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Abstract 
A new dynamic model identification method is developed for continuous- 
time series analysis and forward prediction applications. The quantum of data 
is defined over moving time intervals in sliding window coordinates for com-
pressing the size of stored data while retaining the resolution of information. 
Quantum vectors are introduced as the basis of a linear space for defining a 
Dynamic Quantum Operator (DQO) model of the system defined by its data 
stream. The transport of the quantum of compressed data is modeled between 
the time interval bins during the movement of the sliding time window. The 
DQO model is identified from the samples of the real-time flow of data over 
the sliding time window. A least-square-fit identification method is used for 
evaluating the parameters of the quantum operator model, utilizing the re-
peated use of the sampled data through a number of time steps. The method 
is tested to analyze, and forward-predict air temperature variations accessed 
from weather data as well as methane concentration variations obtained from 
measurements of an operating mine. The results show efficient forward pre-
diction capabilities, surpassing those using neural networks and other methods 
for the same task. 
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1. Introduction 

Simulation, design, and process control tasks in engineering require the know-
ledge of the mathematical model of the controlled system. A dynamic model of a 
system may be created using analytical or numerical, computational simulation 
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tools. Complex problems involving coupled processes pose a challenge to set up 
an analytical or computational, dynamic model that is fast enough to evaluate, 
flexible enough to match experimental observations, and adjustable enough for cor-
rective calibration. Analytical models may need precious skills to set up for suffi-
cient details, while computational, system modeling tools are cumbersome to incor- 
porate in real-time process control applications.  

Artificial Intelligence (AI) and Machine Learning (ML) methods have arisen 
as a panacea for overcoming the model-building difficulties when the vast amount 
of monitored data is already available from the subject system. A systematic re-
view of AI models for natural resource applications is given by Jung and Choi [1] 
albeit without any focus on applicability for real-time information processing. Neur-
al Network (NN) models are regarded as the most universal model identification 
tools when large input and target data samples, as well as long training time, are 
available and acceptable, reviewed by Rojas [2]; Lin et al. [3]; Miao et al. [4]. How-
ever, for real-time data analysis, regression and autocorrelation methods may com-
pare and compete favorably both in efficiency and evaluation time for dynamic, 
predictive model identification. For example, the training time for an LSTM type 
short-term forecasting NN model is reported by Dias [5] to take 30 minutes, while 
the same task is solved in one minute with the same accuracy using a first-order, 
time-series functional model.  

The aims at the development of a new dynamic system model are: 1) data com-
pression without information loss; 2) processing speed increase in model identifi-
cation; and 3) accuracy improvement for short-term forecasting. Such demands 
(1)-(3) have arisen, e.g., for forward predicting and controlling atmospheric con-
ditions in the hazardous workplace environment for workers’ safety and health. 
The focus of the study, therefore, is to develop a fast, real-time evaluation of a me-
thod for the mass amount of data commonly monitored as environmental air pa-
rameters with the capabilities of forecasting. 

The heat, mass, and momentum transport processes are dependent on the past 
and present input conditions involved in the outcome of process parameters of 
the atmospheric conditions such as air velocity, temperature, humidity, and con-
taminant gas species. Similarly, the expected, future, process parameters are go-
verned by the past and present conditions and the general, self-similar system 
behavior, in addition to some recurring disturbances. Dynamic model identifi-
cation is expected to recognize and account for these system characteristics for 
forward prediction applications. Once the systematic characteristics are matched, 
only the stochastic disturbances remain to be depressed using, for example, least- 
square fit matching during model training. The distraction caused by the “known 
unknowns” in the forecast of the process parameters will then be limited only to 
the extent of a random model fitting error.  

Functional data analysis is a good starting point for dividing the input data 
into discrete time intervals within which the data in each time segment is cha-
racterized by some statistical parameters such as the median or mean values, e.g., 
in Horvath and Koloszka [6]. A classic time series analysis by Box and Jerkins 

https://doi.org/10.4236/am.2021.1211064


G. Danko 
 

 

DOI: 10.4236/am.2021.1211064 965 Applied Mathematics 
 

[7] applies Autoregressive Moving Average (ARMA) or Autoregressive Integrated 
Moving Average (ARMA) models to best fit a time-series model to past values 
of the input time series. The goal of the presented work is the identification of a 
linear operator model, for which any unnecessary and nonlinear elements 
are avoided by design. Such nonlinear models are used e.g., by Milionis and Ga-
lanopoulos [8] in a univariate ARIMA model for analyzing economic time series 
in the presence of variance instability and outliers; or by Pam et al. [9], apply-
ing non-stationary time series analysis of energy intensity by an expanded 
ARIMA model with logarithmic terms; and Abebe [10] for annual rainfall 
analysis. 

A similar approach is used in the presented work regarding the autoregressive 
concept but in a fundamentally new way in which any single time series of N 
members of data is broken into multivariate components in time compartments 
assigned to M number of designated time interval bins. A significant element is 
that the compartmentalized data to be processed are moved from time segment 
bin to bin step by step, moving with the progression of real-time. The dynamic 
model will then use the characteristic values of the groups of data as multivariate 
inputs kept in the time interval bins. 

The quantum of data kept in bins serves as the fixed base of the M-dimensional 
operator (or functional) of the dynamic model. A similar approach is used in a 
previous work regarding operator representation of a system model, rendering 
an output function to an input function as a transformation, e.g., by matrix-vector 
multiplication, used by Danko [11]. The previous nomenclature is kept unchanged, 
referring to an operator as a “functional,” that is, a function-function as opposed 
to a function of scalar values. 

The plan of the study is set up as follows. A data flow of 
( ) ( ) ( )1 2, , , NX t X t X t  is assumed from a single-channel sensor, acquired 

from the subject system at 1 2, , , Nt t t  time instants, ( )NX t  being the most 
current. The past data are to be continuously stored in M number of bins, where 
M N  for data compression. Definitions are given for the time compartmen-
talization into bins; the data processing and distribution into bins; and transport 
of the quantum of data between the bins during step-by-step sliding from the 
most recent to the past time periods. Various data compression methods are 
shown for comparison of characteristics including the common, sliding time 
window averaging and a new property, named the “moving window quantum of 
data”. The moving window quantum value in each bin is defined from the con-
tained ( )iX t  data for constructing a set of base vectors of the dynamic operator 
of the system. For the model training of the matrix operator, a set of M-length 
quantum vectors is defined for setting up an over-determined set of equations 
for M K< . The M M×  matrix coefficients of the dynamic operator of the sys-
tem are obtained by matching the model prediction to the data by the 
least-square (LSQ) error fit method. Application examples will complete the 
study to show the operator model’s performance to complement or surpass 
those of other ML techniques including NN. 
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2. Input Data Compression into Time Bin Compartments 

D1. Definition of time compartmentalization into bins. Let 1 2, , , Nt t t  be 
the set of equidistant time divisions ( [ ]1, constanti it t t+ = = ∆ , 1

it R∈ , e.g., minute, 
or day in seconds) for the acquisition of ( ) ( ) ( )1 2, , , NX t X t X t  data samples 
( ( ) 1

iX t R∈ , e.g., temperature, or gas concentration) to be used simultaneously 
for operator model identification. A set of M time intervals with time divisions 

1 2, , , Mτ τ τ  where M N , is defined for arranging the time divisions into 
bins over the same model input interval, that is, [ ] [ ]0, 0,N Mt τ= . An arbitrary 
but strategical selection for the time bin intervals is defined to achieve monoto-
nously and gradually widening division intervals from the most recent ( Mτ ) to 
the oldest ( 1τ ) time instant, that is, [ ] [ ]1 10, ,M M Mtτ τ τ− = ∆ , in such a way that 
the finest bin width equals the equidistant time divisions in t, that is, Mt t∆ = ∆ . 
Consequently, ( ) ( )M MX t X τ=  and ( ) ( )1 1M MX t X τ− −= . The width of each 
time-base bin is defined as 1k k kτ τ τ −∆ = − , for 1, ,k M=   with 0 0τ =  for 
the starting point of the first moving time window at 1k = . Note that 

M Nt tτ∆ = ∆ = ∆  by design. 
E1. Examples of bins selection.  
E1a. Given is a time interval of 327N =  days with 1-day increments as it i= , 

where 1, ,i N=  . The number of bins is selected to be 50M = . The task is to 
find a smooth and monotonous function for the kτ , 1, ,k M=   division points 
for covering the entire 327 time period. A power series function is selected for 

kτ  as follows: 

( )1 k
k a bτ −= − , 1, ,k M=                     (1) 

where: 

1
1

N N
M M

t t
a

b b
− −

− −=
−

,                       (2) 

and: 
1

1

1

M
N N

N N

bt t
b

t t
−

−

 −
=  − 

                       (3) 

With it i=  given, Equation (3) has to be solved first by iteration, that con-
verges in 22 steps to 1e−12 absolute error, giving 1.0636b = . From Equation (2), 

342.7324a = . 
The kτ  divisions from Equation (1) are plotted in Figure 1(a) against the num-

ber of bins. As shown, the division points of the bins are exponentially widen-
ing toward the oldest time instant from the latest, most recent Mτ  (or refining 
to the most recent from the oldest 1τ  until it equals the finest step of 1 day). 
The most recent four values for kτ  are  

[ ]47,48,49,50 323.8053,324.9364,326,327τ = . 
E1b. Given is a time interval of 327 days, each day to be further discretized 

to 5-minute intervals. This defines 327 28 94 78 1 6N = × =  time intervals with 5- 
minute increments as it i= , where 1, ,i N=  . The number of bins is selected 
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(a)                                                   (b) 

Figure 1. The kτ  divisions from Equation (1) over the number of bins; (a) in E1a, the finest division is 1 day; (b) in E1b, the 
finest division is 0.0035 day (5 minutes). 

 
to be 50M = . The task is to find the kτ , 1, ,k M=   division points for cov-
ering the entire 94,176 time period. From Equations (1)-(3), 327.0158a = , 

1.2199b = , and the kτ  time division points are evaluated. The most recent four 
values for kτ  are [ ]47,48,49,50 323.8053,324.9364,326,327τ = . 

The kτ  divisions in day units from Equation (1) are plotted in Figure 1(b) 
against the number of bins. The most recent four values for kτ  are  

[ ]47,48,49,50 326.9871326.9923326.9965,327τ = . The last time period is  

50 49 0.003472222222229τ τ− =  , equaling 5 minutes in day unit.  
The focus is on the real-time evaluation of a continuous, discretized data stream. 

The time-base bins are designed to hold the newest sample unchanged, and the 
characteristics of past data compressed, representative to the acquisition time of 
the cluster relative to the last, current time instant. There are several, known ways to 
characterize past data using some methods of averaging. For example, the con-
ventional, daily average of minute-acquired temperatures use the integral mean 
value of the measured data, the integral approximated by the Riemann sum of the 
definite integral for each day. Following this example, and assuming for simplicity 
a continuous, piecewise-linear function, ( )Xp t , for representing the discretized 
data ( )iX t , that is, ( ) ( )i iXp t X t= , for 1, ,i N=  , the average data, ( )kXp t , 
belonging to each time bin may be defined as: 

( ) ( )
1

1 dk

k
k

k

Xp t Xp t t
τ

ττ −
=
∆ ∫ , [ ]1,k kt τ τ−∈                (4) 

There are difficulties in using Equation (4) for discretized data ( )iX t  direct-
ly. The kτ  bin division points do not coincide with the it  time divisions ex-
cept for bin k at 1k M= −  and k M= , therefore, ( )Xp t  cannot simply be re-
placed by the ( )iX t  values within the time intervals [ ]1,k kτ τ−  to avoid rounding 
errors. In addition, linear interpolation function fitting for ( )Xp t  is necessary, 
albeit not practical, as the storage of all original data, ( )iX t , is needed for ( )Xp t  
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that alone contradicts data compression. Therefore, ( )kXp t  is not practical as 
defined in Equation (4) but re-written in its moving boundaries form for ac-
cepting a constant Mt τ∆ = ∆  time step change to account for the moving time 
window. The transition from kτ∆  bin at ( )kXp t  average to 1kτ +∆  bin at 

( )1kXp t+  average adds an ( )1

1
dk M

k
Xp t t

τ τ

τ

+

+

+∆

∫  difference value, while leaves be-
hind a  

( )dk M

k
Xp t t

τ τ

τ

+∆
−∫  difference value of the integral ( ) kkXp t τ∆ . The sliding win-
dow expression for ( )kXp t t+ ∆  is: 

( ) ( ) ( )

( ) [ ]

1

1

1

d

d , ,

k M

k

k M

k

k k
k

k k
k

tXp t t Xp t Xp t t

tXp t t t

τ τ

τ

τ τ

τ

τ

τ τ
τ

+

+

+∆

+∆

−

∆
+ ∆ = +

∆

∆
− ∈

∆

∫

∫
          (5) 

For evaluating ( )kXp t t+ ∆  at the next time step, the two integrals in Equa-
tion (5) still need additional data at the beginning and the end time bin k to 
store, but at least the many data already averaged inside bin k will need not be 
individually stored as their previous average value is reused in ( )kXp t . The short-
comings in using kXp  may be alleviated by modifications of its content, lead-
ing to a different property of the sliding-averaged data. The modifications to be 
made to the expression in Equation (5) to make it less cumbersome to use are first 
introduced as approximations to replace the ( )Xp t  kernel functions with their 
integral mean values for the respective time bins in the integrals: 

( ) ( ) ( )1 1d dk M k M

k k
k kXp t t Xp t t Xp t t

τ τ τ τ

τ τ
ε ε

+∆ +∆
= + = ∆ +∫ ∫         (6a) 

( ) ( ) ( )1 1

1 1
2 21 1d dk M k M

k k
k kXp t t Xp t t Xp t t

τ τ τ τ

τ τ
ε ε+ +

+ +

+∆ +∆

+ += + = ∆ +∫ ∫      (6b) 

Indeed, substituting Equations (6a) and (6b) into (5) gives an approximate 
expression for ( )kXp t t+ ∆  that is easy to evaluate and effective in data compres-
sion, but includes the sum of two error terms, 1 2ε ε+ : 

( ) ( ) ( ) ( ) [ ]1 2 11 , ,k kk k k k
k k

t tXp t t Xp t Xp t Xp t tε ε τ τ
τ τ −+
∆ ∆

+ ∆ = − + + + ∈
∆ ∆

  (7) 

The need for a new, useful, average-type characteristics of the data stored in 
bin k is inspired by Equation (7) together with the goal of eliminating the 1 2ε ε+  
error term. The new data property is called the quantum of data in a time inter-
val bin in sliding window coordinates, leading to the definition of the quantum 
of data.  

D2. Definition of quantum of data in a time-base bin  
Definition of the quantum of data, ( )kQ t , in time-base bin k is given in a fi-

nite difference equation form as follows: 

( ) ( ) ( )1k k k

k

Q t Q t Q t
τ τ

+∆ −
=

∆ ∆
 where ( ) ( ) ( )k k kQ t Q t Q tτ∆ = + ∆ −      (8) 

The quantum definition in Equation (8) expresses that the rate of change in 
quantum kQ  at any time, t, over the finest time step, tτ∆ = ∆ , is proportional 
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to the rate of change of quantum differences between the upstream, ( )1kQ t+ , 
and downstream, ( )kQ t  quantum neighbors. It is straightforward to use Equa-
tion (8) step-by-step, starting from the ( ) ( )1k MQ t Q t+ =  quantum that is 
known as it is always equated with the last, constant, sampled value of the data 
stream.  

Applying the definition in Equation (8) for a discrete data series yields: 

( ) ( ) ( )11 1k k k
k k

Q i Q i Q iτ τ
τ τ+

 ∆ ∆
+ = − + ∆ ∆ 

 for 1, , 1k M= −       (9) 

The quantum property in Equation (9) is an improvement over the sliding 
window property in Equation (7) as the ambiguous error term, 1 2ε ε+ , is elim-
inated due to the modified definition. The sliding window average is not a con-
venient property to use in comparison to the sliding window quantum of data 
property. By definition and design, ( ) ( )kkXp i t Q i∆ ≠ , but their value may be 
close to each other. The essential difference, however, is that ( )kQ i  is efficiently 
calculated with superior data compression while serves well the purpose of a re-
liable data characteristics for system model application with large data.  

Note that the definition in Equation (9) is recursive and the ( )1kQ i +  quan-
tum value at bin k at time ( )1i t+ ∆  is defined by the weighted quantum value 
of ( )kQ j  at a previous time j t∆ , and the quantum value of the upstream neigh-
bor bin, ( )1kQ i+ . The newest quantum value at 1k M= −  is ( )MQ i , that is 
the single origin of filling all bins downward with their quantum content accord-
ing to Equation (9). ( )MQ t  may be selected as the original data, ( )X t , taken at 
t i t= ∆ . This way, the quantum of data will retain everywhere the physical unit 
of the original data.  

A straightforward way to give closed formulas of ( )kQ t , 1, , 1k M= −  for 
evaluating the quantum of data directly in each bin from the original data stream 
may be obtained by repeatedly applying Equation (9) starting from the known, 
new value of ( ) ( )MQ i t X i t∆ = ∆  toward ( )1Q i t t∆ + ∆ . However, a simple, ma-
trix-vector equation is more convenient for numerical evaluation as shown in the 
following example. 

E2. Example of bin-to-bin quantum of data transformation using matrix- 
vector calculation 

Let the values of quantum ( )1kQ i +  and ( )1kQ i +  for 1, ,k M=   be or-
ganized into column vectors 1 1i i

k
+ + = Q Q  and i i

k =  Q Q , respectively. Us-
ing Equation (8), new vector elements 1i

k
+Q  for ( )1i t+ ∆  time for 1, , 1k M= −  

can be expressed with the previous vector elements i
kQ  for 𝑖𝑖∆𝑡𝑡  time for 

1, ,k M=   in a matrix-vector equation: 
1

1 1
1

2 2

1
1

i i

i i

i i
M M

+

+

+
−

   
   
   =   
   
      

Q Q
Q Q

A

Q Q
 

                         (10) 

where A  is a sparse ( )1M M− ×  matrix with zero elements everywhere ex-
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cept for non-zero elements only in the main diagonal and in the first, upper 
off-diagonal: 

( )

( )

( )

, 0 for 1, , 1; 1, , , but and 1

, 1 for 1, , 1

, 1 for 1, , 2

i

i

k j k M j M j i j i

k k k M

k k k M

τ
τ
τ
τ

= = − = ≠ ≠ + 


∆ = − = − 
∆ 

∆ + = = −
∆ 

A

A

A

 





   (11) 

The last element of vector 1i+Q  for k M= , not included in Equation (10), is 
defined by the new data, that is, ( )1i

M X i t+ = ∆Q .  
E3. Example of quantum of data vectors for a harmonic signal  
A continuous, sinusoidal data stream of 327 days sampled at regular 5-minute 

time intervals is processed into 50-element quantum vectors. A synthetic data 
stream is selected in the example to model daily and yearly temperature variations  

superimposed according to ( ) ( )1 327sin 2 sin 2 327
2 365

X i i N i N  = π + π    
,  

where the real-time vector is [ ]1, ,i N=  , the series of time divisions. The time 
compartmentalization in E2 into 50 bins is used for the ( ) i i

kX i  → =  Q Q  
transformation according to Equation (11). The 50 components of the iQ  vec-
tors are shown in Figures 2(a)-(d) with an arbitrary bin and time interval selection 
for best visualization. The selected time steps and i

kQ  elements are shown in: 
Figure 2(a) for [ ]41,50k ∈  (with all 10 bins marked); Figure 2(b) for 

[ ]31,40k ∈  (with only 3 bins marked); Figure 2(c) for [ ]21,30k ∈  (with only 
3 bins marked); and Figure 2(d) for [ ]1,20k ∈  (with only 3 bins marked). 
Note that the 50

iQ  component in Bin 1 equals ( )X i , albeit shown only for lit-
tle over one day. As shown in Figure 2(c), the daily, periodic temperature varia-
tion gradually disappears almost entirely between Bins 21 through 30 
( [ ]21,30k ∈ ). This implies that the most relevant elements of the i

kQ  vectors 
are those for 21k >  for modeling signal variations on the fine, 5-minute scale. 
However, if the seasonal variations are of interest, all bins from 1k =  must be 
used; furthermore, longer observed time period than 1 year is needed as 1

iQ  in 
the first bin (with about 59 days width) has not yet established periodicity within 
one year.  

E4. Example of quantum of data vectors for measured data  
A true, outside temperature data stream of 327 days sampled at regular 

5-minute time intervals is accessed from a commercial weather data vendor for 
Northern Nevada, USA. The data is processed into 50-element quantum vectors 
using the same process described in E3. The time compartmentalization in E2 
into 50 bins is used for the ( ) i i

kX i  → =  Q Q  transformation according to 
Equation (11). The 50 components of the iQ  vectors are shown in Figures 
3(a)-(d) with an arbitrary bin and time interval selection for best visualization as 
before. As shown in Figure 3(c), the daily, periodic temperature variation grad-
ually disappears almost entirely between Bins 21 through 30 ( [ ]21,30k ∈ ), im-
plying that the most relevant elements of the i

kQ  vectors are those for 21k >  
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for modeling temperature variations on the fine, 5-minute scale. 

 

Figure 2. (a)-(d) Variation of the iQ  vectors with time for synthetic input data series; (a): [ ]41,50k ∈  (with all 10 bins marked); 

(b): [ ]31,40k ∈  (with only 3 bins marked); (c): [ ]21,30k ∈  (with only 3 bins marked); and (d): [ ]1,20k ∈  (with only 3 bins 

marked). 

3. DQO Model Building of a System for Time Series Analysis  
and Forecast 

It is straightforward to expand the concept of the autoregressive (AR) model in-
to a dynamic operator. The AR model of order p is defined following Shumway 
and Stoffer [12], and Kun [13]: 

( ) ( ) ( )1j
p

jX i c X i j iϕ ε
=

= + − +∑                 (12) 

where c is a constant, jϕ  are constant coefficients, and ( )iε  is noise. Apply-
ing the AR concept to the quantum of data with low-pass-filtered components 
instead of the original time series and absorbing c into the jϕ  coefficients leads 
the definition of the dynamic operator.  

D3. Definition of the z-step dynamic operator  
The z-step dynamic operator of the system, ,i zφ , is defined by its matrix. The 
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matrix of DQO is defined by the set of its ,
,

i z
k pϕ  coefficients, which satisfies the  

 

Figure 3. (a)-(d) Variation of the iQ  vectors with time for input data series from measurement; (a): [ ]41,50k ∈  (with all 10 

bins marked); (b): [ ]31,40k ∈  (with only 3 bins marked); (c): [ ]21,30k ∈  (with only 3 bins marked); and (d): [ ]1,20k ∈  (with 

only 3 bins marked). 
 
simultaneous, AR model fit for all elements of the i

kQ  modeled quantum vec-
tor, ,

i
k mQ , to the measured origin, i

kQ  with a minimized ( )iε  fitting error 
for a set of quantum vector samples i S∈  for all k M∈  elements:  

( ),
,1

i i z i z
k k p p

M
p iϕ ε−
=

= +∑Q Q                    (13) 

where ( ) ( )2
min i i

mS kiε
  = −    
∑ ∑ Q Q , [ ]1,i N∈ , k M∈ , and 

[ ]1,S N⊂ . 

The i
kQ  modeled quantum vector component on the left side and the i z

p
−Q  

quantum vector component given at a shifted time instant by z number of time 
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steps on the right side are the inputs of the model fitting procedure, derived 
from measured data. The ,

,
i z
k pϕ    coefficients on the right side of Equation (13) 

are to be evaluated by best fitting the model prediction, ,
i
k mQ  to i

kQ  input 
with minimum error for all k components.  

Time step shift z is a parameter of choice to forward predict future outcome 
from previous measured values of the time series. Equation (13) must be applied 
for all k components simultaneously. Using a matrix notation for the dynamic 
operator of the system at time index i as , ,

,
i z i z

k pϕ =  φ , Equation (13) for all k 
components reads: 

( ), ,i i z i z iε−= +Q Qφ                      (14) 

where ( ) ( )2
min i i

mS kiε
  = −    
∑ ∑ Q Q , [ ]1,i N∈ , k M∈ , and 

[ ]1,S N⊂ . 

The ,
,

i z
k pϕ    coefficients of the ,i zφ  operator on the right side of Equation 

(14) must be evaluated from the measured data and subsequently process iQ  
and i z−Q  quantum vectors using an optimization procedure for minimizing the 
error of fit, ( )iε .  

The ,i zφ  operator is assigned to time index i, where ( )t i  is the current 
(most recent) time step. Each ,i zφ  operator is determined over a subset of sam-
pled time steps, S, as well as over 𝑀𝑀 quantum vector components to incorpo-
rate past history data. Each ,i zφ  operator characterizes the changing system 
with respect to time variation, focusing on to z-step forward prediction. While 
operator ,i zφ  has constant matrix coefficients, it may be considered as the 
sampled element of a dynamic, time variable operator, ( )z tφ . Each ,i zφ  oper-
ator has an inherent matching error originating from the stochasticity of the da-
ta, processed into quantum vectors i

mQ , obtained from the unknown system, 
and the mismatch between the temporal characteristics of the system and the AR 
operator model that enforces an autoregressive behavior.  

D4. Definition of forward prediction from the dynamic operator of the 
system. 

Equation (14) may be directly used for forward-predicting an expected, mod-
eled quantum vector, i

mQ , at time ( )t i  from a previous quantum vector, i z
m
−Q , 

processed from measured data at ( )t i z− . Likewise, assuming the continuity of 
the ,i zφ  operator, forecast estimate may be written, jumping z steps from the 
most recent time ( )t i , as: 

,i z i z i
m
+ =Q Qφ                         (15) 

Alternatively, choosing 1trainz =  in identifying operator ,1iφ  during model 
training, a z-step forward prediction estimate may be written as follows, repeat-
edly using z-times Equation (15), each step resulting in increasing the power in-
dex of ,1iφ  by one until the power of the required forward steps, predictz z=  are 
reached:  
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( ),1 zi z i i
m
+ =Q Qφ                       (16) 

D5. Definition of a training data set for the solution of the dynamic oper-
ator of the system. 

A training data set i S∈  must be selected from the set of the i
mQ  quantum 

vectors for identifying the unknown , ,
,

i z i z
k pϕ =  φ  coefficients in Equation (14). 

Set S is defined by the requirement for a unique solution for the elements of ma-
trix iφ .  

From elementary algebra, a minimum of M equations are needed for the solu-
tion of M unknown coefficients in an M-variable equation. For example, assum-
ing a zero error term, hypothetically, for 50M =  and 1z = , [ ]1,51S =  quan-
tum data set were sufficient to fill the left and right sides of Equation (14) and set 
50 equations for the evaluation of the coefficients:  

51 50 2 1 50 49 1   =   Q Q Q Q Q Q φ                (17) 

The solution, provided that the inverse matrix 
150 49 1 −

  Q Q Q  exists, is: 
11 51 50 2 50 49 1 −

   =    Q Q Q Q Q Q φ               (18) 

In reality, for the effective minimization of the fitting error term, a much 
larger input quantum set S is required. A least-square fit minimization scheme is 
devised by selecting a subset of time series input data, j S∈ , [ ]1,S N⊂  as fol-
lows:  

j z j z−    = Q Qφ , [ ]1,j S N∈ ⊂                (19) 

where j  Q  and j z−  Q  are M j×  matrices, j M . 
Multiplying Equation (19) on both sides from the right by the 

Tj z−  Q  trans-
pose matrix; and again, multiplying the result from the right by the inverse of the 
square matrix { } 1Tj z j

−
−      Q Q  gives the LSQ solution for the over-determined 

set of equation, provided that the inverse exists: 

{ } 1T Tz j j z j z j z
−

− − −       =        Q Q Q Qφ , j S∈ , [ ]1,S N⊂      (20) 

The zφ  is a matrix representation of the linear operator of the system appli-
cable for dynamic, time-series analysis and prediction.  

The solvability of Equation (20) defines the necessary training data set for the 
determination of the zφ  DQO model. The solvability depends on the existence 
of the { } 1Tj z j z

−
− −      Q Q  inverse matrix.  

E5. Illustrative example of a DQO model fit and forward prediction for 
weather  

A true, outside temperature data stream of 327 days sampled at regular 
5-minute time intervals is used in its quantum-processed form discussed in E4 
for a model fitting and prediction exercise. At each of the 1i =  to 327 × 288 
time steps, a separate DQO model is built using four days with sliding window 
width, 8 288 2304w = × =  as set S. The goals of the exercise are to check the 
quality of: 1) the DQO model fit for each time step, measured by the normalized 
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absolute error between input data and model prediction at each time step; and 2) 
the DQO forward prediction steps of 12z =  steps ahead at each time step, 
measured by the normalized absolute error between the known (but yet unused) 
input data at i z+  and the model forward prediction at i z+  time step. The 
sliding time window moves from 1i = , starting from an initial assumption of all 
zero history quantum values. The DQO model is trained to match the last 20 
quantum components only (for [ ]31,50k ∈ ) as just a short memory of the sys-
tem is needed to learn for a 12z = -step forward prediction.  

After the 400 coefficients of the ,i zφ  matrix of the DQO model of Equation 
(14) are determined with the LSQ solution of Equation (20) at each i time step 
over the 2304w = -step training window, the model prediction, i z

m
+Q , is calcu-

lated for quality check from the quantum-processed input data iQ  taken at 
real-time instants as: 

,i z i z i
m
+ =Q Qφ                         (21) 

The variation of the i
mQ  and iQ  quantum vector components for the 

[ ]31,50k ∈  components for the last moving window segment for i S∈  are shown 
in Figures 4(a)-(h), (i being used instead of j in the notation in the figure). The 
components of the i

mQ  and iQ  vectors with time are shown in (a)-(g) for 
[ ]44,50k ∈  (with each individual pair and k marked); and in (h) for [ ]31,43k ∈  

(with only each k marked as no difference between i
mQ  and iQ  can be seen). 

Note that Figure 4(a) shows the DQO model match to the 5-minute data as the 
quantum vector for 50k =  equals the un-processed input data. As shown in 
Figures 4(a)-(h), the match between the DQO model’s output results, i

mQ  and 
the input data, iQ , is gradually improving toward slower frequency components 
at decreasing k values.  

The forward-predicting capability of the DQO model is tested by evaluating 
forecasted outputs, i z

m
+Q  from previous known values, iQ . Using Equation 

(21), the model’s output, i z
m
+Q , is calculated at each future time by 12z =  time 

steps outside the training time window, while using a 12-step-old DQO. The fo-
recasted results, i z

m
+Q  are compared with the known future values, i z+Q , not 

used in the DQO model training. 
Figure 5(a) and Figure 5(b) show the variation of selected i z

m
+Q  and i z+Q  

vectors over the entire last training window forward predicted by z time steps, 
compared with input data series from measurement. The components of the 

i z+Q  and i z
m
+Q  vectors with time are shown in (a) for 50k =  (with marked pairs 

of i z+Q  and i z
m
+Q ); and in (b) for [ ]31,44k ∈  (with only each k marked as no 

difference between model and data can be seen). As shown in Figure 5(a) and 
Figure 5(b), the match between the DQO model’s output results and the input 
data is about as good as the match for model training, indicating that input data 
have a learnable trend that holds well for about an hour ahead. 

The absolute error of the model fit for each time step, normalized by dividing 
it with the average of the absolute values over each sliding window of 2304w =  
is calculated as ( )E i  for 1i =  to 327 × 288 time step (327 days): 
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( )
( )

[ ]
1

1

100 %
i i
m

j w i j
j

w
E i = − +

=

−
= ×
∑

Q Q

Q
                 (22) 
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Figure 4. (a)-(h) Variation of the i
MQ  and i

DQ  vectors with time for input data series from measurement; (a)-(g): [ ]44,50k ∈  

(with each individual pair and k marked); (h): [ ]31,43k ∈  (with only each k marked as no difference I between i
DQ  and i

MQ  

can be seen). 
 

  
(a)                                                    (b) 

Figure 5. (a), (b) Variation of selected i z
M
+Q  and i z

D
+Q  vectors forward predicted by 12z =  time steps, compared with input 

data series from measurement; (a): 50k =  (with marked pairs of i z
D
+Q  and i z

M
+Q ); (b): [ ]31,44k ∈  (with only each k marked 

as no difference between model and data can be seen). 
 

The variation of ( )E i  over the 327 × 288 time steps is shown in Figure 6(a). 
The histogram of the variation is depicted in Figure 6(b). 

The normalized absolute error of the model fit at forward predicted instances 
by z time steps for each time step over each sliding window 2304w =  is calcu-
lated as ( )zE i : 
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( )
( )

[ ]
1

1

100 %
i z i z
m

z j w i j z
j

w
E i

+ +

= − + +
=

−
= ×
∑

Q Q

Q
               (23) 

 

Figure 6. (a), (b) Variations of normalized absolute DQO model error; (a) Model error over the training time window, ( )E i ; 

and (b) Histogram of the model error. 
 

The graph of ( )zE i  and its histogram are shown in Figure 7(a) and Figure 
7(b), respectively. 

A comparison between Figure 6 and Figure 7 indicates a steady or overall 
better error performance in forward prediction application relative to that in 
model identification, an observation that should be considered coincidental, due 
to generally improving regularity in the input data stream with time in the ex-
ample. Nevertheless, a steady DQO model performance up to 12 forward-step 
forecast in the example makes the method appealing, especially in comparison to 
published results for LSTM NN models with poorer forward prediction perfor-
mance [5]. The typical running time for model DQO identification and forward 
prediction at each time step in E5 takes 18 milliseconds using a laptop computer. 

4. DQO Model Application for Safety and Health Analysis and  
Forecast 

The DQO model is developed for analyzing and controlling atmospheric condi-
tions for safety and health in working and living. As demonstrated in E5, a DQO 
model can be identified and used for forecasting with minimum cost and efforts, 
adding values for the raw data. The hypothesis is that precious, and quite signif-
icant time may be saved for preventive interventions to alleviate impending ha-
zard conditions at any monitored, living or working place. The hypothesis is 
tested in a mine safety and health application example. 

Atmospheric conditions are obtained from in situ, monitored data from an 
operating mine for 327 days under normal operating conditions. The monitored 
parameters are air flow rate in the face drift (Qa), incoming Methane (CH4) gas 
concentration at the main gate (cMG), and exiting Methane concentration at the 
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tail gate (cTG). A synthetic data modification is introduced in Day 322 by an 
added Methane source (q𝑚𝑚𝑚𝑚) surge that increases the CH4 concentration above 
the allowable threshold value of 2%. The goal is to forecast the effect of the qms  

 

Figure 7. (a), (b) Variations of normalized absolute DQO model error; (a) Model error at 12 time steps (60 minutes) forward, 

( )fpsE i ; and (b) Histogram of the model error. 

 
gas inburst as well as the resulting CH4 concentration by the DQO model for 
preventive intervention before the condition for a fatal explosion may happen.  

E6. Illustrative example of a DQO model fit and forecast using large for-
ward steps 

The monitored parameters of air flow rate, Qa, incoming Methane gas con-
centration at the main gate, cMG, and exiting concentration at the tail gate, cTG, 
are inter-related. A transport model is used first for back calculating the root-cause 
gas source term, qm, from the observed incoming and exiting gas concentra-
tions. A simplified Methane mass balance transport equation is used for the 
working drift:  

100TG MGc c qm qa= +  [%]                     (24) 

From the monitored data of the cMG, cTG, and qa variables, the 100qmp qm=  
term is processed for DQO model building and forward prediction. The sampled 
values of qmp are first processed into quantum vectors. The DQO model is built 
for each 5-minute time step of 288 × 322 time intervals. Note that a 2-day inter-
val is reserved beyond the model-building time period of 360 missing the last 
two days for model. At each of the [ ]1,327 288i = ×  time steps, a separate DQO 
model is built using three days for sliding window width, 3 288 864w = × =  as 
set S. The goals of the exercise are to check: 1) the quality of DQO model fit for 
each time step, measured by the normalized absolute error between input data 
and model prediction at each time step; 2) the quality of DQO forward predic-
tion at steps of 36z =  ahead, measured by the normalized absolute error be-
tween the known (but yet unused) input data at i z+  and the model forward 
prediction at i z+  time step; and 3) the hypothesis that CH4 threshold crossing 
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can be detected many time steps ahead of the real-time occurrence from pre-
vious measured data. The sliding time window moves from 1i = , starting from 
an initial assumption of all zero history quantum values. The DQO model is 
trained to match the last 20 quantum components only (for [ ]31,50k ∈ ) as just 
a short memory of the system is needed to learn for a 36z = -step forward pre-
diction. 

The DQO model of Equation (14) are determined with the LSQ solution of 
Equation (20) at each i time step over the 864w = -step training window. The 
model prediction, i

mQ , is calculated for quality check from the quantum-processed 
input data i z−Q  according to Equation (21), using 36z = . The variation of the 

i
mQ  and iQ  quantum vector components for the [ ]31,50k ∈  components for 

the last moving window segment for i S∈  are shown in Figures 8(a)-(h), (i 
being used instead of j in the notation in the figure). The components of the i

mQ  
and iQ  vectors with time are shown in (a)-(g) for [ ]44,50k ∈  (with each in-
dividual pair and k marked); and in (h) for [ ]31,43k ∈ . As shown in Figures 
8(a)-(h), the match between the DQO model’s output results, i

mQ  and the in-
put data, iQ , is gradually improving toward slower frequency components at 
decreasing k values.  

The forward-predicting capability of the DQO model is tested by evaluating 
forecasted outputs, i z

m
+Q  from previous known values, iQ . Using Equation (15), 

the model’s output, i z
m
+Q , is calculated at each of future time by 36z =  time 

steps outside the training time window, while using a 36-step-old DQO. The fo-
recasted results, i z

m
+Q  are compared with the known future values, i z+Q , not 

used in the DQO model training. Figure 9(a) and Figure 9(b) show the varia-
tion of selected i z

m
+Q  and i z+Q  vectors over the entire last training window, 

forward predicted by z time steps, compared with input data series from mea-
surement. The components of the i z+Q  and i z

m
+Q  vectors with time are shown 

in Figure 9(a) for 50k =  (with marked pairs of i z+Q  and i z
m
+Q ); and in Fig-

ure 9(a) for [ ]31,44k ∈ . As shown in Figure 9(a) and Figure 9(b), the match 
between the DQO model’s output results and the input data is close to the match 
for model training.  

The absolute error of the model fit, ( )E i , for each of the 327 × 288 time step, 
normalized according to Equation (22), is shown in Figure 10(a). The histogram 
of the variation is depicted in Figure 10(b). The absolute error of the model fit 
at forward-predicted instances by 36z =  time steps, ( )zE i , normalized ac-
cording to Equation (23), is shown in Figure 11(a) of which the histogram is 
given in Figure 11(b). A steady DQO model performance in forward prediction 
by 36 forward-step forecast makes the method appealing for safety application 
(Figure 12). 

The time gain by using the 36-step forward predicting DQO model against the 
real-time input data is directly evaluated. The temporal Methane concentration 
variation, cTG in quantum vector form is back-calculated from the modeled 36i

m
+Q  

prediction for the 100qm Methane source term. The comparison between the 
36i

m
+Q  (forward modeled) and iQ  (measured) concentrations are depicted in 
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Figure 13, showing an actual time gain of 140 minutes for forecasting a future 
threshold crossing event at 2% against the real-time data.  

E7. Illustrative example of a DQO model fit and forecast using repeated, 
small forward steps 
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Figure 8. (a)-(h) Variation of the i
MQ  and i

DQ  vectors with time for CH4 source input data series from measurement; (a)-(g): 

[ ]44,50k ∈  (with each individual pair and k marked); (h): [ ]31,43k ∈  (with only each k marked as no difference I between i
DQ  

and i
MQ  can be seen). 

 

   
(a)                                                    (b) 

Figure 9. (a), (b) Variation of selected i z
M
+Q  and i z

D
+Q  vectors forward predicted by 36z =  time steps, compared with input 

data series from CH4 source measurement; (a): 50k =  (with marked pairs of i z
D
+Q  and i z

M
+Q ); (b): [ ]31,44k ∈  (with only each 

k marked as no difference between model and data can be seen). 
 

The same input data and contaminant gas transport system is used in a de-
monstrational example for the same task but with the application of refined fro-
ward prediction steps to 1z = , applying Equation (16). The goal is to forecast 
the effect of the qms gas inburst by the DQO model for preventive intervention 
before condition for a fatal explosive condition may happen. The DQO model 
training steps is reduced to 1trainz =  step, while the 20predictz z= =  is used by 
experimentation for forward prediction for achieving a similar result to the ex-
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ample in E6. The shortest forward step in training allows reducing the training  

 

Figure 10. (a), (b) Variations of normalized absolute DQO model error for CH4 source (last two days disturbed time period ex-

cluded); (a) Model error over the training time window, ( )E i ; and (b) Histogram of the model error. 

 

 

Figure 11. (a), (b) Variations of normalized absolute DQO model error for CH4 source (last two days disturbed time period ex-

cluded); (a) Model error in 36z =  time steps (180 minutes) forward prediction, ( )zE i ; and (b) Histogram of the model error. 

 
window to 360w =  without destabilizing model training. As before, the DQO 
model is trained to match only the last 20 quantum components amid the short- 
lived memory of the gas transport system.  

The DQO model are determined with the LSQ solution of Equation (20) at 
each i time step over the 360w = -step training window. The model prediction, 

i
mQ , is calculated for quality check from the quantum-processed input data 1i−Q , 

applying the power index formula in Equation (16) for model forecast, using 
20z = : 

( ),1 zi z i i
m
+ =Q Qφ                        (25) 

The variation of the i
mQ  and iQ  quantum vector components for the 

[ ]31,50k ∈  components for the last moving window segment for i S∈  are shown 
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in Figures 14(a)-(h), (i being used instead of j in the notation in the figure). 
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Figure 12. (a)-(l) Records of DQO CH4 source model fit and DQO forward prediction over a sliding 3-day time period with 

changing ( )endt i  end date; ((a), (c), (e), (g), (i), (k)): DQO model fit for part of a disturbed day; ((b), (d), (f), (h), (j), (l)): 36-step 

forward prediction from the DQO model. 
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Figure 13. DQO model fit and a 36-step CH4 concentration forward prediction for a 
disturbed day; an actual 28-step (140 minutes) forward prediction gain is shown from the 
DQO forward prediction model. 
 
The components of the i

mQ  and iQ  vectors with time are shown in (a)-(g) for 
[ ]44,50k ∈  (with each individual pair and k marked); and in (h) for 
[ ]31,43k ∈ . As shown in Figures 14(a)-(h), the match between the DQO model’s 

output results, i
mQ  and the input data, iQ , is excellent for all frequency compo-

nents over all k values.  
The forward-predicting capability of the DQO model is tested by evaluating 

forecasted outputs, i z
m
+Q  from previous known values, iQ . Using Equation (25), 

the model’s output, i z
m
+Q , is calculated at each of future time by 20z =  time 

steps outside the training time window, while using a 1-step-old DQO matrix, 
,1iφ , on the power index of 20z = . The forecasted results, i z

m
+Q  are compared 

with the known future values, i z+Q , not used in the DQO model training. Fig-
ure 15(a) and Figure 15(b) show the variation of selected i z

m
+Q  and i z+Q  vec-

tors over the entire last training window, forward predicted by z time steps, 
compared with input data series from measurement. The components of the i z+Q  
and i z

m
+Q  vectors with time are shown in Figure 15(a) for 50k =  (with marked 

pairs of i z+Q  and i z
m
+Q ); and in Figure 15(b) for [ ]31,44k ∈ . As shown in Fig-

ure 15(a) and Figure 15(b), the match between the DQO model’s output results 
and the input data is far lower than the match for model training.  

The absolute error of the model fit, ( )E i , for each of the 327 × 288 time step, 
normalized according to Equation (22), is shown in Figure 16(a). The histogram 
of the variation is depicted in Figure 16(b). The absolute error of the model fit 
at forward-predicted instances by 20z =  time steps, ( )zE i , normalized accord-
ing to Equation (23), is shown in Figure 17(a) of which the histogram is given in 
Figure 17(b). A steady DQO model performance is seen in forward prediction 
by 20 forward-step forecast, similar or better in quality than obtained in example 
E6. 

https://doi.org/10.4236/am.2021.1211064


G. Danko 
 

 

DOI: 10.4236/am.2021.1211064 990 Applied Mathematics 
 

 

https://doi.org/10.4236/am.2021.1211064


G. Danko 
 

 

DOI: 10.4236/am.2021.1211064 991 Applied Mathematics 
 

 

Figure 14. (a)-(h). Variation of the i
MQ  and i

DQ  vectors with time for CH4 source input data series from measurement; (a)-(g): 

[ ]44,50k ∈  (with each individual pair and k marked, albeit may not be visible); (h): [ ]31,45k ∈  (with only each k marked as no 

difference between i
DQ  and i

MQ  can be seen). 
 

  
(a)                                                   (b) 

Figure 15. (a), (b) Variation of selected i z
M
+Q  and i z

D
+Q  vectors forward predicted by 20z =  time steps, compared with input 

data series from CH4 source measurement; (a): 50k =  (with marked pairs of i z
D
+Q  and i z

M
+Q ); (b): [ ]31,46k ∈  (with only each 

k marked as no difference between model and data can be seen). 
 

The DQO model performance is analyzed for the critical, disturbed day in fo-
recasting of a CH4 surge, surpassing the threshold value of 2% by a synthetically 
induced bump during day 325. The time gain by using the 26-step forward pre-
dicting DQO model against the real-time input data is directly evaluated. The 
temporal Methane concentration variation, cTG in quantum vector form is back- 
calculated from the modeled 20i

m
+Q  prediction for the 100qm Methane source ter- 

m. The comparison between the 20i
m
+Q  (forward modeled) and iQ  (measured) 
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Figure 16. (a), (b) Variations of normalized absolute DQO model error for CH4 source (last two days disturbed time period ex-

cluded); (a) Model error over the training time window, ( )E i ; and (b) Histogram of the model error. 

 

 

Figure 17. (a), (b) Variations of normalized absolute DQO model error for CH4 source (last two days disturbed time period ex-

cluded); (a) Model error in 20z =  time steps (180 minutes) forward prediction, ( )zE i ; and (b) Histogram of the model error. 

 

concentrations are depicted in Figure 18, showing an actual time gain of 150 
minutes for forecasting a future threshold crossing event at 2% against the real- 
time data.  

5. Brief Discussion of the Results 

A dynamic model identification method is described with definition of quantum 
vectors, representing a time series of data, ( )iX t . Definitions and examples are 
given for the time compartmentalization into bins; the data processing and dis-
tribution into bins; and transport of the quantum of data between the bins dur-
ing step-by-step sliding from the most recent to the past time periods. Various 

https://doi.org/10.4236/am.2021.1211064


G. Danko 
 

 

DOI: 10.4236/am.2021.1211064 993 Applied Mathematics 
 

data compression methods are shown for comparison of characteristics including  

 

Figure 18. DQO model fit and a 20-step CH4 concentration forward prediction for a 
disturbed day; an actual, 150 minutes forward prediction gain is shown from the DQO 
forward prediction model. 
 
the common, sliding time window averaging and a new property, named the 
“moving window quantum of data”. The moving window quantum value in each 
bin is defined from the contained ( )iX t  data for constructing a set of base vec- 
tors of the dynamic operator of the system. It is shown that the quantum vector 
form for retaining past and present data characteristics is most advantageous 
for time series analysis for short-time and long-time memory effects of the 
modeled system as the data is efficiently compressed from tens of thousands 
recorded numbers into only fifty elements without loosing pertinent informa-
tion.  

The compressed form of data into quantum vectors is used as the linear space 
for building a DQO model, ,i zφ , for the system at every time step for a real-time 
process. Definition of the ,i zφ  operator and its training data set, as well as the 
solution for identification from input data are both given in mathematical forms. 

Forward prediction is defined, using the ,i zφ  operator as it inherently includes 
a time step z for model identification. As shown in three illustrative examples, 
the quality of model identification of ,i zφ  foretell that of the error in for-
ward prediction, a useful feature in practical applications. A steady DQO mo- 
del performance within about ±20% normalized error up to 1 hour forward- 
step forecast is shown in the E5 outside weather temperature example, making 
the method appealing, especially in comparison to published results for LSTM 
NN models with poorer forward prediction performance. In addition to excel-
lent stability, the computational time for model DQO identification and for-
ward prediction at each time step takes 18 milliseconds using a laptop com-
puter. 

Two additional examples are shown for analyzing and controlling atmospher-
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ic conditions for safety and health in working and living. DQO models are iden-
tified and used for forecasting methane concentration variations from moni-
tored data. A hypothesis is tested regarding a time advantage that may be gained 
by DQO model prediction, and saved for preventive interventions to alleviate im-
pending hazard conditions at any monitored, living or working place. The hy-
pothesis is tested quantitatively, using two forward-prediction algorithms to con-
sider in a mine safety and health applications.  

6. Concluding Remarks 

 A new method is presented for AR time series analysis of a real-time, conti-
nuous data stream. 

 A new type of data compression, using data quantum vectors, is developed, 
and implemented for practical applications. 

 A new type of DQO model-building and identification method is described.  
 Three numerical application examples are shown using real-world input data 

for DQO model identification. Performance metrics of the DQO model are 
demonstrated in forward prediction applications. 

 The hypothesis test about significant time gain is affirmed by forward predic-
tion using the DQO model in the racing for preventive interventions to coun-
ter impending hazard events in atmospheric conditions.  
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