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Abstract 
The purpose of this study is to develop a mathematical model of the spiral 
basilar membrane in the center of the cochlea, which plays an important role 
in the mammalian auditory system. The basilar membrane transmits sound 
vibrations, which are converted into electrical potential changes by the inner 
hair cells. The basilar membrane is thought to lie on a locally undistorted 
curved surface because the inner hair cells, which are arranged in an orderly 
fashion on the basilar membrane, respond to their location-specific frequen-
cies. In mammals, the number of rotations of this surface and the rate of 
change of its width with each rotation are different. It turns out that by mod-
ifying the right helicoid, we can obtain a mathematical model that satisfies 
these points. In conclusion, even though the three-dimensional structure of 
the basilar membrane varies among species, this model can reproduce this 
structure. This further suggests that there are common genetic determinants 
of cochlear development in mammals. From a practical standpoint, this may 
be useful for creating cochlear implants. 
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1. Introduction 

It may come as a surprise to learn that mammals have a sensory organ in their 
auditory system that is similar in shape to a snail. During the course of evolu-
tion, mammals acquired a snail-shaped cochlea (cochlea is Greek for snail) in 
their hearing organ [1] [2]. Therefore, it has been speculated that they have a 
superior auditory structure. In order to reproduce in a mathematical model the 
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structure of the basilar membrane of the inner ear, which is particularly impor-
tant as an auditory organ, the structure of the inner ear is first described in detail 
below. 

The ear is divided into three main parts: the outer ear, the middle ear, and the 
inner ear. The outer ear consists of the auricle and ear canal, with the eardrum at 
the far end of the ear canal. Behind the eardrum is the middle ear, which consists 
of a small chamber called the tympanic chamber surrounded by bone. Here are 
three small bones that form a bridge between the eardrum and the inner ear. The 
inner ear is buried deep within the bone and consists of the cochlea, which is 
responsible for hearing, and the vestibule, which is responsible for balance. 

The cochlea is a spiral canal structure that makes about 2.75 turns around the 
cochlear axis and is approximately 35 mm long in humans when stretched is ex-
tended and about 2 mm thick at the base of the middle ear. The interior of the 
cochlea consists of three compartments separated by membranes along the di-
rection of the whirlpool: the vestibular level, the central level, and the tympanic 
level. The vestibular and tympanic floors are connected by the apex at the end of 
the cochlear duct and are both filled with perilymph, whereas the central floor is 
filled with endolymph, which is rich in potassium ions due to active transport of 
ions. The basilar membrane has a natural frequency that corresponds to lower 
tones as it moves from the base to the apex. At the central level of the basilar 
membrane is an orderly array of small, delicate and sturdy structures called the 
organ of Corti. In the upper part of the organ of Corti, two types of hair cells, 
called inner and outer hair cells, are regularly arranged along the cochlear canal. 
In humans, there are about 3500 inner hair cells and 15,000 to 20,000 outer hair 
cells in one ear. The hair cells are arranged in four rows in the organ of Corti 
along the entire length of the cochlea. Three rows consist of outer hair cells and 
one row consists of inner hair cells. The inner hair cells provide the main neural 
output of the cochlea. The inner hair cells are the primary sensory receptors that 
convert vibration information into nerve pulses. The central axis of the cochlea 
contains numerous cochlear ganglia, which form synaptic connections with 
the inner hair cells. The axons of these neurons form the cochlear nerve, which 
projects to several cochlear nuclei that span the medulla oblongata and the pons 
in the brain. Instead, the outer hair cells mainly receive neural input from the 
brain, which influences their motility as part of the cochlea’s mechanical pre- 
amplifier. 

Based on the above, the structure of the cochlear canal can be summarized as 
follows: 1) the cochlear canal rotates in a spiral from the bottom to the apex 
around the cochlear axis in mammals, and it makes about 3 turns in humans, 2) 
sound-induced air vibrations are transmitted from the middle ear to the inner 
hair cells, which are arranged in an orderly fashion on the basilar membrane of 
the cochlear duct, via lymphatic fluid, and are converted into electrical signals 
that are transmitted to nerves in the central axis of the cochlear duct, and 3) the 
outer hair cells mainly receive neural input from the brain. 
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The above features of the cochlea are common to all mammals. Since the cen-
tral axis of the cochlea has afferent nerves leading to the inner hair cells, and the 
outer hair cells have centrifugal nerves from the brain, the purpose of this study 
is to propose a mathematical model that reproduces the rotation of the basilar 
membrane around the cochlear axis. If structural variations of the basilar mem-
brane in different mammalian species can be reproduced by simply changing the 
parameters of this model, it suggests the possibility that there are rules common 
to mammals in the development of the cochlea. In other words, it suggests that 
common gene loci that generate the cochlea are present in mammals. This ma-
thematical model may help determine the structure of the cochlea when it is ar-
tificially regenerated in the future. 

2. Mathematical Model and Simulation 

The purpose of this study is to develop a mathematical model that meets the 
following requirements in accordance with the actual structure of the basilar 
membrane. 

1) A spiral surface reproduces how the basilar membrane rotates around the 
central axis from the bottom to the apex. 

2) Since the hair cells are arranged in an orderly fashion on the basilar mem-
brane, the spiral surface has no local distortion. 

3) Because the external shape of the cochlea is like that of a snail, with a broad 
base and narrowing toward the apex, the surface on which the basilar membrane 
rests gradually narrows toward the apex. 

4) The number of rotations can vary [2]. 
5) The rate of change of the basilar membrane width with each rotation can 

vary (the width of the spiral surface is narrower in humans than in guinea pigs 
as it rotates [2]). 

A surface rotating spirally around a central axis can be represented by a ruled 
surface, which is a surface created by a family of straight lines depending on one 
parameter. The structure of this ruled surface meets the first requirement. Sup-
pose that the central axis of the spiral surface is on the z-axis in a three-dimensional 
space x-y-z. The nerve is connected perpendicularly from the central axis to the 
spiraling basilar membrane of the actual cochlea. Therefore, we can assume that 
this ruled surface is formed from a family of straight lines intersecting perpen-
dicularly to the z-axis. These are expressed in a mathematical form called as 
right conoid: 

( )cos , sin , .x u v y u v z f v= = =  

Then, 

( ) ( )( ), cos , sin , ,u v u v u v f v=p  

( ) ( )( )cos ,sin ,0 , sin , cos , ,u vv v u v u v f v′= = −p p  

( ) ( ) ( )( )0,0,0 , sin ,cos ,0 , cos , sin ,uu uv vu vvv v u v u v f v′′= = = − = − −p p p p  
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( ) ( )( ) ( )221 sin , cos , ; .u v

u v

f v v f v v u u f v
× ′ ′ ′= = − ∆ = +
× ∆

p p
e

p p
 

For the first and second fundamental forms of ( ),p u v , 

d d d d 2 d d d d ,I E u u F u v G v v= ⋅ = + +p p                  (1) 

d d d d 2 d d d d .II L u u M u v N v v= − ⋅ = + +p e                (2) 

Therefore, 

( )221, 0, ,E F G u f v′= = = +  

( ) ( )
0, , .

f v uf v
L M N

′ ′′
= = − =

∆ ∆
 

For the principal curvatures, κ1 and κ2, at the given point, the Gaussian curva-
ture K and the mean curvature H of this surface are expressed as follows. 

2

1 2 2 ,LN MK
EG F

κ κ −
= =

−
                        (3) 

( ) ( )1 2 2

1 2 .
2 2

EN GL FMH
EG F

κ κ + −
= + =

−
                  (4) 

( )
( )( )

( )
( )( )

2

2 3 22 22 2
, .

2

f v uf v
K H

u f v u f v

′ ′′
= − =

′ ′+ +
             (5) 

A surface is said to be minimal if its area becomes larger than the original 
surface when it is slightly deformed in the direction of the normal vector at an 
arbitrary point. The necessary and sufficient condition for this to be the case is H 
= 0. If H = 0, then the mean curvature is zero at that point, and in that sense, a 
minimal surface is a surface without local distortion. So, according to the second 
requirement, the condition for H = 0 is as follows. 

( ) ( )0 0 ; and  are constants.H f v f v av b a b′′= ⇔ = ⇔ = +       (6) 

When ( )f v av b= + , this surface is called a right helicoid. We illustrate the 
right helicoid when ( )f v v=  (Figure 1). In Figure 1, the surface rises in an 
evenly spiraling rotation around the central axis. 

The mathematical model of the right helicoid is modified as follows to match 
this shape to the third requirement. 

( )cos ,x ug v v=  

( )sin ,y ug v v=  

( ) ,z f v=  

( ) ( ) 1;g v cf v≡ − +  

c, positive constant. 
Figure 2 is a modified version of Figure 1, showing a so-called snail-shaped 

curved surface that tapers from the wide bottom to the apex. 
Then, 
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Figure 1. Example of a right helicoid; ( ) ,0 94.5,0 6f v v u v= ≤ ≤ ≤ ≤ π . The curved sur-

face rises in an even spiral rotation around the central axis. 
 

 

Figure 2. A modified version of the right helicoid of Figure 1. ( ) ,0 94.5f v v u= ≤ ≤ , 

0 6 , 1 10v c≤ ≤ π = π .  

 

( ) ( ) ( ) ( )( ), cos , sin , ,u v ug v v ug v v f v=p  

( ) ( )( )cos , sin ,0 ,u g v v g v v=p  

( ) ( ) ( ) ( ) ( )( )sin cos , cos sin , ,v ug v v cuf v v ug v v cuf v v f v′ ′ ′= − − −p  

( )0,0,0 ,uu =p  

( ) ( )(
( ) ( ) )

sin cos ,

cos sin ,0 ,
uv vu g v v cf v v

g v v cf v v

′= = − −

′−

p p
 

( ) ( ) ( )(
( ) ( ) ( ) ( ))

cos 2 sin cos ,

sin 2 cos sin , .
vv ug v v cuf v v cuf v v

ug v v cuf v v cuf v v f v

′ ′′= − + −

′ ′′ ′′− − −

p
 

( ) ( ) ( )( )1 sin , cos , ;
Δ

u v

u v

f v v f v v ug v
× ′ ′= = −
×

p p
e

p p
 

( ) ( )2 22Δ u g v f v′= + . 

( ) ( ) ( )2 , ,E g v F cug v f v′= = −  
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( ) ( ) ( )2 22 2 2 1G u g v c u f v′= + +  

( ) ( )2

0, ,
g v f v

L M
′

= = −
∆

 

( ) ( ) ( )22u cf v f v g v
N

 ′ ′′+ =
∆

 

Then, 

( )
( ) ( ) ( )

2

22 2 22
,

f v
K

u g v f v g v

′
= −

 ′+ 

                 (7) 

( ) ( )
( ) ( )

3 22 222

uf v g v
H

u g v f v

′′
=

 ′+ 

                    (8) 

In this modified model, as long as ( ) 0f v′′ = , 0H =  and the second re-
quirement is satisfied. Then, ( )f v av b= + . Moreover, the shape of the spiral 
surface is snail-shaped, which satisfies the third requirement. As the range in 
which v varies is increased, the number of rotations increases proportionally. 
Hence, the fourth requirement is possible with this model. For example, this mod-
el can reproduce a spiral surface with two rotations (Figure 3). Since ( )f v v=  
does not lose its generality, we will assume ( )f v v=  for simplicity. Then, 
( ) 1g v =  when v = 0, and as v increases, ( ) 1g v cv≡ − +  decreases correspon-

dingly from 1. Hence, as v increases, the spiral surface rises, so if c is large, the 
width of the spiral surface narrows correspondingly. On the other hand, if c is 
small, it rotates upward while maintaining a relative width. Since the value of c 
in Figure 4 is smaller than the value of c in Figure 3, the width of the spiral sur-
face does not become so narrow even though it rises while rotating. In Figure 4, 
the number of turns is set to 4, so the spiral surface reproduces the shape of the 
cochlea of guinea pig. 
 

 

Figure 3. A modified version of a right helicoid of Figure 1. ( ) ,0 94.5f v v u= ≤ ≤ , 

0 4 , 1 10v c≤ ≤ π = π .  
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Figure 4. A modified version of a right helicoid of Figure 1. ( ) ,0 94.5f v v u= ≤ ≤ ,

0 8 , 1 40v c≤ ≤ π = π . 

3. Discussion 

The Raup model is a revolutionary mathematical model of the morphology of 
snails published in 1966 [3]. Our model does not reproduce the external shape of 
the cochlea, which has the shape of a snail. The purpose of our model is to re-
produce the spiral surface on which the inner hair cells, which are the most im-
portant part of the auditory system, are arranged. 

The basic structure of the mammalian cochlea is the same. The inner hair 
cells, which are arranged on the basilar membrane, convert their location-specific 
frequencies into electrical signals. In order for this to be done accurately, the in-
ner hair cells are arranged in an orderly fashion on the basilar membrane. We 
have found that our modified model can reproduce a locally undistorted surface 
at any point. Moreover, although there are differences in the number of basilar 
membrane rotations and the rate of change of the basilar membrane width with 
each rotation among mammalian species [2], the former can be reproduced by 
changing the parameter v and the latter by changing the parameter c. The num-
ber of rotations can be adjusted by the range of v. The term ( ) ( ) 1g v cf v≡ − +  
was used to deform the outer shape of the right helicoid into a snail shape. By 
increasing or decreasing the value of c, the external shape of the snail can be 
changed from an elongated snail-like shape to a blunt shape. The mean curva-
ture was still able to maintain zero with g(v), guaranteeing that there is no local 
distortion. 

The fact that our model was able to reproduce the surface on which the mam-
malian inner hair cells are mounted suggests that there are common rules for the 
development of the mammalian cochlea. Considering that the gene loci of the 
cochlea have been identified from experiments with cochlear phenotypes of mu-
tant and knockout mice [4] [5], our model suggests that these gene loci are proba-
bly common to all mammals. 

https://doi.org/10.4236/am.2021.125028


M. Osaka 
 

 

DOI: 10.4236/am.2021.125028 406 Applied Mathematics 
 

4. Conclusion 

Our model, which was modified from the right helicoid, reproduced the spiral 
surface on which the basilar membrane is placed without local distortion. In ad-
dition, this model has the advantage of being able to reproduce the variation in 
the number of rotations and the width of the spiral surface among species. These 
findings suggest that there are common genetic determinants of cochlear devel-
opment in mammals. The mathematical model may be useful in the creation of 
cochlear implants. 
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