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Abstract 

In this paper, an analytical and numerical computation of multi-solitons in 
Korteweg-de Vries (KdV) equation is presented. The KdV equation, which is 
classic of all model equations of nonlinear waves in the soliton phenomena, is 
described. In the analytical computation, the multi-solitons in KdV equation 
are computed symbolically using computer symbolic manipulator—Wolfram 
Mathematica via Hirota method because of the lengthy algebraic computation 
in the method. For the numerical computation, Crank-Nicolson implicit 
scheme is used to obtain numerical algorithm for the KdV equation. The si-
mulations of solitons in MATLAB as well as results concerning collision or 
interactions between solitons are presented. Comparing the analytical and 
numerical solutions, it is observed that the results are identically equal with 
little ripples in solitons after a collision in the numerical simulations; however 
there is no significant effect to cause a change in their properties. This sup-
ports the existence of solitons solutions and the theoretical assertion that so-
litons indeed collide with one another and come out without change of prop-
erties or identities. 
 
Keywords 

Korteweg-de Vries Equation, Solitons, Hirota Method, Crank-Nicolson  
Method 

 

1. Introduction 

The study of nonlinear evolution models which describes a large variety of 
physical phenomena is found to have two fascinating manifestations of opposite 
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nature: chaos that are the apparent randomness in the behavior of perfectly de-
terministic systems and special kind of solitary waves called solitons. Soliton 
theory gives us various significant instances of nonlinear systems behaving in a 
persistent, quasi-linear pattern. Solitons are therefore, a consequence of a dy-
namic balance between dispersion and nonlinear effects in any nonlinear evolu-
tion models. They are waves of permanent form that preserve their shape while 
traveling over long distances. The permanent speed and form of a soliton is 
however not the only special property; but it is said of its special characteristic 
that, solitons maintain their shape and speed after collisions with other solitons, 
summing up in the following two basic properties; One, propagating without 
change of its characteristics (shape, size, velocity etc.), Two, localized waves (sta-
ble against mutual collisions and retaining their identities:). The first is a solitary 
wave condition acknowledged in hydrodynamics since the nineteenth century. 
The second implies that the wave has the property of a particle [1] [2] [3]. 

[4] and [5] revealed that solitons in modeling physical phenomena arise in a 
wide range of areas such as shallow and deep water waves, optics communica-
tions, Bose-Einstein condensates and Biological models. They are universal in 
nature, and can be found in different classifications: from water waves, sound 
waves and charge-density waves to matter waves and electromagnetic waves [6]. 
Solitons can be found in a variety of materials including Plasmas, Josephson 
junction, Polyacetylene (Proteins and DNA) molecules among others and are 
used for many different purposes. They may carry electrical charges in some 
substances and when charged, solitons travel through certain polymer chains, 
which tend to curve. [7] predicted that this property may one day be used in ap-
plications such as artificial muscles and also showed that solitons can be used to 
transfer large amounts of information over large distances with little or no errors 
in the signal.  

Interactions or collision between solitons is perhaps the most captivating fea-
tures of soliton phenomena. A critical observation was however made in [8] that 
solitons preservation of identities after collisions is basically suggested by nu-
merical simulations. But in detailed analysis of the results of such numerical si-
mulation, some ripples can be observed after a collision and it therefore seems 
that the original identity is not completely recovered; it is most imperative to 
find exact solutions of nonlinear evolution models that admit soliton solutions 
for proper scrutiny of collisions. [9] in the same vein, studied in contrast, “over-
taking interactions” and “head-on collisions” between two electrostatic solitons 
in Korteweg-de Vries (KdV) equation using an approximate method, and re-
vealed that though numerical method offers valuable insights it still limits the 
weight of validity of the study of soliton collisions.  

In this paper we focus on the existence of more than one soliton solution 
called multi-solitons, since this enables us to study solitons collision or interac-
tions especially for their said preserved behavior. We look at the famous Korte-
weg-de Vries (KdV) equation which has soliton solutions, and we describe the 
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context in which this model arises, and solve it both analytically and numerically 
and discuss properties of the multi-soliton solutions. Korteweg-de Vries (KdV) 
equation has been extensively solved for single soliton solution using analytical, 
semi-analytical methods and, multi-solitons for numerical methods. Our moti-
vation here is to apply dissimilar computational techniques to produce its mul-
ti-soliton solutions for scrutiny.  

2. Method: Computation of Multi-Solitons in  
Korteweg-de Vries Equation 

One of the most famous time evolution models and perhaps the simplest nonli-
near system is the third order Korteweg-de Vries (KdV) equation, hereafter ab-
breviated as KdV equation, given in a general form as 

0, ,t x xxxw ww wβ α α β± + = ∈                 (2.0) 

where ( ),w w x t=  is a function of two variables which represent the amplitude 
of the wave at position x, and time t, and α, β are arbitrary. The Equation (2.0) is 
nonlinear because of the product shown in the second term and of third order 
for the reason that the third derivative is highest. The KdV Equation (2.0) arises 
in many physical situations. [10] noted that it very well may be used to portray 
the investigation of shallow-water waves, gas dynamics, Anharmonic nonlinear 
grids, Hydro-attractive and Icon-acoustic waves in cool plasma, for instance. 
The physical derivation of this model is given in [11].  

2.1. Solution of the KdV Equation by Hirota Method  

We solve the KdV Equation (2.0) in particular form on the infinite line, stage by 
stage using Hirota method.  

6 0, , 0t x xxxw ww w x t± + = −∞ < < ∞ < < ∞            (2.1) 

with initial condition ( ) ( ), 0 .w x g x=  
The solution of the KdV Equation (2.1) is a travelling wave which has perma-

nent form, occurs due to a balance of its dispersive term ( xxxw ) and its nonlinear 
term ( 6 xww ). This idea of balancing dispersion and nonlinearity is typical of any 
nonlinear evolution equation that admits soliton solution. The constant coeffi-
cients behind each of the terms are unimportant and we express the equation 
this way for historical reasons, particularly, the factor 6 is just a scaling factor to 
make the solutions (solitons or solitary waves) easier to be described via Hirota 
Method [8]. 

Bilinearization: First the KdV Equation (2.1) is rewritten as  

( )23 0t xxxx
w w w+ + =                     (2.2) 

The supplementary function (the Cole-Hopf transformation) given as 

( ) ( )
2

2, 2 ln 2 xx x
xx

ff fw x t f
f

 −
= =  

 
               (2.3) 

is used to transform (2.1) into a bilinear KdV equation. Thus, taking time deriv-
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ative of ( ),w x t  in (2.3), we integrate once with respect to x and substitute in 
(2.2), after some algebraic manipulations, we obtain the bilinear form of the 
KdV equation (2.1) as, 

( )22 3 4 0xt x t xx x xxx xxxxff f f f f f ff− + − + =              (2.4) 

The Hirota bilinear form: To put the bilinear KdV Equation (2.4) into Hiro-
ta bilinear form in terms of the D-derivative operator as defined as follows, we 
assume the Hirota differential operator xD , which is a binary operator defined 
on ordered pairs of functions ( )f x  and ( )g x , as follows 

( ) ( )
2 1

1 2
1 2

n
n
x

x x x

D f g f x g x
x x

= =

 ∂ ∂
⋅ = − ∂ ∂ 

            (2.5) 

then 

( ) ( ) ( )
2 1 1 2

1 1 2 2
1 2 1 2

,

, ,
m n

m n
t x

x x x t t t

D D f g f t x g t x
t t x x

= = = =

   ∂ ∂ ∂ ∂
⋅ = − −   ∂ ∂ ∂ ∂   

 (2.6) 

where ,m n  are nonnegative integers and 

( )
01 2 1 2

1
n n r rn

r

r

n
rx x x x

−

=

   ∂ ∂ ∂ ∂
− = − ⋅   ∂ ∂ ∂ ∂  

∑              (2.7) 

where 

( )
! ,0

! !
n n r n
r r n r

 
= ≤ ≤  − 

                  (2.8) 

More generally we denote some sort of combination of the Hirota D-operator 
as a polynomial of D-operator ( )P D  i.e. 

( ){ } { } ( ) ( )

( )
( )

( ) ( )

0

21 2

1

1
1

2

n
rn

x rxn r x
r

n
nx x x nxn x n x

n
P D f g D f g f g

r
n n

f g nf g f g fg

−
=

− −

 
⋅ = ⋅ = − ⋅ 

 
−

= − + − + −

∑



  (2.9) 

where the subscripts of the functions f and g define the order of the partial de-
rivatives with respect to x. Thus, D operates on a product of two functions like 
the Leibniz rule, except for the crucial sign difference. 

Thus, from Equation (2.6) we have: 

( ) [ ] [ ]x t xt t x x t xtD D f g f g f g f g fg⋅ = − − −            (2.10) 

Now replacing g with f to have the same function in (2.4) we have that: 

( ) ( )2x t xt x tD D f f ff f f⋅ = −                 (2.11) 

Similarly, from (2.9) we have that 

( ) ( )4 22 4 3x xxxx x xxx xxD f f ff f f f⋅ = − +              (2.12) 

Hence Equation (2.4) becomes  
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( ){ } ( ){ }4 0x t xD D D f f P D f f+ ⋅ = ⋅ =              (2.13) 

which is the Hirota bilinear form of KdV Equation (2.1). 
Application of the Hirota Perturbation: The supplementary function 

( ),f f x t= , in (2.13) is expressed as:  

( ) 1 2 3 4
1 2 3 4

1
, 1 1

n
n n n

i
i

f x t f f f f f f
=

= + + + + + + = + ∑          (2.14) 

where 1 2, , , nf f f , represent simple exponential functions. 
We now insert (2.14) into Equation (2.13) so that  

( ){ }
( )( ) ( )( ) ( )( )

( )( ) ( )

2
1 1 2 1 1 2

3
3 2 1 1 2 3

0

1 1 1 1 1 1

1 1

0

n
n

i n i
i

P D f f

P D P D f f P D f f f f

P D f f f f f f P D f f −
=

⋅

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

 + ⋅ + ⋅ + ⋅ + ⋅ + + ⋅ 
 

=

∑

 

 
  (2.15) 

The coefficient of like powers of   in (2.15) can be equated to zero to obtain 
the following sets of equations,  

( ) ( ) ( )0
0

Ο : 0, 1
n

n
i n i

i
P D f f f−

=

 ⋅ = = 
 
∑              (2.16) 

We make use of the scheme (2.16) to obtain appropriate dispersion relations 
and coupling coefficients in the KdV Equation (2.13). Thus, if ( ),f x t  in (2.14) 
is a solution of Equation (2.13), then ( ),w x t  in Equation (2.3) is a soliton solu-
tion to the KdV Equation (2.1). 

2.2. Constructing Multi-Soliton Solutions of KdV Equation 

2.2.1. The Vacuum Soliton Solution 
What we need to find now is a truncated supplementary function ( ),f x t  in 
(2.14) that satisfies (2.13) which, when inserted into Equation (2.3), will yield 
( ),w x t , which is the solution of KdV Equation (2.1). From (2.14), if we try 
( ), 1f x t =  and substitute this into Equation (2.3), we get the trivial solution 
( ), 0w x t = . This solution is called the vacuum or zero soliton upon which mul-

ti-solitons solutions are obtained or propagated. This shows that a soliton can 
travel in a vacuum. 

2.2.2. The Single Soliton Solution 
The single soliton solution [2] [12] is given as, 

( ) ( )2 21 1 1, sech
2 2 2

w x t k k x ct q = − +  
             (2.17) 

where k  is the wave number, c is wave velocity, and q is the initial point of 
propagation, 2c k=  is the dispersion relation. A wolfram Mathematica pro-
gram is used to compute the single-soliton solution and its simulation. The pro-
file of the single soliton at 0q = , 0t = , and 2k =  is shown in Figure 1 and 
Figure 2. 
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Figure 1. 2D Profile of single soliton solution for KdV equation. 

 

 
Figure 2. 3D profile of single soliton for KdV equation. 

2.2.3. The Two-Soliton Solution 
To obtain the two-soliton solution, the supplementary function f in (2.14) is 
truncated after the third term  

( ) 2
1 2, 1 , 0, 3if x t f f f i= + + = ≥                 (2.18) 

To find 1f  and 2f , use is made of a two-term form of 1 evf =  that is usual-
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ly used for construction of the single-soliton case, i.e. 1 2
1 e ev vf = +  where 

( )1 1 1 1v k x c t q= − + , ( )2 2 2 2v k x c t q= − + . Since two-soliton solution is built 
from single soliton, and one principle is that for integrable systems one must be 
able to combine any pair of single-soliton built on top of the same vacuum.  

Now, using the perturbation scheme (2.16), we have: 

( )( ) ( )( )
( ) ( ) ( )

1 1

1 1 1

1 1

2 0

P D f P D f

P f P f P f

+

= ∂ + ∂ = ∂

⋅

=

⋅
               (2.19) 

Thus, it follows that, 

( ) ( ){ }
( ){ } ( ){ }

1 2

1 2

4
1

4 4

2 2 e e

2 e 2 e

0

v v
x t x

v v
x t x x t x

P f∂ = ∂ ∂ + ∂ +

= ∂ ∂ + ∂ + ∂ ∂ + ∂

=

         (2.20) 

This implies  

( ) 14 2
1 1 12 2 e 0vk c k− =  and ( ) 24 2

2 2 22 2 e 0vk c k− =           (2.21) 

i.e. the dispersion relation is obtained as: 

2 , 1, 2i ic k i= =                        (2.22) 

Now, we obtain 2f  from the perturbation scheme (2.16), as 

( )( ) ( )( )
( ) ( )( )

2 2 1 1

2 1 1

1 1

2 0

P D f f P D f f

P f P D f f

⋅ + ⋅ + ⋅

= ∂ + ⋅ =
                (2.23) 

Thus, 

( ) ( ) ( ) ( ){ }1 2 1 2
22 e e e e 0v v v vP f P D∂ + + ⋅ + =             (2.24) 

or, 

( ) ( ) 1 22
2 1 2 1 22 6 e 0v vP f k k k k +∂ − − =                (2.25) 

Clearly, Equation (2.25) holds true, if and only if 2f  is of the form 

1 2
2 12ev vf c +=                          (2.26) 

where 12c  is a coupling constant yet to be determined.  
Now substituting (2.26) back into (2.25) we have that 

( )( ) ( ){ } ( )1 2 1 24 2
12 1 2 1 1 2 2 1 2 1 2 1 22 e 6 e 0v v v vc k k k c k c k k k k k k+ +− + + + + − − =  (2.27) 

Substituting (2.22) in (2.27) and simplifying we have the coupling constant 

12c  as: 

( )
( )

2
1 2

12 2
1 2

k k
c

k k

−
=

+
                        (2.28) 

Thus, 1f  and 2f  are determined as simple exponential functions in sup-
plementary function in (2.18), without loss of generality, we set 1= , and use 
(2.18) into (2.3) in constructing the two-soliton solution as 
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( )
( )( )

( )
( )( )

( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

22 2
1 2 12 1 2

12

2

1 2 12 1 2

2

12

2 e e e
,

1 e e e

2 e e e

1 e e e

v v v v

v v v v

v v v v

v v v v

k k c k k
w x t

c

k k c k k

c

+

+

+

+

+ + +
=

+ + +

+ + +
−

+ + +

           (2.29) 

where  

( ) , 1, 2i i i iv k x c t q i= − + =  and ( )
( )

2
1 2

12 2
1 2

k k
c

k k

−
=

+
          (2.30) 

We now have a fully defined two-soliton solution for KdV Equation (2.2), A 
Wolfram Mathematica program was again used for computation and simulation 
of the two-soliton solution obtained in Equation (2.29). A study of this solution 
is given in Figures 3-8 where 1 1k = , 2 1.5k =  in Equation (2.29). It is clearly 
seen that the Solitons move left to right with the taller faster overtaking the 
shorter-slower soliton. 

2.2.4. The Three-Soliton Solution  
This process is similar to the two-soliton problem except that here we need to 
find 1 2,f f  and 3f  to form the supplementary function truncated from (2.14) 

( ) 2 3
1 2 3, 1 , 0, 4if x t f f f f i= + + + = ≥                (2.31) 

And since we are seeking for a three-soliton solution, we use three-term forms 
of 1f  and 2f  that were successful for the two-soliton case, i.e.  

31 2
1 e e evv vf = + +                       (2.32) 

and  

1 3 2 31 2
2 12 13 23e e ev v v vv vf c c c+ ++= + +                 (2.33) 

where 12 13,c c  and 23c  are coupling constants yet to be determined in terms of 

1 2,k k  and 3k . 
And we shall deal with finding 3f  in the computation process, similar to the 

2f  in the two-soliton case.  
Again, using the perturbation scheme (2.16), we have: 

( )( ) ( )( ) ( )( ) ( )1 1 1 1 11 1 1 1 2 0P D f f P D f P D f P f⋅ + ⋅ = ⋅ + ⋅ = ∂ =     (2.34) 

Thus, 

( ) ( ) ( ) 31 24 2 4 2 4 2
1 1 1 2 2 2 3 3 3e e e 0vv vk k c k k c k k c− + − + − =         (2.35) 

and from (2.35) we obtain the dispersive relation: 
2 , 1, 2,3i ic k i= =                       (2.36) 

Also 

( )( ) ( )( ) ( ) ( )( )2 2 1 1 2 1 11 1 2 0P D f f P D f f P f P D f f⋅ + ⋅ + ⋅ = ∂ + ⋅ =   (2.37) 

which implies, 
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Figure 3. 3D profile of 2-soliton solution. 

 

 
Figure 4. 3D profile of 2-solitons from the top view. 
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Figure 5. Profile of 2 solitons before interactions. 

 

 
Figure 6. Profile of 2 solitons as the taller soliton fast approaches for interactions. 
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Figure 7. Profile of 2 solitons during interactions. 

 

 
Figure 8. Profile of 2 solitons just after interactions. 
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( ) ( )
( )
( )

1 2

1 3

2 3

2 2 3 3
2 12 1 2 12 1 2 12 1 2

2 2 3 3
13 1 3 13 1 3 13 1 3

2 2 3 3
23 2 3 23 2 3 23 2 3

2 12 6 6 e

12 6 6 e

12 6 6 e

v v

v v

v v

P f c k k c k k c k k

c k k c k k c k k

c k k c k k c k k

+

+

+

∂ = + +

+ + +

+ + +

        (2.38) 

and, 

( )( ) ( )
( )
( )

1 2

1 3

2 3

2 2 3 3
1 1 2 1 2 1 2 1

2 2 3 3
1 3 3 1 3 1

2 2 3 3
2 3 2 3 2 3

12 6 6 e

12 6 6 e

12 6 6 e

v v

v v

v v

P D f f k k k k k k

k k k k k k

k k k k k k

+

+

+

⋅ = − −

+ − −

+ − −

         (2.39) 

Adding Equations (2.38) and (2.39), and simplifying we have  

( )
( )

( )
( )

( )
( )

2 22
1 3 2 31 2

12 13 232 2 2
1 2 1 3 2 3

, ,
k k k kk k

c c c
k k k k k k

− −−
= = =

+ + +
        (2.40) 

We see here that all the coupling constants for 2f  are determined, we now 
have to find 3f .  

Again 

( )( ) ( )( )3 3 1 2 2 11 1 0P D f f P D f f f f⋅ + ⋅ + ⋅ + ⋅ =           (2.41) 

Thus, 

( )( ) ( ) ( ) ( ) ( )
( )( )

1 2 3

2 22
1 2 1 3 2 3 1 2 3

3 3
1 2 1 3 2 3

6
1 1 e 0

( )
v v vk k k k k k k k k

P D f f
k k k k k k

+ +− − − + +
⋅ + ⋅ − =

+ + +

(2.42) 

Clearly, Equation (2.42) holds if and only if, 3f  is of the form: 

1 2 3
3 ev v vf B + += ⋅                       (2.43) 

Substituting (2.43) in the first term of Equation (2.42) we have 

( )( )
( )( )( )( ) 1 2 3

3 3

1 2 1 3 2 3 1 2 3

1 1

6 ev v v

P D f f

B k k k k k k k k k + +

⋅ + ⋅

= + + + + +
         (2.44) 

Substituting (2.46) back into (2.44) and simplifying, the constant B is deter-
mined as: 

( ) ( ) ( )
( ) ( ) ( )

2 22
1 2 1 3 2 3

12 13 232 22
1 2 1 3 2 3

k k k k k k
B c c c

k k k k k k

− − −
= = ⋅ ⋅

+ + +
          (2.45) 

Thus, we have successfully obtained 1 2,f f  and 3f  so that the supplemen-
tary function (2.31) by setting 1=  becomes:  

( ) 3 1 3 2 31 2 1 2 1 2 2
12 13 23, 1 e e e e e e ev v v v vv v v v v v vf x t c c c B+ ++ + += + + + + + + +    (2.46) 

Therefore substituting (2.46) in (2.3) we obtain the three-soliton solution as  

( ) ( )
( )

2

2

2 2 ,
,

xx xff f N x t
w

D x tf

−
= =                   (2.47) 

where, 
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( )
( ) ( )

( ) ( )

( ) ( )

1 2 1 2 1

1 3 32 1

2 3 31 2

3 11 2

2 2 2 2 2
1 2 1 2 13 23 12 1 12 2

2 2 2 2 2
1 3 1 3 12 23 13 1 13 3

2 2 2 2 2
2 3 2 3 12 23 23 2 23 3

2 2 2
1 2 3

,

e 2 2 e e e

e 2 2 e e e

e 2 2 e e e

e e e e

v v v v v

v v vv v

v v vv v

v v vv v

N x t

k k k k c c c k c k

k k k k c c c k c k

k k k k c c c k c k

k k k B

+

+

+

+

 = − + − + + 
 + − + − + + 
 + − + − + + 

+ + + +

( )
( )
( )
( )

2 3 1 3 2 31 2

1 2 3

2 2 2
12 3 13 2 23 1

2 2 2
12 1 2 3 1 2 1 3 2 3

2 2 2
13 1 2 3 1 3 1 2 2 3

2 2 2
23 1 2 3 2 3 1 2 1 3

2 2 2
1 2 3 2 3 1 2 1 3

e e e

e 2 2 2

2 2 2

2 2 2

2 2 2

v v v v vv v

v v v

c k c k c k

c k k k k k k k k k

c k k k k k k k k k

c k k k k k k k k k

B k k k k k k k k k

+ + ++

+ +

+ +

+ + + + − −

+ + + + − −

+ + + + − −

+ + + + − −

  




  (2.48) 

and 

( ) ( )3 1 3 2 31 2 1 2 1 2 2
2

12 13 23, 1 e e e e e e ev v v v vv v v v v v vD x t c c c B+ ++ + += + + + + + + +   (2.49) 

and ( )1 1, 1, 2,3i iv k x c t q= − + = ; 
( )
( )

2

2 , , 1, 2,3,i j
ij

i j

k k
c i j i j

k k

−
= = <

+
 and 

12 13 23B c c c= ⋅ ⋅  

Now we have a three-soliton solution for KdV Equation (2.1), a Wolfram 
Mathematica program was again used for computation and simulation of the 
three-solitons solution obtained in Equation (2.49). A study of this solution is 
given in Figures 9-13 respectively, with 1 1k = , 2 2k = , 3 3k =  in equation 
(2.49). The solitons move left to right with the taller faster overtaking the shorter 
slower soliton.  
 

 
Figure 9. 3D profile of 3 solitons before interactions. 
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Figure 10. Profile of 3 solitons before interactions. 

 

 
Figure 11. Profile of 3 solitons during interactions. 
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Figure 12. Profile of 3 solitons just after interactions. 

 

 
Figure 13. Profile of 2 solitons after interactions. 
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2.3. Numerical Solution of the KdV Equation Using Crank-Nicolson 
Method 

Based on the Crank Nicolson scheme [13], we proposed to evaluate each term in 

the Equation (2.0) not only at time level 
1
2

n + 
 

, but also at spatial location 

1
2

i + 
 

 (i.e. at the midpoint of every subinterval) so as to ensure the first order  

time derivative and third order space derivative (dispersive term) terms are both 
suitably centered. This ensures that we will be employing a cell-edge grid, but 
that the spatial finite differences in the scheme will be cell centered [12]. 

1 1
1 1

2 2

n n n n
i i i i

t
w w w w

w
τ τ

+ +
+ +− −

= +                    (2.50) 

1 1 1 1
2 1 1 2 1 1

3 3

3 3 3 3
2 2

n n n n n n n n
i i i i i i i i

xxx
w w w w w w w w

w
h h

+ + + +
+ + − + + −− + − − + −

= +      (2.51) 

To carefully deal with the nonlinear term xwwβ , we assume that the leading 
coefficient wβ  is known so as to escape the nonlinearity in the system of alge-
braic equations that will be obtained in the scheme. We designate it by ŵβ  
and decide how to suitably estimate its value. Reviewing again that we have to  

calculate at time level 
1
2

n + 
 

 and space area 
1
2

i + 
 

, the nonlinear term of 

the Equation (2.0) becomes: 
1 1

1 1 1ˆ ˆ
4

n n n n
i i i i i i

x
w w w w w w

ww
h h

β β
β

+ +
+ + + + − −

= + 
 

          (2.52) 

We note here that the derivatives in (2.52) are centered in time at 
1
2

n + 
 

  

while the ŵ  term is not. This will be estimated using predictor-corrector tech-
nique. Thus the KdV Equation (2.0) becomes a system of algebraic equations: 

( )
1 1

1 11 1 1
1 1

1 1 1 1
2 1 1 2 1 1

3 3

ˆ ˆ
2 2 4

3 3 3 3
0

2 2

n n n n
n n n ni i i i i i
i i i i

n n n n n n n n
i i i i i i i i

w w w w w w
w w w w

h
w w w w w w w w

h h

β β
τ τ

α

+ +
+ ++ + +
+ +

+ + + +
+ + − + + −

− − +
+ + − + −

 − + − − + −
+ + = 

 

   (2.53) 

Estimation in the Nonlinear Term using Predictor-Corrector Technique 
We use a predictor-corrector technique [14] to properly center Crank-Nicolson 

in time between nt  and 1nt + . Thus we approximately obtain 
1
2ˆ ˆ

n
w w

+
=  in this  

procedure: The Crank Nicolson is applied two times in each time step. In the in-
itial step (the predictor step) we essentially substitute ŵ  for nw , the present 
estimated value of w, and call the subsequent new value (after Crank Nicolson is 
applied) 1ˆ nw + , the predicted future value. In the second step we join this  

predicted value with current value to approximately build 
1
2ˆ

n
w

+
 using 

( )
1

12 1
2

n n nw w w
+ += + , then reconstruct iteratively Crank Nicolson again. 
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Thus, the Algorithm for the Crank-Nicolson scheme (2.53) was developed and 
implemented in MATLAB [12] to study the behavior of solitons in the KdV eq-
uation in detail. Figures 14-18 show three solitons computed using this algo-
rithm, computed at 0.01τ = , 0.134α =  and 1β = . 

3. Discussion 

In Figure 1, Figures 5-8, and Figures 10-13, it is seen that Solitons move from 
left to right based on the positive sign effect of the nonlinear term of the KdV 
equation. In addition, Solitons in our simulations are propagated at different 
point locations so that the tallest one is located at the further left, but eventually 
move faster and over take the ones with smaller amplitudes. 

In the numerical computation, The Crank-Nicolson implicit scheme was used 
to compute multi-soliton solutions in KdV equation. In Figures 14-18 we im-
plemented the Crank-Nicolson algorithm in MATLAB, and studied the interac-
tions of three solitons with soliton initial profile ( )2 2

06 sech , 1, 2,3n nk k x x nα − = . 
Computed at 0.01τ = , 0.134α = , 1β = , 1 1.5k = , 2 2k = , 3 2.5k =  and  

initial points 01
3
4
Lx = , 02 4

Lx = , 03 2
Lx =  of propagation at an interval, L, at  

four different times. We note here however that 0.01τ =  is chosen sufficiently 
small because of stability issues (to avoid blowup solutions which we have seen 
for larger time step τ ) in the approximation of the quantity ŵ  in the nonli-
near term, estimated by predictor corrector technique.  

Solitons in the numerical simulations move either left to right or right to left 
depending on the sign (positive or negative) in nonlinear term in KdV equation  
 

 
Figure 14. Profile of 3 solitons comparing Analytical (Blue) and Numerical results (Red). 
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Figure 15. Profile of 3 solitons before interactions. 

 

 
Figure 16. Profile of 3 solitons as the taller soliton fast approaches for interactions. 

 

 
Figure 17. Profile of 3 solitons during interactions of 2 solitons. 
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Figure 18. Profile of 3 solitons after interactions of 2 solitons. 

 
with the tallest one moving faster. It is also observed that as two solitons collide 
with each other they momentarily form a single soliton pulse as represented in 
Figure 7, Figure 11 and Figure 17, afterward they separate and continue with 
their original identities. This formation of a single pulse is however only typical 
of an interaction between solitons with sufficiently large difference in amplitudes. 
It is also noticed that during interactions of solitons in all the simulations carried 
out, the amplitude of the supposed single soliton pulse formed by two or more 
solitons is observed to be smaller than the amplitude of the larger soliton in the 
interactions. For instance, in Figure 14, the larger soliton amplitude is 10 units 
while the amplitude of single-soliton pulse formed is 7.5 units in Figure 16, but 
regains their heights or amplitudes after interactions. This similarly can also be 
seen in Figures 10-13 and Figures 5-8.  

Again there is a phase shift after interactions, since the smaller soliton that is 
in front becomes behind and the larger or taller one becomes further head as 
opposed to linear waves. This confirms that solitons do not obey superposition 
principle but interact nonlinearly with each other. That notwithstanding we 
again checked to prove if superposition of two linear waves will form a soliton 
but this was not possible. Testing initial profile to be superposition of two linear 
waves, only a blowup solution appeared, justifying the nonlinearity in KdV equ-
ation and all models that admit this kind of solution are nonlinear in nature, ba-
lanced with dispersive term. The simulations results were observed with little 
ripples after collision particularly in the numerical computation after critical in-
spections as can be seen in figures16 and 18 but it has no significant effects to 
cause change in them.  

4. Conclusions 

In this paper, we have performed several computations both analytical and nu-
merical. We obtained exact solutions of KdV equation via Hirota Method for 
one, two and three solitons. In order to ease computation process we wrote some 
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simple computer codes to compute the three solutions. To study interactions or 
collision of solitons we preformed simulations using computer symbolic pro-
gramming language—Wolfram Mathematica and MATLAB. 

It was observed how two or more of solitons interact or collide with one 
another. It was fascinating to note in the study of analytical solution and numer-
ical results obtained by Crank-Nicolson scheme that solitons pass through each 
other and come out unchanged. Thus we affirm that solitons indeed collide with 
one another and come without change of properties or identities. The analytical 
and numerical comparison of solutions agreement is very good. 

We also uphold that in physical application, the study of Multi-Soliton solu-
tion in KdV equation gives us a clue why data receivers’ sets such as Radio sets 
get access to (signal transmitted easily during tuning) data and information 
transmission centers say Radio Stations with very high mast antennas faster than 
those with lower mast antennas since solitons of higher amplitude travel faster 
than solitons of shorter amplitude. A bit of noise of such data transmission can 
be perceived when different signal pulses transmitted collide but after, fade away 
as the tall signal pulse moves faster separating itself from the short signal pulse 
both of which however do not dissipate energy and continue with their identity 
and this is typical of all data transmission processes. 
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