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Abstract 
Some new systems of exponentially general equations are introduced and in-
vestigated, which can be used to study the odd-order, non-positive and non-
symmetric exponentially boundary value problems. Some important and in-
teresting results such as Riesz-Frechet representation theorem, Lax-Milgram 
lemma and system of absolute values equations can be obtained as special 
cases. It is shown that the system of exponentially general equations is equiv-
alent to nonlinear optimization problem. The auxiliary principle technique is 
used to prove the existence of a solution to the system of exponentially gener-
al equations. This technique is also used to suggest some new iterative me-
thods for solving the system of the exponentially general equations. The con-
vergence analysis of the proposed methods is analyzed. Ideas and techniques 
of this paper may stimulate further research. 
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1. Introduction 

It is well known [1] [2] [3] that a linear continuous functional on a Hilbert space 
can be represented by an inner product as well as by an arbitrary bifunction Lax- 
Milgram [4]. These results are known as representation theorems and can be 
viewed as the weak formulation of the initial and boundary value problems. One 
can easily that the minimum of the functional [ ]I v  on the Hilbert space H  

[ ] ( ), 2 , ,I v v v f v v H= − ∈                   (1.1) 

i.e. equivalent to finding u H∈  such that  

, , , ,u v f v v H= ∀ ∈                    (1.2) 
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which is known as the Riesz-Frechet representation theorem [1] [2] [3]. This 
result had played a significant role in the development of various branches of 
mathematical and engineering sciences and is continue to inspire new ideas and 
techniques to tackle complicated and complex problems. See [1]-[13] and the 
references therein. From the day of discovery of the representation theorems, 
many important contributions have been made in this direction. In every case, a 
new approach and method is applied to generalize some of these results and the 
ideas they used. 

For a symmetric, positive, bilinear ( ).,.a  and f linear continuous functions, 
the minimum of the functional [ ]J v  defined by  

[ ] ( ) ( ), 2 , ,J v a v v f v v H= − ∈                   (1.3) 

can be characterized by  

( ), , , ,a u v f v v H= ∀ ∈                     (1.4) 

which is known as the Lax-Milgram Lemma [4]. 
If the function f is nonlinear Frechet differentiable, then the minimum of the 

functional [ ]J v  defined by (1.3) can be characterized by  

( ) ( ), , , ,a u v f u v v H′= ∀ ∈                   (1.5) 

where ( )f u′  is the differential of f. Problem of the type (1.5) is called the gen-
eral Lax-Milgram Lemma, introduced and studied by Noor [9]. For motivation, 
formulation, numerical applications, generalizations and novel aspects of the 
general Lax-Milgram Lemma, see [6]-[16]. 

Noor and Noor [10] considered the problem of finding u H∈  such that  

( ) ( ), , , ,a u v A u v v H= ∀ ∈                  (1.6) 

where A is the nonlinear operator. Problem (1.6) is also called the general Lax- 
Milgram Lemma and have been used in finite element analysis of mildly nonli-
near boundary value problems [9] [12]. 

From the problems (1.2), (1.4), (1.5) and (1.6), it is clear that these representa-
tion theorems have variational character, the origin of which can be traced back 
to Euler, Newton and Bernoulli’s brothers.  

For given nonlinear operators , :T A H H→ , consider the problem of find-
ing u H∈  such that  

( ), , , ,Tu v A u v v H= ∀ ∈                  (1.7) 

which is called the general Lax-Milgram Lemma [10]. One can easily show that 
the problems involving difference of two monotone operators, system of abso-
lute value equations, difference of two convex functions, known as DC-problem 
and complementarity problems are special cases of the general Lax-Milgram 
Lemma and Riesz-Frechet representation theorems for different and appropriate 
choice of the operators. Mangasarian et al. [17] considered the systems of abso-
lute value equations. Karamardian [18] had established the equivalence between 
the complementarity problems and variational inequalities. The equivalence in-
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terplay among these different fields enables us to use various techniques, which 
have been developed for variational inequalities, systems of absolute value prob-
lems and complementarity problems for solving the system of general equations 
and vice versa. For recent numerical methods for solving these different prob-
lems, see [4] [5] [7] [9] [10] [12] [14]-[47] and the references therein. 

It has been observed that only the even order, positive and symmetric boun-
dary value problems can be studied. For odd-order, non-positive and non-sym- 
metric, these representation theorems cannot be used. To tackle such problems, 
the operator may be made positive and symmetric with respect to an arbitrary 
map. Noor [30] [31] [32] [33] [34] introduced the general variational inequali-
ties, which are used to study the odd-order and non-symmetric boundary value 
problems. From the general variational inequalities, we can obtain system of 
general equations, see Noor [30] [31] [32] and Noor et al. [36]. To be more pre-
cise, for given nonlinear operators , , :T A g H H→ , consider the problem of 
fining u H∈  such that  

( ) ( ) ( ), , , ,Tu g v A u g v v H= ∀ ∈                 (1.8) 

This system of general equations can be viewed as a weak formulation of the 
non-positive and non-symmetric odd-order boundary value problems. For more 
details, see Filippov [27], Noor [30] [31] [32], Noor et al. [36], Petryshin [28], 
Tonti [29], and the references therein.  

Motivated and inspired by ongoing research in these fields, we introduce and 
study some new systems of exponentially general equations. This new system of 
exponentially general equations can be viewed as a weak formulation of the non- 
positive and non-symmetric exponentially boundary value problems. It is shown 
that the system of absolute value equations, complementarity problems and 
Lax-Milgram Lemma can be obtained as special cases. The auxiliary principle 
technique, which is mainly due to Lions and Stampacchia [39] and Glowinski et 
al. [40], is used to discuss the existence of a solution for the system of exponen-
tially general equations. This approach is also applied to suggest some hybrid 
inertial iterative methods for solving the system of general exponentially equa-
tions. The convergence analysis of these methods is investigated under weaker 
conditions. 

In Section 2, we introduce new system of exponentially general equations and 
discuss their applications. It is shown that the Reisz-Frechet representation 
theorem, Lax-Milgram Lemma and system of absolute value exponentially equa-
tions can be obtained as special cases. As an interesting case, a new inner prod-
uct space is derived. This may be starting point to explore the applications of the 
general inner product space. It is shown that the exponentially third order 
boundary value problems can be studied in the general framework of exponen-
tially general equations. In Section 3, we use the auxiliary principle technique to 
discuss the existence of a solution as well as to suggest some iterative methods 
for solving the general absolute value equations. The convergence criteria of 
proposed iterative methods are considered under weaker conditions. Our me-
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thod of proofs is very simple with other techniques. Several new iterative me-
thods for solving the exponentially general equations are obtained as novel ap-
plications of the results. 

2. Formulations and Basic Facts 

Let H be a Hilbert space, whose norm and inner product are denoted by ⋅  
and ,⋅ ⋅ , respectively. 

For given operators , , :L A g H H→  and a continuous linear functional f, we 
consider the problem of finding u H∈  such that  

( ) ( ) ( ) ( ) ( ), , , ,A uLue e g v g u f g v g u v H+ − = − ∀ ∈         (2.1) 

which is called the system of exponentially general equations. We note that the 
problem (2.1) is equivalent to finding u H∈  such that  

( ) ( ) ( ) ( ), , , .A uLue e g v g u f g v v H+ − = ∀ ∈           (2.2) 

Several important applications are discussed as special cases of the problems 
(2.1) and (2.2):  

1) If 0A = , then problem (2.1) collapses to finding u H∈ , such that  

( ) ( ) ( ) ( ), , ,Lue g v g u f g v g u v H− = − ∀ ∈          (2.3) 

which is called the exponentially general equations. 
Systems of the exponentially general equations of type (2.1), (2.2) and (2.3) 

can be viewed as exponentially general Lax-Milgram lemma. These systems of 
exponentially general equations are called the weak formulations of the odd-or- 
der, non-symmetric and non-positive boundary value problems. We use these 
systems to discuss the unique existence to a solution of the odd-order and non-
symmetric exponentially boundary value problems. This result plays a signifi-
cant role in the study of function spaces and partial differential equations. 

2) If g I= , the identity operator and ( ), ,Lue v a u v= , where ( ).,.a  is bi-
linear continuous form, then problem (2.2) reduces to finding u H∈  such that  

( ) ( ), , , , ,A ua u v e v f v v H+ = ∀ ∈              (2.4) 

which is known as the exponentially general Lax-Milgram Lemma.  
3) If g I= , the identity operator, then problem (2.2) reduced to finding 

u H∈  such that  
( ) , , ,A uLue e v f v v H+ = ∀ ∈               (2.5) 

which is known as the weak formulation of the exponentially boundary value 
problems. 

4) From problem (2.5), we have the problem of finding u H∈  such that  
( ) ,A uLue e f+ =                     (2.6) 

which is called the system of exponentially equations. 
5) If ( ) A uA uLu Lue e e e+ = + , then problem (2.1) reduces to finding u H∈  
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such that  

( ) ( ) ( ) ( ), , , ,A uLue e g v g u f g v g u v H+ − = − ∀ ∈        (2.7) 

which is called the system of exponentially general absolute value equations. 
From (2.16), we find u H∈  such that  

, ,A uLue e f v H+ = ∀ ∈                     (2.8) 

which is called the system of exponentially absolute value equations. 
6) If ( )Lue u= Φ , ( ) ( )A ue N u= , are nonlinear operators, then problem (2.16) 

reduces to finding u H∈  such that  

( ) , ,u N u f v HΦ + = ∀ ∈                   (2.9) 

is called the system of absolute value equations. It is known that the system of 
absolute value equations is equivalent to the complementarity problems. If the 
involved convex set in the variational inequalities is a convex cone, then varia-
tional inequalities are equivalent to the complementarity problems. Conse-
quently, all these problems are equivalent under some suitable conditions. This 
fascinating interplay among these problems can be used in developing several 
numerical methods to solve complicated and complex problems.  

7) For 0A = , L I= , the problem (2.2) collapses to finding u H∈  such 
that  

( ) ( ), , , ,u g v f g v v H= ∀ ∈                (2.10) 

which is called the general Riesz-Frechet representation theorem.  
8) If g I= , then general Riesz-Frechet representation theorem reduces to 

finding u H∈ . Such that  

, , , ,u v f v v H= ∀ ∈                   (2.11) 

which is the celebrated Riesz-Frechet representation theorem, introduced by 
Riesz [2] [3] and Frechet [1] in 1907, independently. It has been shown by Noor 
[8] [9] that the Riesz-Frechet representation theorem has a variational character. 
In fact, u H∈  is solution of (2.11), if and only if, u H∈  is the minimum of 
the energy functional  

[ ] , 2 , , .I v v v f v v H= − ∀ ∈               (2.12) 

It is obvious that the energy function [ ]I v  is a strongly convex functions. 
Consequently it has a unique minimum u H∈ . This equivalent formulation 
can be used to discuss the unique existence of the Riesz-Frechet representation 
theorem, which can be viewed as novel way. 

9) If ( )Lue u= Φ , ( ) ( )A ue N u= , are nonlinear operators, then problem (2.1) 
reduces to finding u H∈ , such that  

( ) ( ) ( ) ( ) ( ) ( ), , , ,u N u g v g u f g v g u v HΦ + − = − ∀ ∈      (2.13) 

which is called the system of general equations, introduced and studied by Noor 
[30].  

10) If g I= , the identity operator, then (2.13) is equivalent to fining u H∈  
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such that  

( ) ( ) , , , ,u N u v u f v u v HΦ + − = − ∀ ∈            (2.14) 

is called the generalized Lax-Milgram Lemma, introduced and studied by Noor 
[30]. 

Remark 2.1. For suitable and appropriate choice of the operators , ,T A g , 
one can obtain various classes of new and known classes of problems as applica-
tion of the problem (2.1). This shows that the system of exponentially general 
equations is a unified one.  

It is known [27] [28] [29] that, if the operator is not symmetric and non-posi- 
tive, then it can be made symmetric and positive with respect to an arbitrary op-
erator. 

Definition 2.1. An operator :T H H→  with respect to an arbitrary opera-
tor :g H H→  is said to be: 

1) Exponentially general symmetric, if,  

( ) ( ), , , , .Tu Tve g v g u e u v H= ∀ ∈  

2) Exponentially general positive, if,  

( ), 0, .Tue g u u H≥ ∀ ∈  

3) Exponentially general coercive (g-elliptic), if there exists a constant 0α >  
such that  

( ) ( ) 2
, , .Tue g u g u u Hα≥ ∀ ∈  

Note that exponentially general coercivity implies exponentially general posi-
tivity, but the converse is not true. It is also worth mentioning that there are op-
erators which are not exponentially general symmetric but exponentially general 
positive. On the other hand, there are g-positive, but not g-symmetric operators. 
Furthermore, it is well-known [27] [28] [29] that, if for a linear operator L, there 
exists an inverse operator 1L−  on ( )R L , the range of L, with ( )R L H= , then 
one can find an infinite set of auxiliary operators g such that the operator T is 
both g-symmetric and g-positive. 

Remark 2.2. If ( )Tue I u= , the identity operator, then Definition (2.1) re-
duces to:  

Definition 2.2. An inner produce ,.,  with respect to an arbitrary operator 
:g H H→  is said to be  

1) General symmetric, if, ( ) ( ), ,u g v g u v= , ,u v H∀ ∈ . 
2) General positive, if, ( ), 0u g u ≥ , u H∀ ∈ . 
3) General positive definite, if there exists a constant 0α >  such that  

( ) ( ) 2
, , .u g u g u u Hα≥ ∀ ∈  

Motivated by the Remark (2.2), we can define the general inner product space 
with respect to an arbitrary function g such that 

1) ( ), 0u g u ≥ , and ( ), 0u g u = , ⇔  ( )u g u= , ,u v H∀ ∈ . 
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2) ( ) ( ), ,u g v g u v= , ,u v H∀ ∈ . 
3) ( ) ( ) ( ) ( ), , ,u g v g w u g v u g w+ = + , , ,u v w H∀ ∈ .  
Also, we can obtain the result for general inner product spaces, that is,  

( ) ( ) ( ){ }2 2 222 , , ,u g v u g v u g v u v H+ + − = + ∀ ∈     (2.15) 

which is known as the parallelogram laws and can be used to characterize the 
general Hilbert space. 

It is interesting problem to consider the completeness of the general inner 
product spaces and explore their properties in fixed-point theory, differential 
equations and optimization theory. 

If the operators ,L A  are linear, general positive, general symmetric and the 
operator g is linear, then the problem (2.1) is equivalent to finding a minimum 
of the function [ ]I v  on H, where  

[ ] ( ) ( ) ( ), 2 , , ,A vLvI v e e g v f g v v H= + − ∀ ∈           (2.16) 

which is a nonlinear programming problem and can be solved using the known 
techniques of the optimization theory. 

We now consider the problem of finding the minimum of the functional 
[ ]I v , defined by (2.16). For the sake of completeness and to convey the main 

ideas, we include all the details.  
Theorem 2.1. Let the operators , :L A H H→  be linear, exponentially gen-

eral symmetric and exponentially general positive. If the operator :g H H→  
is linear, then the function u H∈  minimizes the functional [ ]I v , defined by 
(2.16), if and only if,  

( ) ( ) ( ) ( ) ( ), , , .A uLue e g v g u f g v g u v H+ − = − ∀ ∈       (2.17) 

Proof. Let u H∈  satisfy (2.17). Then, using the exponentially general posi-
tivity of the operators ,L A , we have  

( ) ( ) ( ) ( ) ( ), , , .A vLve e g v g u f g v g u v H+ − ≥ − ∀ ∈       (2.18) 

,u v H∀ ∈ , 0ε ≥ , let ( )v u v u Hε ε= + − ∈ . Taking v vε=  in (2.18) and 
using the fact that g is linear, we have  

( ) ( ) ( ) ( ) ( ), , .A vLve e g v g u f g v g uεε
ε ε+ − ≥ −            (2.19) 

We now define the function  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
( ) , ,

2
, ,

L v u A v uLu A uh e e g v g u e e g v g u

f g v g u

εε ε

ε

− −= + − + + −

− −
 (2.20) 

such that  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,

, ,

A uLu

L v u A v u

h e e g v g u

e e g v g u f g v g u

ε

ε − −

′ = + −

+ + − − −
0≥ , by (2.19). 

Using the g symmetry of ,L A  we see that ( )h ε  is an increasing function 
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on [ ]0,1  and so ( ) ( )0 1h h≤  gives us  
( ) ( ) ( ) ( ) ( )( ), 2 , , 2 , ,A uLu Lv A ve e g u f g u e e g v f g v+ − ≤ + −  

that is,  

[ ] [ ], ,I u I v v H≤ ∀ ∈  

which shows that u H∈  minimizes the functional [ ]I v , defined by (2.16). 
Conversely, assume that u H∈  is the minimum of [ ]I v , then  

[ ] [ ], .I u I v v H≤ ∀ ∈                      (2.21) 

Taking ( ) , ,v v u v u H u v Hε ε= ≡ + − ∈ ∀ ∈  in (2.21), we have [ ] [ ].I u I vε≤  
Using (2.16), g-positivity and the linearity of ,L A , we obtain  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

, ,
2

, ,

L g v g u A g v g uA uLue e g v g u e e g v g u

f g v g u

ε − −+ − + + −

≥ −
 

from which, as 0ε → , we have  
( ) ( ) ( ) ( ) ( ), , , .A uLue e g v g u f g v g u v H+ − ≥ − ∀ ∈       (2.22) 

Replacing ( ) ( )g v g u−  by ( ) ( )g u g v−  in inequality (2.22), we have  
( ) ( ) ( ) ( ) ( ), , , .A uLue e g v g u f g v g u v H+ − ≤ − ∀ ∈      (2.23) 

From (2.22) and (2.23), it follows that u H∈  satisfies  
( ) ( ) ( ) ( ) ( ), , , ,A uLue e g v g u f g v g u v H+ − = − ∀ ∈       (2.24) 

the required result (2.17).                                           ☐ 
We now show that the third order exponentially boundary value problems can 

be studied via problem (2.1). 
Example 2.1. Consider the third order exponentially boundary value problem 

of finding u  such that  

( ) [ ]
3

3
d
d d , , ,

d

u
x ve f x x a b

x
− + = ∀ ∈                  (2.25) 

with boundary conditions  
( ) ( ) ( )0, 0, 0,u a u a u b′ ′= = =                  (2.26) 

where ( )f x  is a continuous function. This problem can be studied in the gen-
eral framework of the problem (2.1) To do so, let  

[ ] ( ) ( ) ( ){ }2
0 , : 0, 0, 0H u H a b u a u a u b′ ′= ∈ = = =  

be a Hilbert space, see [5]. One can easily show that  

[ ]

( ) ( ) ( )

3

3
d

2d
0

22

2

d d d d dd d , ,
d d d d d

d d d d d
d d dd

, , , 0,

v
b b bx
a a a

b b b

a a a

Lv Au

v v v v ve x dx f x H a b
x x x x x

v v v vf x
x x xx

e g v e g v f g v

− + − ∀ ∈

 
= + − 

 

= + − =

∫ ∫ ∫

∫ ∫ ∫  

from which, it follows that  
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( ) ( ) ( ), , , .Lv Aue g v e g v f g v+ =  

This is the weak formulation of the third order exponentially boundary (2.25).  
Definition 2.3. An operator :L H H→  is said to be; 
1) Strongly exponentially monotone, if there exists a constant 0α > , such 

that  
2, , , .Lu Lve e u v u v u v Hα− − ≥ − ∀ ∈  

2) Exponentially Lipschitz continuous, if there exists a constant 0β > , such 
that  

, , .Lu Lve e u v u v Hβ− ≤ − ∀ ∈  

3) Exponentially monotone, if  

, 0, , .Lu Lve e u v u v H− − ≥ ∀ ∈  

4) Firmly strongly exponentially monotone, if  
2, , , .Lu Lve e u v u v u v H− − ≥ − ∀ ∈  

We remark that, if the operator L is both strongly exponentially monotone 
with constant 0α >  and exponentially Lipschitz continuous with constant 

0β > , respectively, then from (1) and (2), it follows that α β≤ . 

3. Main Results 

In this section, we use the auxiliary principle technique, the origin of which can 
be traced back to Lions and Stampacchia [39] and Glowinski et al. [40], as de-
veloped by Noor [30] [31] [32], Noor et al. [13] [14] [15] [16] [22] [32] and Zhu 
et al. [41]. The main idea of this technique is to consider an auxiliary problem 
related to the original problem. This way, one defines a mapping connecting the 
solutions of both problems. To prove the existence of solution of the original 
problem, it is enough to show that this connecting mapping is a contraction 
mapping and consequently has a unique solution of the original problem. In re-
cent several inertial type algorithms have been analyzed for solving variational 
inequalities and optimization problems, which are mainly due to Polyak [46]. 
These methods help us to improve convergence rate of the iterative methods. In 
this section, we use the auxiliary principle technique to suggest some new iner-
tial iterative methods for solving the system of exponentially general equations. 
These inertial methods do not involve the evaluations of the projection me-
thods, resolvent methods and their variant forms. This is advantage of this 
technique. 

We now consider the problem of the uniqueness and existence of the solution 
of (2.1) using the technique of the auxiliary principle approach, which is subject 
of our nest result.  

Theorem 3.1. Let the operator L be a strongly exponentially monotone with 
constant 0α >  and exponentially Lipschitz continuous with constant 0β > , 
respectively. Let the operator g be firmly strongly monotone and Lipschitz con-
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tinuous with constant 1β . If the operator A is Lipschitz continuous with con-
stant 0λ >  and there exists a constant 0ρ >  such that  

( ) ( ) ( )2 2 2

2 2 2 2

1 21 ,
α ν β λ ν να νρ

β λ β λ

+ − − − −+ −
− <

− −
          (3.1) 

( ) ( )2 21 2 , 1 , 1,α ν β λ ν ν ρλ ν ν> − + − − < − <           (3.2) 

where  
2

1 1ν β= −                          (3.3) 

then the problem (2.1) has a solution.  
Proof. We use the auxiliary principle technique to prove the existence of a so-

lution of (2.1).  
For a given u H∈ , consider the problem of finding w H∈  such that,  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, ,

, , ,

A uLue e g v g w g w g u g v g w

f g v g w v H

ρ

ρ

+ − + − −

= − ∀ ∈
     (3.4) 

which is called the auxiliary problem, where 0ρ >  is a constant. It is clear that 
(3.4) defines a mapping w connecting the both problems (2.1) and (3.4). To 
prove the existence of a solution of (2.1), it is enough to show that the mapping 
w defined by (3.4) is a contraction mapping. 

Let 1 2w w H≠ ∈  (corresponding to 1 2u u≠ ) satisfy the auxiliary problem 
(3.4). Then  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

11
1 1 1 1

1

, ,

, , ,

A uLue e g v g w g w g u g v g w

f g v g w v H

ρ

ρ

+ − + − −

= − ∀ ∈
   (3.5) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

22
2 2 2 2

2

, ,

, , .

A uLue e g v g w g w g u g v g w

f g v g w v H

ρ

ρ

+ − + − −

= − ∀ ∈
  (3.6) 

Taking 2v w=  in (3.5) and 1v w=  in (3.6) and adding the resultant, we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 21 2

2
1 2 1 2 1 2

1 2 1 2

,

, .A u A uLu Lu

g w g w g w g w g w g w

g u g u e e e e g w g wρ ρ

− = − −

= − − − + − −
  (3.7) 

From (3.7), we have  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

2
1 2

( ) ( )
1 2 1 2

Lu Lu A u A u

g w g w

g u g u e e e e g w g wρ ρ

−

≤ − − − + − −
 

from which, using the exponentially Lipschitz continuity of the operator A with 
constant 0λ > , it follows that  

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 21 2

1 2

1 2 1 2

1 2

1 2 1 2 1 2 1 2 .

A u A uLu Lu

Lu Lu

w w g w g w

g u g u e e e e

u u g u g u u u e e u u

ρ ρ

ρ ρλ

− ≤ −

≤ − − − + −

≤ − − − + − − − + −

  (3.8) 
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Using the strongly exponentially monotonicity and exponentially Lipschitz 
continuity of the operator L with constants 0α >  and 0β > , we have  

( )
( ) ( )

( )

1 2

1 2 1 2

1 2 1 2 1 2

2

1 2

1 2 1 2

2
1 2 1 2 1 2

22 2
1 2

,

, 2 , ,

1 2 .

Lu Lu

Lu Lu Lu Lu

Lu Lu Lu Lu Lu Lu

u u e e

u u e e u u e e

u u u u e e u u e e e e

u u

ρ

ρ ρ

ρ ρ

ρα ρ β

− − −

= − − − − − −

= − − − − − + − −

≤ − + −

 (3.9) 

Similarly, using the strongly firmly monotonicity and Lipschitz continuity of 
the operator g with constant 1β , we have  

( ) ( )( ) { }2 22
1 2 1 2 1 1 21 .u u g u g u u uβ− − − ≤ − −         (3.10) 

Combining (3.8), (3.9) and (3.10), we have  

( )2 2 2
1 2 1 1 2 1 21 1 2 ,w w u u u uβ ρλ ρα ρ β θ− ≤ − + + − + − = −  (3.11) 

where  

2 2 2
1

2 2

1 1 2

1 2 ,

θ β ρλ ρα ρ β

ν ρλ ρα β ρ

= − + + − +

= + + − +
 

and  

2
1 1.ν β= −  

From (3.13) and (3.2), it follows that 1θ < , so the mapping w is a contraction 
mapping and consequently, it has a fixed point ( )w u u H= ∈  satisfying the 
problem (2.1).                                                    ☐ 

Remark 3.1. We point out that the solution of the auxiliary problem (3.4) is 
equivalent to finding the minimum of the functional [ ]I w , where  

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , , ,
2

A uLuI w g w g u g w g u e e f g w g uρ= − − − + − −  

which is a differentiable convex functional associated with the inequality (3.4), if 
the operator g is differentiable. This alternative formulation can be used to sug-
gest iterative methods for solving the general absolute value equations. This aux-
iliary functional can be used to find a kind of gap function, whose stationary 
points solves the problem (2.2).  

Iterative Methods  
We now use the auxiliary principle to suggest some iterative methods for 

solving the system of exponentially general Equations (2.1). It is clear that, if 
w u= , then w is a solution of (2.1). This observation shows that the auxiliary 
principle technique can be used to propose the following iterative method for 
solving the system of general Equations (2.1). 

Algorithm 3.1. For a given initial value 0u , compute the approximate solu-
tion 1nx +  by the iterative scheme  
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1 1 1

1

, ,

, , .

nn A uLu
n n n n

n

e e g v g u g u g u g v g u

f g v g u v H

+ + +

+

+ − + − −

= − ∀ ∈
 

We again use the auxiliary principle technique to suggest an implicit method 
for solving the problem (2.1). 

For a given u H∈ , consider the problem of finding w H∈  such that,  
( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

,

,

, , ,

L w u w A w u we e g v g w

g w g u g u g u g v g w

f g v g w v H

ζ ζρ

η

ρ

+ − + −+ −

+ − + − −

= − ∀ ∈

          (3.12) 

which is called the auxiliary problem, where 0η ≥ , 0ζ ≥ , are parameter. We 
note that the auxiliary problems (3.4) and (3.12) are quite different.  

Clearly w u H= ∈  is a solution of (2.1). This observation allows us to sug-
gest the following iterative method for solving the problem (2.1).  

Algorithm 3.2. For given initial values 0 1,u u , compute the approximate solu-
tion 1nx +  by the iterative scheme  

( )( ) ( )( )( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( )

1 1 1 1
1

1 1

1

,

, , ,

n n n n n nL u u u A u u u
n

n n n n

n

e e g u

g u g u g u g v g u

f g v g u v H

ζ ζρ

η

ρ

+ + + ++ − + −
+

− +

+

+ +

− + − −

= − ∀ ∈

 

which is an inertial implicit method. 

If 1
2

ζ = , then Algorithm 3.2 reduces to. 

Algorithm 3.3. For given initial values 0 1,u u , compute the approximate solu-
tion 1nx +  by the iterative scheme  

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

1 1
2 2

1

1 1

1

,

, , ,

n n n nu u u u
L A

n n

n n n

n

e e g u g u

g u g u g v g u

f g v g u v H

ρ

η

ρ

+ ++ +   
   
   

+

− +

+

 
 + + −
 
 

+ − −

= − ∀ ∈

 

which is an inertial midpoint implicit method. 
From Algorithm 3.2, we can obtain the following iterative method for solving 

(2.1).  
Algorithm 3.4. For a given initial value 0 1,u u  compute the approximate so-

lution 1nx +  by the iterative scheme  

( ) ( ) ( ) ( )( )
( )( ) ( )( )( )1 1 1 1

1 1

.n n n n n n

n n n n

L u u u A u u u

g u g u g u g u

e e fζ ζ

η

ρ + + + +

+ −

+ − + −

= − −

− + −
 

This is a new implicit method for solving the system of exponentially general 
Equations (2.1). 
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To implement the implicit method (3.2) with ( ) ( )( )1 0n ng u g uη −− = , one 
uses the explicit method as a predictor and implicit method as a predictor. Con-
sequently, we obtain the two-step method for solving the problem (2.1).  

Algorithm 3.5. For a given initial value 0u , compute the approximate solu-
tion 1nu +  by the iterative schemes  

( ) ( ) ( ) ( ) ( )

( ) ( )

,

, , ,

nn A uLu
n n n

n

e e g y g u g v g u

f g v g y v H

ρ ρ

ρ

+ + − −

= − ∀ ∈
 

( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
1 ,

, , ,

n n n n n nL y u y A y u y
n n n

n

e e g u g u g v g y

f g v g y v H

ζ ζρ ρ

ρ

+ − + −
++ + − −

= − ∀ ∈
 

which is known as two-step iterative method for solving problem (2.1).  
Based on the above arguments, we can suggest a new two-step (predictor- 

corrector) method for solving the system of exponentially general Equations 
(2.1).  

Algorithm 3.6. For a given initial value 0u , compute the approximate solu-
tion 1nx +  by the iterative schemes  

( ) ( ) ( )( )nn A uLu
n ng y g u e e fρ= − + −  

( ) ( ) ( )( ) ( )( )( )1 , 0,1, 2,n n n n n nL y u y A y u y
n ng u g u e e f nζ ζρ + − + −
+ = − + − =   

We again apply the auxiliary principle technique to suggest another iterative 
method for solving (2.1). 

For a given u H∈ , consider the problem of finding w H∈  such that,  
( )( ) ( ) ( ) ( )

( ) ( )

, ,

, , ,

A wLwe e g v g w w u u u v w

f g v g w v H

ρ ξ

ρ

+ − + − + − −

= − ∀ ∈
     (3.13) 

which is called the auxiliary problem, where 0, 0ρ ξ> >  are constants. It is 
clear that (3.4) defines a mapping w connecting the both problems (2.1) and 
(3.13).  

If w u= , then w is a solution of (2.1). This observation is used to propose the 
iterative method.  

Algorithm 3.7. For given initial values 0 1,u u  compute the approximate solu-
tion 1nu +  by the iterative scheme  

( ) ( ) ( ) ( )

( ) ( )

11
1 1 1 1

1

, ,

, , ,

nn A uLu
n n n n n n

n

e e g v g u u u u u v u

f g v g u v H

ρ ρ ξ

ρ

++
+ + − +

+

+ − + − + − −

= − ∀ ∈
 (3.14) 

which is an inertial implicit method. 
If 0ξ = , then Algorithm 3.7 reduces to  
Algorithm 3.8. For a given initial value 0u , compute the approximate solu-

tion 1nu +  by the iterative scheme  
( ) ( ) ( )

( ) ( )

11
1 1 1

1

, ,

, , ,

nn A uLu
n n n n

n

e e g v g u u u v u

f g v g u v H

ρ ρ

ρ

++
+ + +

+

+ − + − −

= − ∀ ∈
      (3.15) 
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which is an inertial implicit method. 
For the convergence analysis of the iterative methods, we need the following 

concept.  
Definition 3.1. The operator L is said to be pseudo exponentially general 

monotone with respect to A, if  
( ) ( ) ( ) ( ) ( ), , , ,A uLue e g v g u f g v g u v H+ − = − ∀ ∈  

⇒  
( ) ( ) ( ) ( ) ( ), , , .A vLve e g v g u f g v g u v H+ − ≥ − ∀ ∈  

We now consider the convergence analysis of Algorithm 3.8, which is the 
main motivation of our next result.  

Theorem 3.2. Let u H∈  be a solution of problem (2.1) and let 1nu +  be the 
approximate solution obtained from Algorithm 3.8. If L is an exponentially mo-
notone operator with respect to ( ).A , then  

2 2 2
1 1 .n n n nu u u u u u+ +− ≤ − − −                 (3.16) 

Proof. Let ( ):u H g u H∈ ∈  be a solution of (2.1). Then  
( ) ( ) ( ) ( ) ( ), , , ,A uLue e g v g u f g v g u v H+ − = − ∀ ∈  

which implies that  
( ) ( ) ( ) ( ) ( ), , , ,A vLve e g v g u f g v g u v H+ − ≥ − ∀ ∈       (3.17) 

since the operator L is an exponentially monotone operator with respect to λ ⋅ . 
Taking 1nv u +=  in (3.17) and v u=  in (3.15), we have  

( ) ( ) ( ) ( ) ( )11
1 1, , , ,nn A uLu

n ne e g u g u f g u g u v H++
+ ++ − ≥ − ∀ ∈   (3.18) 

and  
( ) ( ) ( )

( ) ( )

11
1 1 1

1

, ,

, , .

nn A uLu
n n n n

n

e e g u g u u u u u

f g u g u v H

ρ ρ

ρ

++
+ + +

+

+ − + − −

= − ∀ ∈
    (3.19) 

From (3.19), we have  

( )( ) ( ) ( ) ( ) ( )11

1 1

1 1

,

, , 0,nn

n n n

A uLu
n n

u u u u

e e g u g u f g u g uρ ρ++

+ +

+ +

− −

≥ + − − − ≥
  (3.20) 

where we have used (3.18). 
Using the relation 2 2 22 ,a b a b a b= + − − , ,a b H∀ ∈ , the Cauchy in-

equality and from (3.20), we have  
2 2 2

1 1 ,n n n nu u u u u u+ +− ≤ − − −  

which is the required (3.16).                                         ☐ 
Theorem 3.3. Let u H∈  be a solution of (2.1) and let 1nu +  be the approx-

imate solution obtained from Algorithm 3.2. Let L be an exponentially mono-
tone operator with respect to A and the operator g is continuous. Then  
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1lim .nn
u u+→∞

=                          (3.21) 

Proof. Let u H∈  be a solution of (2.1). From (3.16), it follows that the se-
quence { }nu u−  is noncreasing and consequently the sequence { }nu  is 
bounded. Also, from (3.16), we have  

2 2
1 0

0
,n n

n
u u u u

∞

+
=

− ≤ −∑  

which implies that  

1 1lim 0 lim 0.n n n nn n
u u u u+ +→∞ →∞

− = ⇒ − =              (3.22) 

Let û  be a cluster point of { }nu  and the subsequences { }jnu  of the se-
quence { }nu  converges to u H∈ . Replacing nu  by 

jnu  in (3.15), taking the 
limit as jn →∞  and using (3.22), we have  

( ) ( ) ( ) ( ) ( )ˆˆ ˆ ˆ, , , ,A uLue e g v g u f g v g u v H+ − = − ∀ ∈  

which shows that û H∈  satisfies (2.1) and  
2 2

1 ˆ .n n nu u u u+ − ≤ −  

From the above inequality, it follows that the sequence { }nu  has exactly one 
cluster point û  and ˆlimn nu u→∞ = .                                  ☐ 

The auxiliary principle technique is used to suggest another iterative method 
for solving (2.1). 

For a given u H∈ , enwinding w H∈  such that,  
( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

( ) ( )( ) [ ]

1 1 , 1

1 , 1

, 1 , , 0,1 ,

L w u A w ue e g v g w u

g w u g u g v g w u

f g v g w u v H

ξ ξ ξ ξρ ξ ξ

ξ ξ ξ ξ

ρ ξ ξ ξ

− + − ++ − − +

+ − + − − − +

= − − + ∀ ∈ ∈

       (3.23) 

which is called the auxiliary problem, where 0ρ > , 0ξ ≥ , are constants. It is 
clear that (3.4) defines a mapping w connecting the both problems (2.1) and 
(3.13). Clearly, w u=  is a solution of the problem (2.1). This allows us to sug-
gest the inertial iterative method.  

Algorithm 3.9. For a given 1 2,u u H∈ , calculate the approximate solution 

1nu +  by the iterative scheme  
( )( ) ( )( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

( ) ( )( ) [ ]

1 1
1

1 1

1 1

1

, 1

1 , 1

, 1 , , 0,1

n n n nL u u A u u
n n

n n n n n

n n

e e g v g u u

g u u g u g v g u u

f g v g u u v H

ξ ξ ξ ξρ ξ ξ

ξ ξ ξ ξ

ρ ξ ξ ξ

− −− + − +

− −

−

+ − − +

+ − + − − − +

= − − + ∀ ∈ ∈

 

This is an inertial type implicit method for solving the problem (2.1), which is 
equivalent to the following two-step method.  

Algorithm 3.10. For a given 1 1,u u H∈ , calculate the approximate solution 

1nu +  by the iterative schemes  

( ) ( ) 11n n ng y u uξ ξ −= − +  
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( ) ( ) ( )( ) [ ]1 , 1, 2, , 0,1nn A yLy
n ng u g u e e f nρ ρ ξ+ = − + − = ∈  

We now use the auxiliary principle technique involving the Bregman function 
to suggest and analyze the proximal method for solving exponentially general 
Equations (2.1). For the sake of completeness and to convey the main ideas of 
the Bregman distance functions, we recall the basic concepts and applications. 

The Bregman distance function is defined as  

( ) ( )( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) 2

, ,

,

B u w E g u E g w E g w g u g w

g u g wν

′= − − −

≥ −
     (3.24) 

using the strongly general convexity with modulus ν .  
The function ( ),B u w  is called the general Bregman distance function asso-

ciated with general convex functions. 
For g I= , we obtain the original Bregman distance function  

( ) ( ) ( ) ( ) 2, , .B u w E u E w E w u w u wν′= − − − ≥ −  

It is important to emphasize that various types of convex function E gives dif-
ferent Bregman distance. 

For a given u H∈ , find w H∈  satisfying the auxiliary system of exponen-
tially general Equations (2.1).  

( )( ) ( )( )( ) ( )( ) ( )( ) ( ) ( )

( ) ( )

,

, , ,

L w u w A w u we e E g w E g u g v g w

f g v g w v H

ζ ζρ

ρ

+ − + − ′ ′+ + − −

= − ∀ ∈
 

where ( )E u′  is the differential of a strongly general convex function E.  
Note that, if w u= , then w is a solution of (2.1). Thus, we can suggest the 

following iterative method for solving (2.1).  
Algorithm 3.11. For a given 0u H∈ , calculate the approximate solution by 

the iterative scheme  
( )( ) ( )( )( ) ( )( ) ( )( ) ( ) ( )

( ) ( )

1 1 1 1
1 1

1

,

, , ,

n n n n n nL u u u A u u u
n n n

n

e e E g u E g u g v g u

f g v g u v H

ζ ζρ

ρ

+ + + ++ − + −
+ +

+

′ ′+ + − −

= − ∀ ∈

(3.25) 

which is known as the proximal point method. 
For 0ζ =  and 1ζ = , Algorithm 3.11 reduces to:  
Algorithm 3.12. For a given 0u H∈ , calculate the approximate solution 

1nu +  by the iterative scheme  

( )( ) ( )( ) ( )( ) ( ) ( )

( ) ( )

11
1 1

1

,

, , ,

nn A uLu
n n n

n

e e E g u E g u g v g u

f g v g u v H

ρ

ρ

++
+ +

+

′ ′+ + − −

= − ∀ ∈
 

which is known as the proximal implicit proximal method.  
Algorithm 3.13. For a given 0u H∈ , calculate the approximate solution 

1nu +  by the iterative scheme  
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( )( ) ( )( ) ( )( ) ( ) ( )

( ) ( )
1 1

1

,

, , ,

nn A uLu
n n n

n

e e E g u E g u g v g u

f g v g u v H

ρ

ρ

+ +

+

′ ′+ + − −

= − ∀ ∈
 

which is an explicit method. 

For 1
2

ζ = , Algorithm 3.11 collapses to:  

Algorithm 3.14. For a given 0u H∈ , calculate the approximate solution by 
the iterative scheme  

( )( ) ( )( ) ( ) ( )

( ) ( )

1 1
2 2

1 1

1

,

, , ,

n n n nu u u u
L A

n n n

n

e e E g u E g u g v g u

f g v g u v H

ρ

ρ

+ ++ +   
   
   

+ +

+

 
  ′ ′+ + − −
 
 

= − ∀ ∈

 (3.26) 

which is known as the mid-point proximal method. 
Remark 3.2. We would like to emphasize that for appropriate choice of the 

operators , ,L A g  one can suggest and analyze several new iterative methods 
for solving system of exponentially general equations and related problems. The 
implementation and comparison with other techniques need further efforts.  

4. Conclusion 

In this paper, we have considered a new class of system of exponentially general 
equations involving three operators. Several important problems such as system 
of absolute value equations, complementarity problems, Lax-Milgram Law and 
Reisz-Frechet representation theorem can be obtained as special cases. It is 
shown that the third order exponentially boundary value problems can be stu-
died in the framework of general equations. We have used the auxiliary principle 
technique to study the existence of the unique solution of the system of general 
equations. Some new hybrid inertial iterative methods are suggested for solving 
the system of exponentially general equations using the auxiliary principle tech-
nique. The convergence analysis of these iterative methods is investigated under 
suitable conditions. This is a new approach for solving the system of exponen-
tially general equations, see [48] [49] [50] [51]. We have only discussed the 
theoretical aspects of the proposed methods. The implementation and compari-
son with other numerical methods is the subject of the future research efforts. 
We would like to emphasize that the results obtained and discussed in this paper 
may motivate novel applications and extensions in these areas. 
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