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Abstract 
Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high 
quality protein for human consumption and livestock. The objective of this 
work was to develop near-infrared spectroscopy (NIRS) prediction models to 
estimate protein content in cowpea. A total of 116 cowpea breeding lines with a 
wide range of protein contents (19.28 % to 32.04%) were selected to build the 
model using whole seed and ground seed samples. Partial least-squares dis-
criminant analysis (PLS-DA) regression technique with different pre-treatments 
(derivatives, standard normal variate, and multiplicative scatter correction) 
were carried out to develop the protein prediction model. Results showed: 1) 
spectral plots of both the whole seed and ground seed showed higher spectral 
scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects pre-
diction accuracy for bot whole seed and ground seed samples, 3) prediction 
using ground seed samples (0.64 < R2 < 0.85) is better than the whole seed 
(0.33 < R2 < 0.78), and 4) the data pre-processing second derivative with 
standard normal variate has the best prediction (R2_whole seed = 0.78, 
R2_ground seed = 0.85). The results will be of interest in cowpea breeding 
programs aimed at improving total seed protein content. 
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1. Introduction 

Legumes are very important basic foods in the daily diet for human beings be-
cause they provide proteins, starch, fiber, fat, vitamins and minerals that are es-
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sential for human’s health. Legumes contribute to the sustainable improvement 
of the environment due to biological nitrogen fixation ability and positive effects 
on the soil, and play a major role in resilience to current climate changes [1] [2]. 
These attributes can help to attain nutritional and food security among low in-
come developing nations of the world. 

Cowpea (Vigna unguiculata L. Walp.) is one such nutritious, multipurpose, 
underutilized leguminous crop grown worldwide to provide protein for human 
consumption and animal feed that has the potential to alleviate protein-calorie 
malnutrition [3]. Among underutilized legume crops, cowpea is the most nutri-
tionally dense and climate resilient, as it is can be grown under harsh conditions 
such as drought and sandy soils and also amenable to diverse cropping systems 
[4] [5]. Cowpea can be used at all stages of growth [6] [7]. The green seeds can 
be used fresh or canned or frozen for humans. The young leaves, pods, and peas 
contain vitamins and minerals, which are used for human consumption and 
animal feed. Cowpea can be consumed as dry seeds, canned or frozen food [8], 
and as milling flour in baked goods [9]. In addition, cowpea has been used as an 
alternative to soybean for people who are allergic to soybean protein [10]. 

Cowpea is rich in protein (24%), dietary fiber (11%), carbohydrates (60/100 g) 
and potassium (1112 mg/100 g) while low in lipids (<2%) and sodium (16 
mg/100 g) [11]. These nutrients make cowpea an important nutritional food in 
the human diet. A number of bio-functional non-nutrients are present in dry 
cowpea seeds like phytates, flavonoids, tannins and polyphenols imparting 
anti-oxidant properties [12]. Cowpea has gained more attention recently from 
consumers and researchers worldwide as a result of its exerted health beneficial 
properties, including anti-diabetic [13], anti-cancer [14], anti-inflammatory [15], 
anti-hypertensive and hypocholesterolemic properties [16]. Furthermore, con-
sumption of cowpea protein has been linked to reducing plasma low-density 
lipoprotein [17] with the low glycemic index carbohydrates [18]. 

Despite the fact that cowpea seeds, leaves, and other plant parts have signifi-
cant value for population health, food, and feed for underdeveloped nations, it is 
one of the least used legume crop in comparison to other legumes such as soy-
beans and it has received less attention from international researchers [19]. In 
this regard, research has been undertaken in various regions of the world to 
study the nutritional composition of cowpea seeds and leaves. Significant vari-
ability in the nutritional attributes exists among cowpea germplasm [20], and the 
variability in biochemical traits could help to develop new cultivars with novel 
traits combating malnutrition. The development of elite cowpea cultivars re-
quires a significant amount of phenotyping efforts in order to capture possible 
variation in trait of interest among breeding lines. However, doing so can be la-
bor intensive, time consuming, and might require extensive expertise. Evaluating 
total seed protein content is one of the routine work in a cowpea breeding pro-
gram. Total seed Protein content is traditionally evaluated using standard wet 
chemistry known as the Kjeldhal method [18]. However, this method can be ex-
pensive, laborious and time consuming when many samples are involved. The 
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use of an alternate, rapid and non-destructive approach such as Near-Infrared 
Spectroscopy (NIRS) has been proven to be a better technique to evaluate total 
seed protein in crops such as mungbean [21], faba bean [22], soybean [23], 
chickpea and pea [24] and other crops [25]. However, this technique has not 
been fully investigated in cowpea. Previous research showed that NIRS model 
accuracy varied between breeding programs sharing similar genetic background 
[26]. Therefore, developing NIRS models for specific cowpea breeding programs 
is required.  

NIRS is a non-destructive technique that has been used to predict multi-nu- 
tritional traits in rice [27], pearl millet [28] and glucose and protein in the mixed 
flour of tuber [29]. The technique is considered low-cost and rapid to quantita-
tively assess biochemical composition in crop plants [30] [31]. It has gained 
popularity in recent years as a tool for the analysis of moisture, protein, fat, 
starch, fiber, etc., in the food industry that includes cereals, fruits, vegetables, etc. 
in the food industry [32]. 

Near-infrared (NIR) spectroscopy is a technique that collects the reflected 
light of a sampled material in the near-infrared region of the electromagnetic 
spectrum that extends from about 780 to 2500 nm. The infrared spectrometer, 
which is the instrument used to scan for NIRS, emits the full spectrum of infra-
red wavelengths, which penetrate the sample, with certain wavelengths absorbed 
by specific chemical bonds present within the sample. The amount of light en-
ergy absorption is directly proportional to the concentration or quantity of 
bonds present in the sample. From the reflected or transmitted wavelengths, the 
identity and quantity of the compounds present in the sample may be deduced 
[33]. 

In addition, NIRS can be used to analyze samples in the solid, liquid or gas 
state, at macro or microscopic level [34]. Quick measurements of NIRS in legu-
minous crop have been applied for raising crop quality and detecting adultera-
tion in bean products. The application of NIRS to evaluate protein content in 
cowpea remains limited. However, reliable NIRS approach requires robust NIRS 
models. These models could be applicable in different sectors of food industry, 
high throughput screening in national and international gene banks, seed indus-
tries and facilitate breeders in crop improvement programs. Therefore, the ob-
jective of this study was to develop robust NIRS prediction models to predict 
protein content in cowpea seeds. 

2. Materials and Methods 
2.1. Plant Materials, Sample Preparation, and Protein Estimation 

A total of 116 cowpea germplasm lines from Texas A&M AgriLife Research- 
Vernon, Texas, were used for this study. The cowpea breeding lines were grown 
during the summer of 2021 at Chillicothe Research Centre, which is a property 
managed by Texas A&M AgriLife Research-Vernon, Texas. The study was laid 
out in a randomized complete block design with 3 replications for each cowpea 
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breeding line. Within each block, each cowpea breeding line was planted on a 
12-foot plot. Row spacing between plot was 3 feet and plant spacing within each 
row was 3 to 4 inches. Planting was conducted on June 13, 2021. The research 
plot was rainfed. No fertilizers were applied, and weeds were removed manually 
or mechanically. The harvest was conducted within 3 weeks because harvest 
maturity differed between each cowpea breeding line. The first harvest was con-
ducted on August 25, 2021.  

At each harvest, all pods from each plot were hand harvested. Seeds were 
cleaned using a small thresher (Almaco, Nevada, IA). Seed moisture at harvest 
was about 12%. From each plot, a total of 75 g cowpea seeds were used for whole 
seed NIRS analysis. The same quantity of seeds were ground to a pass a 20-mm 
sieve. The ground seeds were also used for ground seed NIRS analysis. A sub-
sample of 10 g ground samples from each plot was sent to Texas A&M AgriLife 
Forage and Water Lab in College Station, Texas, for total nitrogen analysis using 
a nitrogen combustion method [26]. Total seed protein content was obtained 
using the following formula: Protein content (%) = Total nitrogen (%) × 6.25  
[26]. 

2.2. NIRS Data Collection 

NIR spectra for the whole seed and ground seed samples were collected using a 
DA 7250 analyzer (PerkinElmer Health Sciences Canada Inc., Winnipeg, Can-
ada). The DA 7250 belongs to the family of diode array spectrometers, and it 
analyzes several components in samples within 6 s. The DA7250, spectral data 
were taken every 5 nm for a total of 141 wavelengths spanning 950 nm to 1650 
nm. Each sample was scanned 3 times and the average was recorded as spectral 
data for each wavelength and used for the analysis. For each scan, samples 
(whole seed or ground seed) were placed on a rotating cup that will be shoot by a 
NIRS lazer from the instrument. The output consisted of spectra and exported 
from the instrument as txt file. The spectra were then converted into Excel files 
for further analysis.  

2.3. Statistical Analysis 

The spectral data and data from reference methods of 116 selected cowpea sam-
ples were imported in the JMP 8 (SAS Institute, Inc., Cary, NC), which was used 
to perform spectral data pre-processing, build calibration and cross-validation 
models. In the present work to optimize the models, several pre-treatments and 
their combinations were performed on the NIR spectral data. The pre-treatment 
methods include Savitzky-Golay first and second derivatives, standard normal 
variate (SNV) and multiplicative scatter correction (MSC) and combinations 
such as first derivative + standard normal variate (SNV), second derivative + 
standard normal variate (SNV), first derivative + multiplicative scattering cor-
rection and the second derivative + multiplicative scattering correction [35]. The 
purpose of derivatives is to enhance signal through resolving overlapping peaks 
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and to remove constant baseline drift and baseline slope [34]. The SNV and 
MSC are two commonly used methods to minimize both additive and multipli-
cative effects, and these two methods can generate similar results [34].  

Partial least-squares discriminant analysis (PLS-DA) regression was used to 
obtain the fundamental relation between the spectral data and corresponding 
chemical values. The reliability of prediction model was tested by leave-one- 
sample-out cross validation and external validation. Various statistics, such as 
the coefficient of correlation I, the coefficient of determination (R2), the root 
mean square error (RMSE) and residual predictive deviation (RPD) [36] were 
computed by JMP software to judge the quality of models. The calibration equa-
tion with an RPD value above 3 is considered highly useful, while a value lower 
than 2 is less acceptable for building a prediction model [37]. 

3. Results 
3.1. Protein Content 

A large variation in protein content was observed among the 116 cowpea germ-
plasm lines evaluated in this project. Protein content varied from 19.28% to 
32.04%, with an average of 24.67% and a standard deviation of 7.80%. 

3.2. Spectral Pre-Treatments 

In order to optimize the prediction accuracy of the models, several pre-treatments 
and combinations were performed on the raw NIR spectral data. The descriptive 
statistics of the whole seed and ground cowpea samples for the NIRS spectral 
data are shown in Table 1 and Table 2, respectively. The mean, standard devia-
tion, and the range values of whole seed NIR spectra were found to be higher 
compared to corresponding values in ground samples across the pre-treatments. 
The mean for the raw spectra of whole seed was 391,972,704 and the lowest mean 
 
Table 1. Descriptive statistics for the NIRS spectral data of whole seed samples (raw & 
pre-treated). 

Dataa Mean Standard Deviation Minimum Maximum 

Raw data 391,972,704 187,118,268 142,106,646 1.18E+09 

SG1 2,068,971 6,540,455.7 −6,611,245 31,876,599 

SG2 −7765.692 1,159,590.3 −4,895,968 4,195,974.4 

SNV 2.68E−17 0.9964273 −1.246991 1.6291807 

MSC 391,972,704 147,784,826 206,826,280 634,032,481 

SG1-SNV 2,068,971 6,540,455.7 −661,1245 31,876,599 

SG1-MSC 2,068,971 6,467,356.2 −9564,629 27,679,361 

SG2-SNV −8.19E−19 0.9964273 −3.621387 3.5347701 

SG2-MSC −7765.692 1,148,486.3 −4,612,717 4,487,043.3 

aSG1 = First derivative, SG2 = Second derivatives, SNV = Standard Normal Variate, and 
MSC = Multiplicative Scatter Correction. 
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value was noticed for the Savitzky-Golay second derivative in combination with 
standard normal variate (−8 × 10−19). The standard deviation of the raw spectra 
was the highest (187,118,268). With the pre-treatments, the standard deviation 
was reduced for SNV and SG2-SNV having a similar lowest standard deviation 
values (0.996). The NIRS spectral data revealed wider range with the multiplica-
tive scatter correction (206,826,280 - 634,062,481) (Table 2). 

The mean for the raw spectra of ground seed samples was 313,426,313. The 
standard deviation of the raw spectra was the highest (144,251,561). With the 
pre-treatments, the standard deviation was reduced for SNV and SG2-SNV that 
record similar and lowest standard deviation values (0.996). The NIRS spectral data 
revealed wider range across the pre-treatments and the lower range was observed 
for the standard normal variate (SNV) ranging from (−1.12 to 1.67) (Table 2). 

3.3. Spectral Characteristics 

Figure 1 and Figure 2 provide the raw NIR spectra (950 - 1650 nm) from the DA 
7250 NIR analyzer of 116 whole and ground cowpea samples, respectively. NIR 
spectral patterns of the samples were similar across the whole NIR wavelength re-
gion (950 - 1650 nm) along the X-axis in both the whole seed and ground seed 
sample. While along the Y-axis, the changes of spectral intensities among different 
samples were clear. The spread in the Y-axis or scatter in spectral data was larger 
when the spectral data was above 1450 nm. The spectra from Figure 1 showed con-
siderable variation along the y axis and with more number of outliers. On the other 
hand, Figure 2 shows smaller scatter in spectral data with less number of outliers, 
possibly because ground samples had reduced particle size. 

Figure 3 and Figure 4 show the spectra of 116 cowpea germplasm lines with 
pre-processing for the whole seed and ground samples, respectively. NIR spec-
tral patterns of the whole and ground seed samples exhibited similarity in their 
 
Table 2. Descriptive statistics for the NIRS spectral data of ground seed samples (raw & 
pre-treated). 

Dataa Mean Standard Deviation Minimum Maximum 

Raw data 313,426,313 144,251,561 125,104,773 700,635,845 

SG1 1,864,002.3 6,238,609.3 −6,333,755 29,244,973 

SG2 −8,982.615 1,088,125.9 −4,594,474 3,881,591.7 

SNV −2.37E−17 0.9964273 −1.118858 1.6721402 

MSC 313,426,313 139,277,934 156,860,335 547,969,075 

SG1-SNV −2.76E−18 0.9964273 −1.301859 4.1724062 

SG1-MSC 1,864,002.3 6,221,316.6 −6,534,187 28,779,856 

SG2-SNV 1.21E−18 0.9964273 −3.955531 3.6284923 

SG2-MSC −8,982.615 1,085,449.6 −4,620,223 4,221,005.4 

aSG1 = First derivative, SG2 = Second derivatives, SNV = Standard Normal Variate, and 
MSC = Multiplicative Scatter Correction. 
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Figure1. Raw near-infrared spectra of whole cowpea samples 
from DA 7250 (950 - 1650 nm). 
 

 

Figure2. Raw near-infrared spectra of ground cowpea samples 
from DA 7250 (950 - 1650 nm). 
 

 

Figure 3. Near infrared spectra for whole seed samples of cowpea. A) Raw data, B) First derivative, C) Second 
derivative, D) Standard Normal Variate (SNV), E) First derivative and SNV, F) Second derivative and SNV, G) 
Multiplicative scatter correction (MSC), H) First derivative and MSC, and I) Second derivative and MSC. 
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scatter for raw spectra and the various pre-treatments across the whole NIR 
wavelength region (950 - 1650 nm). The raw spectra of the whole and ground 
seed samples recorded two similar peaks, one at 1200 nm and other at 1480 nm 
with less number of outliers in ground raw spectra. The Savitzky-Golay first de-
rivative and in combination with SNV and MSC pre-treatment (Figure 4(B), 
Figure 4(E), Figure 4(H)) spectral graphs show peaks at 1150 nm, 1350 nm, and 
1400 nm with similar spectra distribution/scatter in both the cowpea samples. 
The spectral pre-treatment with the Savitzky-Golay second derivative and in 
combination with SNV and MSC exhibited greater scatter variation with four 
prominent peaks at 1130 nm, 1240 nm, 1350 nm and 1400 nm in both whole 
seed and ground seed samples (Figure 4(C), Figure 4(F), Figure 4(I)). The 
spectral pattern produced by SNV and MSC pre-treatment were comparable to 
each other with the similar scatter distribution for both the samples with two 
peaks at 1200 nm and 1400 nm (Figure 4(D), Figure 4(G)). The number of out-
liers in the raw and pre-treated spectra was higher in the whole seed sample 
compared to corresponding ground seed samples. The spread in the Y-axis or 
scatter in spectral data was larger in raw and pre-treated spectra in both the 
samples compared to X-axis.  

3.4. PLS-DA Regression Analysis 

Table 3 shows the PLS-DA regression statistics for percent protein calibration.  
 

 

Figure 4. Near infrared spectral data for ground seed samples of cowpea. A) Raw data, B) First derivative, C) Second 
derivative, D) Standard Normal Variate (SNV), E) First derivative and SNV, F) Second derivative and SNV, G) 
Multiplicative scatter correction (MSC), H) First derivative and MSC, and I) Second derivative and MSC. 
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Table 3. PLS-DA regression statistics for protein (%) using multiple spectral pre-treatments 
results for the cowpea whole seed samples. 

Data pre-treatmenta Factors 
Calibration Validation 

R2 SEC r2 SEP RPD 

Raw data 14 0.47 6.21 0.61 7.51 1.21 

SG1 12 0.61 7.12 0.72 15.88 2.23 

SG2 13 0.33 6.12 0.51 7.96 1.3 

SNV 11 0.58 4.23 0.72 6.01 1.42 

SG1-SNV 11 0.42 6.05 0.56 16.76 2.77 

SG2-SNV 14 0.78 5.42 0.91 14.04 2.59 

MSC 10 0.56 6.02 0.6 8.49 1.41 

SG1-MSC 13 0.49 6.22 0.62 7.65 1.23 

SG2-MSC 13 0.65 5.98 0.79 13.04 2.18 

aSG1 = First derivative, SG2 = Second derivatives, SNV = Standard Normal Variate, and 
MSC = Multiplicative Scatter Correction. 
Abbreviations: R2, coefficient of determination; SEC, standard error of calibration; r2, 
coefficient of correlation; SEP, standard error of cross validation; RPD residual predictive 
deviation (SD/SEP). 
 

The MSC treatment has the lowest number of factors (10), whereas both Raw 
data and the SG2-SNV treatments have the highest number of factors (14). The 
regressions were assessed by comparing the coefficient of multiple determina-
tion (R2) and the standard error of calibration (SEC) of the calibration data set to 
the r2 and standard error of prediction (SEP) in the validation set. A variety of 
spectral pre-treatments were evaluated including first derivative, second deriva-
tive, SNV, and MSC, as well as combinations. The results showed that R2 values 
for the calibration varied from 0.33 to 0.78, with SG2 having the lowest R2 values 
and SG2-SNV having the highest R2 values. These results indicate that data 
pre-processing can affect the prediction accuracy of NIR data to predict total 
seed protein in cowpea. The standard error of calibration (SEC) varied from 5.42 
to 7.12, with SG2-SNV having the lowest SEC and SG1 having the highest SEC. 

The r2 values for the validation ranged between 0.51 to 0.91, with SG2 having 
the lowest r2 value and SG2-SNV having the r2 value. The standard error of pre-
diction (SEP) varied from 6.01 to 16.76, with SNV having the lowest SEP and 
SG1-SNV having the highest SEP. RPD, defined as the ratio between SEP and 
SEC, varied from 1.3 to 2.77, with SG2 having the lowest RPD and SG1-SNV 
having the highest RPD. Based on the R2, r2, and RPD, the data pre-treatment 
SG2-SNV work the best to predict total seed protein content in cowpea using 
NIRS data for the whole seed samples, and Raw data and SG2 are the least per-
forming data pre-treatments. 

Table 4 shows the PLS-DA regression statistics for percent protein calibration 
developed from the data set of 116 ground cowpea seed samples. The number of 

https://doi.org/10.4236/ajps.2024.153011


K. Biradar et al. 
 

 

DOI: 10.4236/ajps.2024.153011 154 American Journal of Plant Sciences 
 

Table 4. PLS-DA regression statistics for protein (%) using multiple spectral pre-treatments 
results for the cowpea ground seed samples. 

Data pre-treatmenta Factors 
Calibration Validation 

R2 SEC r2 SEP RPD 

Raw data 12 0.64 5.05 0.79 7.68 1.52 

SG1 11 0.71 6.02 0.75 16.49 2.74 

SG2 10 0.75 5.09 0.81 8.75 1.72 

SNV 10 0.72 6.05 0.77 12.16 2.01 

SG1-SNV 8 0.66 5.46 0.69 10.21 1.87 

SG2-SNV 7 0.85 4.24 0.94 12.17 2.87 

MSC 9 0.64 6.02 0.71 12.22 2.03 

SG1-MSC 9 0.72 5.93 0.82 12.69 2.14 

SG2-MSC 8 0.79 6.17 0.82 15.8 2.56 

aSG1 = First derivative, SG2 = Second derivatives, SNV = Standard Normal Variate, and 
MSC = Multiplicative Scatter Correction. 
Abbreviations: R2, coefficient of determination; SEC, standard error of calibration; r2, 
coefficient of correlation; SEP, standard error of cross validation; RPD residual predictive 
deviation. 
 

factors varied from 8 to 12, with SG1-SNV and SG2-MSC having the lowest 
number of factors and Raw data having the highest number of factors. Results 
showed that R2 values for calibration varied from 0.64 to 0.85, with Raw data 
having the lowest R2 and SG2-SNV having the highest R2. The standard error of 
calibration (SEC) ranged between 4.24 to 6.17. SG2-SNV had the lowest SEC, 
whereas SG2-MSC had the highest SEC. The coefficient of determination of 
validation (r2) ranged between 0.71 and 0.94, with SG2-SNV having the highest 
r2 and MSC having the lowest r2. The standard error for validation (SEP) varied 
from 7.68 to 16.49. Raw data had the lowest SEP, whereas SG1 had the highest 
SG1. RPD values were between 1.52 to 2.87. SG2-SNV had the highest RPD and 
Raw data had the lowest RPD. 

4. Discussion 

Legumes are very important basic foods on the daily diet for humans being, due to 
the input of proteins, starch, fiber, fat, vitamins, and minerals. The conventional 
methods to determine their chemical composition are time consuming, expensive, 
produce a lot of chemicals, and are destructive analysis. It was found that NIRS is a 
technique capable to predict the content of protein, starch, dietary fiber, etc. in a 
fast and reliable way, in legumes. The application of NIRS to evaluate protein con-
tent in cowpea remains limited. Therefore, the present work was undertaken to 
develop robust NIRS prediction models to predict protein content in cowpea. 

The estimated protein values of 116 cowpea genotypes (19.28 % to 32.04%) by 
conventional chemical analysis cover a wide range of variability. The variability 
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was within the range limits to those of previous publications (protein ranging 
21 % to 33 %) in cowpea [38] [39]. This variation in protein content showed that 
the evaluated germplasm lines are appropriate to develop NIRS-based models 
for protein prediction in cowpea. The selected samples should represent the 
global variability to be expected in the concentrations of the analyte in order to 
develop the robust model [40]. The large variability in protein content among 
the evaluated genotypes increase the robustness of the prediction because mod-
els cannot predict values outside of the ranges used during model fitting.  

The pre-treatment of spectral data is a crucial step in building a prediction 
model, allowing an increased signal-to-noise ratio, enhancing variation in signal, 
and removing those sources unrelated to the property of interest. The raw spec-
tra of whole and ground cowpea seeds were subjected to Savitzky–Golay first 
and second derivative in combination with SNV and MSC. The results indicated 
that the raw spectral statistics such as mean, standard deviation, and range re-
duced with the pre-treatments in both the whole and ground seed samples (Table 
1, Table 2). The previous literature report that, the most popular pre-processing 
methods include derivatives, de-trending, standard normal variate (SNV) and 
multiplicative scatter correction (MSC) [41]. 

The spectral plots of raw and pre-processed NIR spectra of cowpea germplasm 
lines (whole and ground seed) (Figures 1-4) across the entire NIR wavelength 
region (950 - 1650 nm) were similar along the X-axis. While along the Y-axis, 
the scatter in spectral data among different samples across all the spectral plots 
were clear at higher wavelength region (>1450 nm). The stronger absorber and 
scattering effects at the higher wavelengths were the primary cause. A similar 
result with increasing scatter in the longer wavelength region was reported in 
wheat [42] and in lentil samples [43]. The whole seed raw and pre-treated spec-
tra exhibited considerable scatter variation along the y axis with more number of 
outliers compared to the corresponding spectra of ground seed samples. The 
greater variation in seed size, shape and colour of seed samples could cause a 
larger scattering effect [43]. The smaller scatter in the spectral data of ground 
seed samples, possibly because of the reduced and more or less uniform particle 
size. Previous research also reported that wheat flour had lower scattering effect 
than whole wheat kernels [41]. 

Partial least-squares discriminant analysis (PLS-DA) algorithm was used to ob-
tain the fundamental relation between the spectral data and corresponding chemi-
cal values. The reliability of prediction model was tested by leave-one-sample-out 
cross validation and external validation. The successful PLS-DA models usually 
had factors higher than 6 - 8 to ensure that these factors can account for most of 
the variance in the calibration system [42]. The number of factors reported on 
this paper relatively higher than 8. The number of factors could depend on en-
vironmental variation during the seed filling stage such as temperature, mois-
ture, and solar radiation. Since there were many cowpea lines with high variation 
with respect to seed size and seed colour in this calibration set, it is acceptable 
for models to have relatively high factors. 
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By comparing results from Table 3 and Table 4, the influence of sample 
status (whole or ground) on model performance could be analyzed. A slight im-
provement of model performance was observed for the prediction of protein af-
ter sample grinding. Several studies indicated that physical characteristics of seed 
samples, such as particle size, water content and interaction between constitu-
ents significantly, influenced near infrared absorption and led to variation in the 
NIR results [44] [45]. For field pea and chickpea, the calibration accuracy for the 
chemical constituents of the ground powder was also generally better than those 
for the intact seed samples [46] [47]. NIRS calibration equations developed from 
ground samples showed similar performance and predictability to those with 
whole samples. The possible explanation was that the pre-treatments could 
minimize the influence of particle size and background noise.  

Earlier publications indicate that the NIRS models had a slightly better pre-
dictability for ground seed samples than in whole seed in lentil, but generally 
these two models achieved similarly high accuracy [48]. This is highly important 
for food industries and breeders to estimate the protein and other contents in 
whole samples without grinding by using NIR models. There are significant ad-
vantages in avoiding grinding. Individual seeds require no sample preparation. 
The intact seeds are viable after NIR predictions, which would allow breeders to 
simultaneously use in their breeding programs. The results of the present work 
and the literature reports reveal that the models were relatively inferior and were 
only suitable for very rough screening with careful use [36]. Continued refine-
ment of the calibration equations is needed to enhance the model performance 
by classifying the seeds based on size, shape, and colour. 

5. Conclusion 

This study shows that the sample types used for NIRS analysis of protein can af-
fect the accuracy of protein prediction. A better accuracy was found when using 
the ground samples. In addition, the large variation in protein content found 
among the breeding lines offers an excellent input for the calibration. Moreover, 
we have demonstrated that data pre-processing can also affect the accuracy of 
prediction. 
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