%(r2 —dz)jz. (22)

Lemma 2

For ie{l,2} and x’+y’ =" theexpression S(x,) ispositive.
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Proof: For i€ {1,2} the expression § (xl.) can be split up in the factors

s st b

:%(r2 ~2dy, +d2)%(2(r2 g )+r—d?).

S(x.

1

) is positive for X'+ =r" with ie {1,2} since

P2 =2dx, +d> 27> =2|d|r+d* = (r-|d|) >0

and

2(r2 +alxi)+r2 —-d*> 2}’(}’—|d|)+r2 —d*>0.

O
With expression (22) the solutions of (21) are

(gl._d)i=ri2[%(rz_dz)_dy3iyi 50|

From (23) we obtain

Substituting (23) into the first Equation of (19) yields

(m,). =riz{y,. [dxl. +%<r2 —dz)jn,. S(xl.)}

or expressed otherwise: (23) and (25) combine to
1

(é _d)i X; +(77i )i Vi = E(rz _dz)'
In addition (é )i +(n, )i =7 can be verified.

5. Interpretation of Solutions

For ie{l,2} we arelooking at the straight lines passing through

((£).-(n).) and ((£)_(m). )

Proposition 2
For ie {1,2} the straight line

XX+ y =X (é )+ +y; (771' ),

is passing through points (27).

Proof: It is clear that ((J,‘l ), (7, )7) is fulfilling (28). In order to prove

X; (é), +Y; (77,')Jr =X (é)Jr +)i (771‘),
we are going to show

x,-((é-)f _(é)+)+yi((77i)+ _(771‘)7):0‘

According to (24) and (25) we have:

(§i)+=riz{xi(dxi+%(r2—dz))iyi S(x,) |-

(23)

(29)

(25)

(26)

(27)

(28)

(29)
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Thus (29) follows from
2
X; ((é ), _(51' )+)+yi ((771» )+ _(77i ),) = r_z(_'xiyi +yixi) S(xi) =0.

O

Next we are looking at the point of intersection (xg,y;) of the straight lines

(28), ie. the solution of the following linear system

XX+ )1 Vs =X ((51 )+ + (771 )_

(30)
XoXg+ Yy Vg =X, (fz )+ +¥, (772 )_ .
See Figure 3.
Proposition 3
For the the determinant D, of the linear system (30) holds
r2 _d2
Ds =xy, =%, = > o) R(§05n0)9 (31)
2((&-a) +m; )

which is different from zero for (50,770) with & +n5 =r".
Proof: According to (11) and (12) we have

1 4r2(§0_d)’70+(r2_d2)\/m)’

4((§o—d)2+77§)(

X :ﬁ(@’z ((:0 _d)’70 _(rz _dz) VR(é:oaﬂo))'

4((¢-d

This gives the result (31).

XV, =

Dy is different from zero for (&),77,) with & +7, =7’ because by Lemma 1
R(&,.m,) is positiveand 7 —d” >0 holds. O

Theorem 1

For ie{1,2} holds:

Either ((&),.(.)_)=(&%.m) or ((&)_.(n),)=(&m). (2

Proof: Because of (13) we have for ie {1,2}

DOI: 10.4236/am.2022.132012 154 Applied Mathematics


https://doi.org/10.4236/am.2022.132012

P. P. Klein

Figure 3. Straight lines through (((,"‘l )+ ,(77i )_) and

((.fl)_ ’(771' )+) for i e {1,2}.

1
x,& +yin, =dx, +E(r2 —dz). (33)
Furthermore we have for i e {1,2}
5(6), +n(n) =dy 2 (r=d?), (34)

because (24) and (25) yield
x(&), + v ().

=x—;{xi[dxi+%(r2—d2))+yi S(xf)}

Al ) )5 5
=ri2{(xf +yf)(dx,. +%(r2 —dz)j+(x,-yi ~ %) S("t)}
—dy ()

Combining (33) and (34) we get for i€ {1,2}
xS+ Yy =X, (681 )+ +y (77i )_ .
This means

X8+ 0y =X (‘:1 )+ ) (771 )_

(35)
X80 + Volly =X, (52 )+ +), (772 ),~

According to Proposition 3 the determinant Dy is different from zero for
(50,170) with 53 +77§ =r? . Therefore the linear systems (30) and (35) have one
and only one solution, which leads to (xg,y5)=(&),7,). Point 4, =(&.7,) is
lying on both straight lines (28) and on the circle x’ +y2 =r?. One of the
points of intersection of both straight lines (28) with the circle, ((§)+ (m; )_)
or ((é)_ (7, )+) for ie{1,2}, must coincide with (&,7,) what means (32).
O
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Corollary 1

With the result of Theorem 1 for the points 4, =(&,7,) with ie {1,2} cal-
culated in Section 4 therefore remains the following attribution:

Iffor ie{l,2}: (&.n,)= ((51.)+ (7, )7) ,then (&.7,)= ((é), ,(771.)+).

Iffor ie{l,2}: (&.n,)= ((51.)7 ,(771.)+) ,then (&.7,)= ((é)+ ,(771.)7). O

With this information and formulas (23) and (25) the following expressions
can be evaluated for ie {1,2} :

2 2

(6-d)(& - d) =" (-4pi 477 - %) (36)
r’-d’ 2 2

Nl = 3 (—4x,(x,.—d)+r -d ) (37)

Both expressions (36) and (37) combine to
2 _dZ
(go_d)(fi_d)""]oﬂi z_r—z((xi_d)2+yi2)' (38)
2r
6. The Third Vertex

We are introducing for ie {1,2} the straight lines
1
(x,.—d)x+y,.y:—5((x,.—d)2+y,.2), (39)

which will have a correspondence with the perpendicular bisectors in (5).

Proposition 4

1
(x,,9,) fulfills (x, —d)x+yy :—E((x1 ~d)’ +y12).

1
(%) fulfills (x, —d)x+y2y:—5((x2 —al)2 +y22).

Proof: We have to show

1
(‘xl —d)x2 T, = _E(('xl _d)2 +J’12)

] (40)
(xz _d)xl tmn = _E((xz _d)2 +J’§)-

Transforming the right hand sides of (40) according to
(x,. —d)2 + yf = —2dx, +d* with ie {1,2} both statements of (40) can be
equivalently transformed to

x1x2+y1y2—d(xl+x2):—%<r2+d2). (41)
It suffices to prove (41). From (11) and (12) we obtain

_ 1 LT AT
‘4((§O—d>2+nz)((r ) o)

el )

leading to
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XX, + V), =

1 )[2(,,2_d2)2—4r2((§o_d)2+77§)}

4((50 _d)z + 77(?

ey

=
2((&-a) +m)
Together with
2d(&,—d)(r* —d*)
2((&-a) +m)

d(xl—l-xz):

we get

x1x2+y1y2—d(xl+x2)=(r 4 ) —2d(§0—d)(r 4 )—rz. (42)

2((&-d) +m)

The numerator of the fraction in statement (42) can be transformed
(=)~ 2a(6 ) () 25 )
= (r2 _d2>((‘§0 _d)2 +77§)~
Thus we obtain
XX, +yy, —d(x +x2):%(,,2 _d2)_r2 _ —%(r +d2),

which is (41). O
Next the point of intersection (x;,y,) of the straight lines (39) shall be cal-
culated, this means solving the following linear system

1 2 2
(xl _d)xr +VYr :_E((xl _d) TN )
(43)

1
(xz _d)xT +WVr = _5(()52 _d)z +y§)~

Proposition 5
For the determinant D, of the linear system (43) holds

DT:(xl—d)yz—(xz—d)yI:%\/ (&) (44)

which is different from zero for (50,770) with {,‘02 + 775 =2,

Proof: Because of (31) we have

r2 _d2
XYy =X = ) R(§0»770)

2((&—ay +m

and because of (12)

—d(yz—y»:—L“”z)\/R(:o,%).

2((50 _d)2 +1,

This yields for D,
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_rz_d2_2d(§0_d) R(§0,770)= r2_2d§0+d2 R(éo,ﬂo)

R (E sy 2((&-ay +ui

and because of * —2d&, +d* =(& ~d) +n? formula (44). That R(&,,n,) is
positive for (&),n,) with & +n; =7 was shown in Lemma 1. Therefore also
D, is different from zero for (&,n,) with & +n; =r*. O

Proposition 6

The solutions of the linear system (43) are as follows

N ) G0 B 1| G )

' (§o—d)2+77§ ’ ' (§o—d)z+77§

Proof: Because D, is different from zero for (&,,77,) with & +7; =" the
linear system (43) has one and only one solution. It is sufficient to show for
ie {1, 2}

(x,—d)(x; —d)+y,y; :—%((x,. ~d)’ +y,.2)—d(xl. -d). (46)

Substitution of x, —d and y, on the left side of (46) yields
(x,. —d)(§0 —d)(r2 —dz) Vil <r2 —d2)

(‘xi_d)(xT_d)+yin =-

(G-d)y+m  (&-d)+m
2_d2
(a0 m)

Because of (13) we have
(xi _d)(éo _d)+yi770 =X (‘fo _d)+yi770 _d(§0 _d)

Therefore we get
1
(xl. —d)(xT —d)-i—yl.yT = —E(r2 —dz)
= —l(r2 —2dx, +d* +2dx, —2d2)
2
1
- —E((xi —d) + 7 )-d(x ~d).
which is (46). O
Proposition 7
(x7,y;) islocated on the circle x4+t =r.
Proof: From (45) we get
(r _dz)z((fo ~d) +77§) G —d2)2

(xr_d)z'i'ﬁ: 2 - 2 5
(G-ay+m)  (&-d)+m
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Because of x7 = (x, —d)’ +2dx, —d* we have
2 2)?
2,2 (2,2 2 (r —4 ) 2
xp+y; =(x, —d) +y; +2dx, —d* = 5 2+2de d-.
(& —d) +m
Substituting x, from (45) yields

x§+y§=—(r _i ) +2d af——(é’_d)(r2 %) _ &
(&—d) +m (&—d) +m;

(7 ~d*) ~2d (&, ~d)(r* —d2)+d2

50 _d)z +773

= +d?

]

See Figure 4.

Next we want to show that (xT , yT) is a point on the perpendicular bisectors
of D_Al for ie {1,2} given in (5).

Proposition 8

For i€{1,2} holds:

(&—d)x; +n,y; =%(r2—d2). (47)

Proof: Equation (47) can be equivalently rewritten as
1 1
(&-d)(x,—d)+ny, =—d (& —d)+5(r2 -d*) =5(r2 -2d¢& +d*). (48)
Substituting x, —d and y, according to (45) into the left hand side of (48)
we get:
_(é‘ _d)(cfo _d)(rz _dz) _ ;o (rz _dz)
(&-d) +m (&-d) +n,
r2 _dZ

prsr e (CRUCRU ALY

The expression in square brackets of (49) is substituted by (38); this yields
(r-a?) ((xl. —d) +y,-2) (r =d?) (r* ~2dx, +d?)

R v e ey e

(éi _d)(xT _d)+77iJ’T =
(49)

Statement (48) is proven if we can show for the expression on the right hand
side of (50)
rt—d’ (2 —2dx, +d*
P ) 1
27 (r? —2d, +d*) 2
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Figure 4. The third vertex (x,,y,) located
on the circle.
This means
(2 —a) (2 —2dx, +d*) =7 (2 ~2d&, +d*)(r* ~2d& +d*).  (5)

Statement (51) will be equivalently transformed. The right hand side of (51)

can be expanded

P (r? —d* -2d (& —d))(r —d” -2d (& - d))
= [(ﬁ ~d*) 2d(7 —d)(& —d + & ~d)+4d> (&, -d) (& —d)} 52

Subtracting 7 (r2 —d? )2 from the left hand side of (51) and from (52) we
get

(rZ_dz)Z(_dei_'_dz)
=r2[_2d(r2_d2)(§0+§i_2d)+4d2(§0_d)(é_d):l.

Substituting on the right hand side of (53)
2 1 2(1
E+E—2d = r—z[xl. (dx,. +E(r2 —d2))—r2dj = r_z(ix" (r —dz)—dny

according to Corollary 1 and (24) as well as (&, —d)(& —d) according to (36)

we get

(53)

—4d(r2 —dz)[%xi (r2 —a’z)—dyl.zj+d2 (r2 —a’z)(—4yi2 +r° —dz) (54)

vanishes in (54). So we have for (53)

i

The expression — 4d’ (r2 -d’ ) »?
(=) (~2dx, +d7) =4 (+? _dZ)%xi(rz &)+ d (7 -a)
=—2a’(r2—a’2)2xi+a’2(r2—a’z)2 (55)
= ~a?) (~2dx, +d?).

0
Theorem 2
The ellipse created by folding of a disk is enclosed by an arbitrary triangle of

tangents, the vertices of which are lying on the circle representing the disk.
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Proof: According to Proposition 8 for ie {1,2} the perpendicular bisectors
of D_Al

(&—d)x+ny :%(r2 —dz)

are passing through (x;,y; ). Because of their construction in Section 4 they are
also going through (x,, yi). Thus there is a coincidence with the straight lines
(39) in the following way: the straight lines

(& —d)x+771y=%(r2 —dz)
(56)

1
(x, —d)x+yzy=—5((x2—d)2+y§),

having the same points (x,,),) and (xT, V), are thus identical; the straight

lines

(& —d)x+772y:%(r2 _dz)
1 (57)
(x —d)x+y1y=—5((xl ~d)’ +yf),

having the same points (x,,y,) and (x,y; ), are thus also identical.
Therefore the ellipse with foci C = (0,0) and D= (d ,0) and large semi axis

a= % is enclosed by a triangle of tangents
1
(fo—d)x+770y=5(rz _dz)
1 2 2
(fl—d)x-i-nlyzz(r —d ) (58)

(§2 —d)x+772y:%(r2—d2)

with vertices (x,,3,), (x,,»,) and (x;,y;) lying on the circle x4yt =0,
O

7. Conclusions

It was the intention to show by elementary means of analytic geometry the enclo-
sure of the Gardner ellipse, created by folds of a disk, with an arbitrary triangle of
tangents, the vertices of which are lying on the surrounding circle representing the
disk.

Remark: The Figures in this paper were constructed with Mathematica using

the initial data r =4, d=-3, £ =-0.9 and Mo =+yr’ =&

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References

[1] Gorkin, P. and Shaffer, A. (2021) Making Ellipses by Folding Disks. Mathematics

DOI: 10.4236/am.2022.132012

161 Applied Mathematics


https://doi.org/10.4236/am.2022.132012

P. P. Klein

(2]

(4]

Magazine, 94, 53-58. https://doi.org/10.1080/0025570X.2021.1849923

Poncelet, ].V. (1865-1866) Traité des propriétés projectives des figures: ouvrage utile a
qui s’occupent des applications de la géometrié descriptive et d’opérations géométri-
ques sur le terrain. Vols. 1-2, 2nd Edition, Gauthier-Villars, Paris.

Daepp, U., Gorkin, P. and Mortini, R. (2002) Ellipses and Finite Blaschke Products.

The American Mathematical Monthly, 109, 785-795.
https://doi.org/10.1080/00029890.2002.11919914

Gardner, M. (1995) New Mathematical Diversions. Revised Edition, Mathematical
Association of America, Washington DC.

DOI: 10.4236/am.2022.132012

162 Applied Mathematics


https://doi.org/10.4236/am.2022.132012
https://doi.org/10.1080/0025570X.2021.1849923
https://doi.org/10.1080/00029890.2002.11919914

	Enclosing Ellipses by Folding Disks
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	3. Construction of the Gardner Ellipse
	4. Bidirectional Folding
	5. Interpretation of Solutions
	6. The Third Vertex
	7. Conclusions
	Conflicts of Interest
	References

