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Abstract 
A physical and mathematical model of the transition from a discrete model of 
linear and flat defects nuclei to continuum models of defects such as disloca-
tions and disclinations and their combinations is presented, where the tensors 
of energy-momentum and angular momentum of an alternating field are 
considered, for which the type and structure of the Maxwell stress tensor if

αβσ  

are given and the corresponding angular momentum tensor, using the dy-
namic equation for the evolution of internal stresses and the correlation be-
tween the stresses if

αβσ  in the defect core and the elastic stresses el
ikσ  in its 

environment, obtains elastic displacement and deformation fields identical to 
these fields from Burgers and Frank vectors of continuous models. The spec-
tral density of the autocorrelation functions of the velocity of photoelectrons 

( )e β⊥Ψ  and cations ( )( ); ,cat kT e catµβ β ω µ⊥Ψ = ≡ , which transforms 

into linear spectra as 0T → , is considered reflecting the existence of thresh-
old values of oscillation and rotations currents of photoelectrons and cations 
at all stages of plastic deformation and fracture. The features of the process of 
sliding linear defects in metals are disclosed. 
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1. Introduction 

Currently, there are several definitions of linear defects in crystalline materials: 
1) The phenomenological definition of an edge dislocation [[1] [2] p. 235] in-

cludes the insertion of an extra half-plane, forming regions of condensation and 
rarefaction of atoms above and below the slip plane with a normal n . Its edge 
inside the crystal corresponds to a dislocation line with the unit vector τ , and 
the Burgers vector is equal to the sum of the increments N

ii ∆∑ u  of the atom 
displacement vector iu  in a closed loop around the dislocation line for ed ⊥b τ  
and ed ⊥b n . The bending and turn around the τ  оси axis of crystallographic 
planes whose normals are parallel to τ  form a screw dislocation, where the 
Burgers vector scr i= ∆∑b u , but scrb τ  is similar. 

2) In the framework of the theory of an elastic continuum modeling a medium 
surrounding a dislocation core [2] [3], the well-known procedure is applied: the 
crystal is cut along the slip plane, the dislocation core is removed, the cut surfac-
es of the resulting dislocation tube are shifted along the slip plane in the corres-
ponding direction, forming a boundary or screw dislocations with the Burgers 
vector d iuγ = ∫b



; ,edg scrγ ≡ . We note that here the dislocation line is the 
line of singular points, where the discontinuity vector shifts [ ]i γ=u b . 

3) To describe the boundaries of tilt and torsion using a model representa-
tion—disclination as an element of rotational plasticity [[3] p. 254]. Here the 
determining parameter is the rotation vector ω , whose module is equal to the 
misorientation angle of blocks, subgrains, fragments, while the disclination line 
serves as the axis of rigid rotation of the subgrains and on [ ] = ×u rΩ , Ω  is 
the Frank vector-θ. In the phenomenological definition of disclination, the 
Frank vector Ω  is introduced, equal to N

ii− ∆∑ ω  when traversing a closed 
loop around the disclination line. The inclination disclination is a model 
analogue of the dislocation wall for τΩ , the torsion disclination is the torsion 
boundary with the normal n  for nΩ . 

Numerous experimental results using the methods of ion design, X-ray topo-
graphy, electron microscopy, moire [[4] p. 36; [5] p. 323] basically confirm the 
phenomenological and continuum definitions of linear defects. At the same time, 
due to the insufficient resolution of the above methods (not less than 0.6 ÷ 0.8 
nm), it has not yet been possible to directly observe the structure of the defect 
nucleus except refractory metals such as molybdenum and crystals of copper and 
platinum phtalocyanide. 

It is known that the structure of the usual boundaries of tilt and torsion is de-
termined by the method of relaxation tuning of atoms, which form an interlayer 
with a thickness of 2 - 3 atomic layers with a minimum excess energy of the 
boundary [6]. In the liquid boundary model [7], the crystal structure is com-
pletely broken and can be represented as a combination of vacancies and disor-
dered atoms. A number of other works [8] [9], based on a symmetric tilt boun-
dary in the form of a lattice dislocation wall and the Reed-Shockley formula, 
consider the amorphization process, where the nuclei of these lattice dislocations 
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merge at critical misorientation angles into an amorphous core of the boundary. 
Within the framework of the general theory of special boundaries in a crystal [6], 
N. Mott [10] proposed a compromise version of such adjustment to special 
boundaries in the island model, where a periodic sequence of regions of poor 
and good conjugation of atoms of bicrystal lattices is presented. 

It is known [11] that near the interface “liquid-gas” in the transition layer 
“liquid metal-gas” stable density oscillations ( )zρ  arise [[11], p. 156] with a 
spatial period 0a , the longitudinal autocorrelation function  

( ) ( ) ( ) ( )20 0at t z t z z⊥Ψ = ⋅    the velocities of atoms for moving along the nor-
mal 𝑧𝑧to the surface of the liquid are oscillatory quasicrystalline in time scale 
with a period equal to the lifetime of surface phonons of the order of 4.5 × 10−12 s, 
and the spectral density ( )at β⊥Ψ  on the energy dimensionless scale kTβ ω=   
has two pronounced peaks and three - four less pronounced peak with an expo-
nential envelope for the entire series of peaks above the background, the area of 
which is also limited by the exponent [[11], p. 254]. 

Starting from the works of G. Weingarten, A. Somigliana, and V. Volterra, 
continuum dislocation models are based on physical and mathematical abstrac-
tion in the form of a line endowed with mass, velocity, energy, linear tension and 
the Burgers vector, where the degree of physicality of the model is not large 
enough compared to its mathematics; as in the theory of linearly deformed me-
dia, only Hooke’s physical law holds. A natural question arises: What is the 
structure of the nuclei of linear and planar defects in the language of charges and 
their currents, because nothing except them exists in crystalline materials? How 
does this structure reflect the dynamic processes of generation and slip of such 
defects? 

The aim of this work is to build a transitional model from a discrete model of 
linear and flat defects nuclei to continuum dislocation-disclination models of 
crystalline materials. 

2. The Theoretical Model 

First, note that the continual dislocation-disclination models have two important 
features of the mathematical apparatus: 

1) when describing translational plasticity, the Burgers vector is introduced on 
the defect line, and when describing rotational plasticity, the Frank vector; 

2) in these models, in most cases, they consider a static problem using equili-
brium equations, where a solution is sought using the Green’s function st

jkG , the 
regular component of which is long-range: 1ˆ ~regG r−  (r is the distance from 
the defect line to the point r ) [[12], p. 379]. 

In the framework of the discrete model of the nuclei of linear defects [13], the 
general structure of the solutions of the wave equation of the alternating field as 
an analog of the electromagnetic field using the Green’s functions [[14], p. 77] in 
the form of a vector potential 

( ) ( ) ( )4d , ; ,if if kA x G x x I x e cat x tµ µν νν ν′ ′= − = ≡∑∫ r ,          (1) 
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where the components of the tensor of the Green’s function in the generalized 
space of rectangular momenta have the form 

( ) ( ) ( ) ( ) ( ),if if ifG t G t G tµν µν µνθ θ+ −= ⋅ + ⋅ −r r r ,              (2) 

and the functions ( )tθ  and ( )tθ −  are combinations of Heaviside stepwise 
unit functions of the type ( ) ( )U t U t τ− −    [13], leading to rectangular pulses 
of various durations τ or approximated in shape to rectangular ones; the func-
tions ( )ifGµν + r  and ( )ifGµν − r  contain regular and singular components [[14], 
p. 71] 

( )
( )

( )2
2 2

1 1
42

ifG r
r

µν δ± =
ππ ⋅

r 
                   (3) 

and describes, respectively, a wave running to the right along the defect line or a 
wave reflected from its left edge of the defect fixing nodes and a wave running to 
the left or reflected from the right edge of the defect. According to [13], one of 
the possible schemes for generating linear defect nuclei includes the photoelec-
tric effect of the electrons of the inner shells of cations as a result of resonant 
scattering of primary photons of an intermittent (alternating) field and the for-
mation of long-wave secondary photons that are elastically scattered in the re-
gion of the defect. The energy of primary photons γε  is redistributed between 
the transition energy ijε  of photoelectrons between discrete states i j→  in 
the matrix cations, the kinetic energy of photoelectrons pheε  knocked out of 
cations, and the energy of secondary photons sphε , which mainly determine the 
elastic deformation fields and stresses of a good crystal. The kinetic energy of 
photoelectrons pheε  is completely determined by the pulse density of the al-
ternating field if

jE  or the three-dimensional tensor if
αβσ  of the Maxwell 

stresses as part of the four-dimensional energy-momentum tensor ifTµν  of the 
field if

jE . 
The system of pairs of photoelectrons and cations in the defect nucleus has 

two degrees of freedom: oscillations and rotations per charged particle, therefore, 
in addition to ifTµν , we must use the angular momentum tensor ifM µν  of the 
field if

jE  [[14], p. 26]. Note that the values of ijε  correspond to atomic spectra 
and remain unchanged in time and space. Hence the statement about the corre-
lation between the components of the elastic internal stress tensors el

mnσ  in the 
medium surrounding the defect core (good crystal) and if

αβσ  in the defect core 
(bad crystal) has a right to exist.  

Let us briefly disclose a scheme of the mechanism of influence of secondary 
long-wavelength photons of an alternating field on the environment surround-
ing the core of a defect. According to atomic spectra, these photons cannot pro-
duce resonant scattering by cations at lattice sites, but they carry out elastic scat-
tering by them. In addition, they are bosons, obey wave-particle duality, their 
density decreases from the defect line according to the hyperbolic law. Here, the 
elastic scattering of photons by cations does not change the internal state of ca-
tions, but when they are backscattered by large angles from π/2 to π, within the 
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framework of the momentum conservation law, cations acquire recoil momen-
tum rec

catp , leading to elastic displacements from lattice sites. Note that, in this 
case, the directions of the polarization vectors of the primary and secondary 
photons are close or coincide, which leads to the coincidence of the types of 
tensor matrices if

jkσ  and el
lmσ . Apparently, this is precisely the physical essence 

of Hooke’s law in quantum electrodynamics. In addition, during elastic scatter-
ing, the cation nuclei acquire the radial components rec

catp  from the defect line, 
which corresponds to the radial elastic deformation of all-round tension, but 
they can also acquire the tangential components rec

catp  normal to the defect line 
and to the field polarization vector if

jE , which in turn corresponds to tangential 
elastic cation deformation or shear deformation. From this, the correlation be-
tween if

jkσ  and el
lmσ  becomes clear. 

Here we can apply the dynamic equation of evolution of internal stresses 
el
mnσ  [15] [16], the members of the right side of which describe the correlation 

between the components of the tensor el
mnσ , between the components el

mnσ  
and if

αβσ , the tensor of external stresses out
ikσ  

( )2ˆd ˆ ˆ ˆ ˆ ˆ ˆ
d

el
el el el el if el out

t
σ λ σ α σ γ σ σ η σ σ+= − ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅+ ,        (4) 

where 1el
rcatλ τ −= , rcatτ  is the fast relaxation time of cations in a good crystal. 

When considering such a correlation, the structural-phase transition in the re-
gion between a good and a bad crystal becomes important. Here in the potential 
relief ( ),u tr  its microscopic component ( ),u t′ r , fluctuating over the times 

Dt τ  ( Dτ  is the Debye time), becomes comparable with its macroscopic 
component ( ),U tr ) for Dt τ . The intermittent field reduces the point 
symmetry of the perfect crystal to axial, thereby creating its dynamic anisotropy 
in the direction of the field, which essentially forms the corresponding distribu-
tion of atom-vacancy displacements. This allows us to draw an analogy between 
the longitudinal autocorrelation function of the velocity of atoms ( )at t⊥Ψ  on 
the liquid-gas surface and the same function of atoms, photoelectrons ( )e t⊥Ψ  
and cations ( )cat t⊥Ψ  in the radial direction from the defect line in the transition 
region, taking into account the Coulomb attraction. 

It should be noted here that at absolute temperature 0T → , all peaks of the 
spectral density ( )at β⊥Ψ  ( kTβ ω=  ), ( )e β⊥Ψ , ( )cat β⊥Ψ  transform into 
δ-functions Dirac, while the intervals between neighboring peaks increase by 
two orders of magnitude with a decrease from room to helium temperatures, the 
exponential envelope of the peaks tends to the asymptote in the form of a 
straight line parallel energy scale β , and the background component goes into 
a narrow band adjacent to the scale β . In other words, ( )at β⊥Ψ , ( )e β⊥Ψ , 

( )cat β⊥Ψ  turn into line spectra, each line of which, apparently, characterizes the 
time-separated processes of translational, rotational plasticity, fragment forma-
tion, microcracks and their merging at all stages of plasticity and fracture. 

An analysis of expressions (1)-(4) shows that the dependence of the compo-
nents ( )el

mn rσ  is long-range and is determined by the shape and size of the va-
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cancy volume, the nature of the distribution of the oscillation and rotations cur-
rents of photoelectrons and cations in the nuclei of linear and plane defects. In 
the generalized space of defect nuclei, the amplitude values of el

mnσ  are deter-
mined by the amplitude and duration of the rectangular pulses of the alternating 
field [13]. 

2.1. Edge Dislocation 

We direct the z axis of the rectangular coordinate system along the line of the 
edge dislocation, the slip plane is compatible with the 0x z  plane with the 
normal n , and the y axis along n . In the theory of individual dislocations, the 
elastic stress tensor el

mnσ  in the medium surrounding the core of the edge dis-
location has a 2 × 2 matrix [[17], p.57] 

0
ˆ xxel

edg
yx yy

σ
σ

τ σ
 

=  
 

,                       (5) 

which corresponds to plane deformation at 0zu = . Here, the tangent compo-
nent yxτ  creates a shearing in the 0y z  plane in the positive or negative direc-
tion of the y axis. In the core of the dislocation, an alternating field forms linear 
structures along the y  axis, moreover, vacancy chains appear in parallel elec-
tronic chainseither below the slip plane parallel to the z axis, where cationic 
chains are located from last at a distance b0, and electronic chains are located at a 
distance ≤ 2b0 from dislocation line, or above the slip plane, etc. The Maxwell 
stress tensor ˆ if

edgσ  preserves the type of matrix (5) 

( )
( )

ˆ
if if own
xx xy xif

edg if own if
yx y yy

E

E

σ τ
σ

τ σ

 
 =
 
 

,                 (6) 

where the tangent components if
xyτ  and if

yxτ  contain only the real parts, de-
pending on the components of the field own

jE  in the 0x y  plane, the imaginary 
parts of these components [13] are equal to zero. Here, the if

xyτ  component de-
termines the slip process under the influence of own

xE  and out
xE , and the com-

ponent if
yxτ  determines the generation of the dislocation core and creep under 

the influence of own
yE  and out

yE . Note that the arrangement of the indices of 
the tensors if

αβσ  and el
ikσ  in this work is carried out according to field theory 

[[18], p. 109], where the first index determines the direction of action of the 
force or density of the momentum flux, and the second, the normals to the site 
of application of force or to flow surface. For the edge dislocation, the compo-
nents of the angular momentum tensor of the alternating field are ˆ 0if

edgM = . 

2.2. Screw Dislocation 

Let us consider one of the possible schemes for generating linear structures in 
the core of a screw dislocation. Here, the formation of linear structures occurs 
in two mutually perpendicular glide planes, while the vacancy chain is formed 
on the dislocation line by means of four such structures, as shown in Figure 1.  
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Figure 1. Scheme of the formation of linear structures LS1, LS2, LS3, 
LS4 and application of the Maxwell intermittent field stresses if

jkT  

on charged particles in the core of a screw dislocation in metals with 
face-centeredlattice. 

 
Transverse photons of the alternating field form the LS1, 2, 3, 4 structures. 
Quantum electrodynamics allows the existence of longitudinal photons [[14], p. 
62], corresponding to the z-component of the field z-along the dislocation line. 
We introduce the threshold values of the rotational currents of the photoelectrons 

thr
eturnJ  and cations thr

catturnJ . If the photoelectron current is thr
e eturnJ J< , then pho-

toelectrons perform torsional oscillations near the cations from which they were 
knocked out, and cations also make similar oscillations from the influence of 
currents with an amplitude three orders of magnitude smaller than Je. Hence, the 
threshold values thr

eturnJ  and thr
catturnJ  are connected by a simple relation 

2thr thre
catturn eturn

cat

m
J J

M
≈ .                        (7) 

For thr
e eturnJ J= , the time dependence of ( )eJ t  in the generalized space of 

rectangular pulses is shown in Figure 2. Here, the descending section of an indi-
vidual pulse on the curve ( )eJ t  arises under the influence of the driving force 

( ),f own own
j j jF E H  in the form of the Dirac δ-function at 0t =  and the restoring 

force rest
jF  from the Coulomb attraction of the cation. The current eJ  in-

cludes the transition current tr
eJ , the oscillation and rotation current eJν , and 

the displacement current along the dislocation line under the influence of if
zE . 

The trajectory of photoelectrons at thr
e eturnJ J>  and own thr

z zE E>  ( thr
zE  is the 

threshold field value for the displacement of the photoelectron from the cation 
in LS1 to the cation in LS2, etc.) takes the form of a spiral around z axis. The ca-
tions in the core of the dislocation perform only torsional oscillations. Such a 
structure of pairs of photoelectrons and cations in the nucleus of a screw dislo-
cation and the trajectory of motion of charged particles allows us to write the 
components of the Maxwell stress tensor if

αβσ  in the form of a 3 × 3 matrix  
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Figure 2. Time dependence of the photoelectron current eJ  in a 

screw dislocation core, thr
eturnJ  is the threshold value of the photo-

electron rotation current.  

 

( ) ( )
( ) ( )

( )

0

0

0 0

if own if own
xx x xz z

if if own if own
yy y yz z

if own
zz z

E iH

E iH

E

αβ

σ τ

σ σ τ

σ

 
 
 
 
 
 

= ,             (8) 

which reflects the axial symmetry of the field of elastic strains and stresses el
αβσ  

in a good screw dislocation crystal. In (8) 
3

if if if
xx yy zz p

σ σ σ+ +
= − , and  

if if if
xx yy zz pσ σ σ= = = − , which corresponds to all-round extension on the screw 

dislocation line, and the components vectors ( )0;0;own own
j zH H= . Here the 

components of the angular momentum tensor if
ikM  represent the antisymme-

tric tensor of the second rank 

0 0
0 0
0 0 0

if
xz

if if
ik yz

y
M x

τ
τ

 ±
 

= ± 


⋅

 

⋅


,                      (9) 

where for structures LS1 and LS3 the combination of signs is if
xz yτ± ⋅  and 

( )if
xz yτ ⋅ −  respectively, and for structures LS2 and LS4: if

yz xτ± ⋅  and 
( )if

yz xτ ⋅ −  (Figure 1). The combinations of signs before the products of stress 
and coordinate values reflect, respectively, the left-sided and right-sided rotation 
systems with respect to the unit vector τ . We assume that the probabilities of 
the appearance of right-handed and left-handed rotation systems are the same 
and equal to 1/2. 

2.3. Disclosure Models 

Experience shows [19] [20] that with large plastic deformations, translational 
plasticity is replaced by rotational plasticity, in the description of which various 
types of disclination are introduced. One of the main features of the structure of 
the tilt and torsion boundaries is the combination of vacancy chains of several 
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linear structures into a single bundle, the transformation of vacancy clusters into 
vacancy volumes in the form of disks, drops, dumbbells, and rectangular stripes. 
Here, in the generalized space of rectangular pulses, the simultaneous generation 
of rotations of cations and photoelectrons with respect to the cation chains from 
which they were knocked out begins to play a role. The existence of closed tra-
jectories of rotations of cations and photoelectrons around vacancy volumes for 

thr
cat catturnJ J>  and thr

e eturnJ J> , taking into account the Coulomb attraction, can 
ensure their stability in space and time for any kind of defects, both linear and 
plane. Here are the criteria that allow us to build discrete models of the nuclei of 
the tilt and torsion boundaries with rotational plasticity: 

1) Energy criterion. The energy of the currents of photoelectrons and cations 
from which the photoelectrons were knocked out should correspond to the 
minimum elastic energy of the crystal in the medium surrounding the defect 
core; 

2) Geometric criterion. The motion paths of the above photoelectrons and ca-
tions should be within the layer 03 4a− ; 

3) The fulfillment of the electroneutrality condition both for the subsystems of 
photoelectrons and cations, and for conduction electrons and matrix cations; 

4) The absence of long-range fields of internal stresses from the boundaries of 
tilt and torsion. 

Consider the form of vacancy volumes vacV  for various types of disclinations. 
Here we will use the disclinations formation schemes in the elastic continuum 
model [[20], p. 30]. For a wedge disclination, vacV  is located asymmetrically to 
the defect line along the z axis, has an axial section in the shape of a rolling pro-
file of T-beam within the wedge angle, where the wall of the T-beam is located in 
the radial direction, and its shelf is parallel to the z axis. To disclose torsion with 
the rotation vector ⊥Ω τ , the volume vacV  takes the form of an I-beam, the 
wall of which is parallel to the z axis, and the shelves are axisymmetric with it. 
The volume vacV  for general disclination approaches in shape to a dumbbell 
axisymmetric with the defect line, and its axial sections are elliptical. 

2.4. Translational Ductility in Metals 

A detailed quantitative description of the transition model is possible by numer-
ically calculating the Vlasov system of equations, the wave equation of the alter-
nating field, and the equation of evolution of internal stresses, which requires 
separate work. In this paper, we restrict ourselves to the consideration of transla-
tional plasticity of metallic crystals with face centered lattice and estimate the 
threshold values of the photoelectron oscillation current thr

eoscJ  of the onset of 
slip of a screw dislocation in copper. Here, the process of knocking out and 
moving the photoelectrons is essentially an internal photoelectric effect, where 
the kinetic energy received from the field if

jE  must not be lower than the sum 
of the work of the returning forces rest

jF  of the cation from which it was 
knocked out, of three pairs of its nearest neighbors along the cation chain and 
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the forces of electrostatic interaction from the side of the excess charge distribu-
tion ( )q ρ  [cm−3] conduction electrons [21] in copper 

( ) ( )
5 2

cos 28
3

FF kkq A
ρ

ρ β
ρ

+Φπ
= ⋅ ⋅ ⋅

π
,               (10) 

where the parameters β = 7.62; A = 0.052; Φ = 0.1015 are taken from [21]; Fk  is 
the Fermi wave number, for copper 8 11.36 10 сmFk −= ×  [[22], p. 260], as a re-
sult of the screening of the deformation induced by the long-range field 1~ε ρ− , 
for overcoming the first four most significant concentric layers ( )q ρ  with a 
variable sign [21] 

22
3 3 30 cos cos

2 2
e fxe x

i j j ii i j

m vm v
A F l γ α− = =

⋅⋅
⋅ ⋅ ⋅∑ ∑ ∑ ,        (11) 

where the change in the kinetic energy of the photoelectrons obtained from the 
field if

jE  is equal to the work of the sum of the Coulomb interaction forces 
from the point charges of the nuclei of the donor cations and the three pairs of 
nearest neighbors along the cation chain and the distribution ( )q ρ ; jl  is the 
photoelectron displacement vector along the x  axis; iγ  is angle between the 
directions of the vectors jF  and jl ; α  is the angle between the direction of 
the Coulomb force and the x axis,α γ= π− . The distribution ( )q ρ  is consi-
dered in a cylindrical coordinate system, and the photoelectron displacement is 
in the Cartesian coordinate system, whose z axes coincide. For calculation, we 
use the standard approach for describing [23] the motion of charged particles in 
an electromagnetic field for various systems of interacting charges. We assume 
that the nonrelativistic approximation is applicable here, and the radiation of 
moving particles is absent. Note that in the calculation, the dielectric constant 

( ),mε ωk  acquires an important influence from the non-stationary effect of the 
alternating field with the pulse repetition rate repω  [24] 

( )
2

2, 1 p
m

rep

ω
ε ω

ω
= −k ,                      (12) 

where pω  is the plasma frequency of the subsystem of conduction electrons 
[25], ( )2

0

1 2
4p ee n mω ⋅= π ; 0n  is the density of conduction electrons [сm−3], 

where for copper n0 = 8.45 × 1022 сm−3 [22]; me = 9.11 × 10−28 g; e = 4.8 × 10−10 
CGSEq [26]. If repω  is 1014 ÷ 1015 s−1, and 16 11.64 10 секpω −= × , then according 
to (12) ( ) 2 4, 10 10mε ω = ÷k . At the first stage of the calculation, we use the fact 
that the electric field outside the infinitely long circular cylinder uniformly 
charged in volume or on the surface is identical to the field of the infinite un-
iformly charged line 1~lineE χ ρ−⋅ , where χ  is the linear charge density, and 
the field inside hollow cylinder is zero [[23] [27], p. 232]. In our case, the distri-
bution ( )q ρ  can be divided into a number of layers of an excess charge of va-
riable sign according to the law cos. For an arbitrary cylindrical surface with a 
radius xρ =  inside the n-layer, the charge ( )q ρ  is placed in two tubes: the 
upper and lower. We apply the principle of superposition to charges in tubes. 
For xρ > , all (n − 1)-layers and the lower tube create a field outside the n-layer, 
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and for xρ ≤  the field from the upper tube is zero. Hence, the electric field 
acting on the photoelectron from the side ( )q ρ  is represented as the sum 

( ) ( ) ( )11
n

n nlnE x E x E x+=
= + ∆  ∑ ,                (13) 

where the external fields ( )nE x  and ( )nlE x∆ , induced respectively by the en-
tire n-layer and the lower tube of the n-layer, have the form 

( )
2

n
n

m

E x
k x
χ
ε

=
π ⋅

; ( ) ( )
2

nl
nl

m

x
E x

k x
χ
ε

∆ =
π ⋅

,             (14) 

where the linear charge densities nχ  and ( )nl xχ  are equal 

( )1 1 2

0 0
d d dn

n
n q z

ρ

ρ
χ ρ ρ ρ θ+ π

= ∫ ∫ ∫ ; ( ) ( ) 1 2

0 0
d d dn

n

x
nl x q z

ρ

ρ
χ ρ ρ ρ θ

− π
= ∫ ∫ ∫ ;  (15) 

1k =  in CGSEq; 04k ε= π  in MKSA. It should be noted here that the fields 
( )nE x  and ( )nlE x∆  are directed from the dislocation line at ( ) 0 0q nρ − > , 

and toward the dislocation line at ( ) 0 0q nρ − <  with respect to the photoelec-
tron motion. 

An analysis of expressions (10)-(15) shows that, in contrast to the tabulated 
values of 0n  [22] for copper, it is necessary to take into account 4 atoms per 
cell fcc. lattices and 2 - 3 valence electrons per atom, in this case the Coulomb 
forces from point sources of cations and ( )q ρ  are of the same order [10−8 N], 
which allows us to estimate the height of the potential barrier from the first peak 
( )( )2q nρ = , which does not exceed 1.2 eV, and the depth of the first potential 

valley ( )( )3q nρ =  of the order of (0.2 ÷ 0.3) eV. The barrier is due to the ac-
tion of the fields ( )1E x  and ( )2lE x∆  from the inside of the peak and the 
electron interaction eeF , whose effective radius is 0.1 nm [25], which leads the 
photoelectrons to the first potential valley, where eeF  is small and the forces 
from the fields ( )2E x  and ( )3lE x  are directed inside the valley and create 
oscillations, and in the presence of the tangential component phev , they rotate 
around the dislocation line. 

A detailed consideration of the numerical calculation using the Mathcad ap-
plication, the equations and trajectories of the motion of photoelectrons and 
donor cations in the nuclei of linear and planar defects is presented in a separate 
work. We also note that the photoelectron current density pheJ  using the di-
mensional method can be represented as 

0

22phe phe phe d pheJ n e v e v
b

ρ= ⋅ ⋅ ⋅ = ⋅ ⋅ ,               (16) 

where phen  is the density of donor cations in the nuclei of defects; dρ  is the 
dislocation density [m−2]; 0 00.71b a= ; phev  is the speed of the photoelectron. 

3. Discussion of the Results 

This transition model allows you to identify a number of fundamentally impor-
tant features: 

1) The existence of a correlation between the components of the tensor of the 
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Maxwell stresses of the alternating field if
αβσ  in the core of the defect and the 

internal elastic stresses el
ikσ  in its environment. 

2) The conversion of the spectral densities ( )at β⊥Ψ , ( )e β⊥Ψ , ( )cat β⊥Ψ  as 
0T →  into linear spectra leads to the appearance of threshold values of oscilla-

tion currents and rotations of photoelectrons and cations, of which they were 
knocked out at all stages of plastic deformation and fracture. In this case, inter-
mittent deformation takes place near absolute zero [28], and the asymptote of 
the exponential envelope of the peaks ( )at β⊥Ψ  is a straight parallel to the scale 
β, which is equivalent to the simultaneous occurrence of translational, rotational 
plasticity, critical fragmented structures, microcracks, or cold brittleness. 

3) The expression of the force acting on the dislocation in the form of ik kbσ  
in the framework of the continuum models is not applicable in the framework of 
the continuum models in this transition model, because it reflects the change in 
the elastic energy of the crystal elε∆  when the dislocation of unit length is dis-
placed by one 0a , and elε∆  is several orders of magnitude smaller than the 
changes energies of the alternating field in the core of a dislocation at similar 
displacements. 

4) At first glance, the Coulomb’s static law is not applicable to the description 
of the defect nucleus, but at an arbitrary time 2 phet t ε± ∆ ≥ ∆  with phe Fv v , 
the distribution ( )q ρ  creates an additional potential relief ( ),qu tr , which is 
adjacent to the main ( ),u tr  from the Coulomb attraction of the initially im-
mobile cationic chain and essentially “stitches” with it. If the photoelectron 
moves with velocity ( )phev t  along the x  axis, then the expression for the 
Coulomb force contains the Lorentz correction ( )2 1 2

1 phev
−

−  times  

( )
12

2 2
21

phe

phe

x v t
y z

v

−
 − + +
 −
 

⋅
 [[28], p. 259]. At photoelectron velocities thr

phe ev v≤ ,  

a purely quantum phenomenon takes place: a tunnel transition through the first 
peak ( )q ρ , where quasistable states in the form of oscillations and rotations 
arise in the first potential valley ( )q ρ , which goes from zero to 2π in the range 
of angles θ  from zero to 2π. Hence, translational plasticity within the frame-
work of discrete and transitional models takes on a new meaning. 

5) Generation of nuclei of linear defects involves the formation of linear 
structures under the influence of an alternating field in the generalized space of 
rectangular pulses and due to the secondary long-wavelength photons of the 
field if

jE  and the correlation if
jkσ  and el

mnσ , elastic deformation and stress 
fields arise in the surrounding defect core medium, and at a distance from the 
defect line ( )1 0.071 0.087 nmρ = ÷  equal to the cation radius [5], the photoe-
lectrons receive kinetic energy and tunnel through the potential barrier of the 
first peak ( )q ρ , where their quasistable states in the form of oscillations and 
rotations, and then the movement of donor cations with subsonic speeds from 
the defect line to potential interstitial wells from the attraction of oscillating and 
rotating photoelectrons of the electronic chain. The subsequent penetration of 
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photoelectrons into the third potential valley at 7 0.73 nmρ =  is the beginning 
of the linear defect slip, where at 0 02b bρ< ≤  donor cations begin to pass from 
sites to internodes, and at ( ) 5 63 5 10 m s 1.57 10 m sphe Fv v= ÷ × < = ×  [[22], p. 
260] conduction electrons make constant relaxation tuning, which allows us to 
approximately assume ( )q ρ  given in time, and if the dislocation is stationary, 
then in space. On the one hand, following a chronological ordering, when a de-
fect nucleus is generated, a set of linear structures appears, then elastic fields 
around the defect nucleus. On the other hand, both the generation and slip of a 
screw dislocation are qualitatively indistinguishable dynamic processes for 
which the threshold speed of photoelectrons during sliding thr thr

sl gv v>  is the 
threshold velocity of photoelectrons during generation. 
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