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Abstract 
The Sudanian savanna is a key vegetation biome in West Africa providing 
food and vital ecosystem services. Recently, it has been reported alarming ve-
getation loss in this biome, calling for more investigation, relevant to tackle 
land degradation and ensure food security. However, vegetation dynamics in 
this area remains a matter of debate, and one of the main challenges is to 
document consistently the underlying driving factors. This study aimed at 
assessing vegetation trends and driving factors from 2000 to 2022. NDVI 
trend, detected using the Mann-Kendall’s monotonic trend test, was used as 
proxy to express vegetation dynamics. In addition to the non-parametric 
Spearman correlation analysis, variables importance scores, derived from 
Random Forest (RF) classifications, were used to determine key driving fac-
tors among climatic, topographic, edaphic, accessibility and demographic 
factors. During 2000-2022, no significant trends largely characterised the ve-
getation cover of the study area. However, patterns of strong (weak) brown-
ing and strong (weak) greening affected 7.1% (10.6%) and 12.8% (19.1%) of 
the study area respectively. According to the driving factors analysis, the ob-
served vegetation trends were mainly driven by rainfall dynamics (trend and 
mean annual), population growth and anthropogenic activities. The results of 
this study can support the development of efficient strategies for safeguarding 
vegetation cover in the Sudanian savanna of Burkina Faso. 
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1. Introduction 

Vegetation is among the first elements to be altered in terrestrial ecosystems de-
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gradation [1]. It is a sensitive index to environmental impact and an indicator of 
global change [2]. Monitoring and assessing change in vegetation is a topic of 
high interest worldwide [3] [4] [5]. This is of particularly importance in the Su-
danian savanna of West Africa, one of the key vegetation biomes in the region. It 
provides food and vital ecosystem services, contributes to the protection of soil 
resources and plays a paramount role in energy, water and carbon balance [6]. 
Local populations depend on this savanna ecosystem for their livelihoods through 
activities, such as subsistence farming, livestock grazing and wood harvesting 
[7], which coupled with climate vagaries led to severe vegetation degradation 
and habitat fragmentation [8]. 

Change in vegetation can be seasonal responses, inter-annual variability, and 
directional change of vegetation [9]. The directional change of vegetation (e.g., 
increasing or decreasing trend), focus of this study, is perceived as its response 
to anthropogenic and natural stressors. In West Africa, the severe droughts of 
1972-1973 and 1983-1984 that dramatically affected vegetation cover, favoured 
political interest for efficient management of natural resources, and particularly 
drew the attention of scientists on vegetation change monitoring and analysis. 
The NDVI (Normalized Difference Vegetation Index), due to its strong link with 
vegetation cover and production [10] [11], has been widely used by scientists to 
investigate change in the West Africa’s vegetation cover especially over large 
scale [10] [12] [13]. Despite the existence of numerous studies, vegetation trends 
in West Africa are still a matter of discussion [14] [15]. While studies support 
greening trends [13], others indicate no trend [16] or browning [17]. Besides, 
one of the key current challenges is to document consistently the underlying 
driving factors of vegetation change in this part of the world [18].  

Driver analysis relied on numerous methods, among others correlation analy-
sis. For example, [19] used NDVI trends and spearman correlation to analyze 
driving factors of vegetation degradation among topographic, climatic and ac-
cessibility variables in the Sudanian savanna of Burkina Faso. However, the cor-
relation analysis did not provide detailed information on factors contribution. 
To address this deficiency, authors opted for more sophisticated modelling (e.g., 
multiple regression). For example, based on a binary logistic regression model, 
[20] assessed land cover change drivers among biophysical and socioeconomic 
independent variables in Northern Ghana. [21] also used logistic regression 
model to establish the relationship between socio-economic drivers and land 
cover change in the total wildlife reserve of Bontioli in Burkina Faso. But, logis-
tic regression, as a parametric method, requires data to meet specific assump-
tions or criteria (e.g., independence of observation), which is often difficult to be 
achieved. However, recently, studies have demonstrated the strength of non- 
parametric machine learning algorithms (MLAs) to model and relate vegetation 
change to drivers [18]. Authors have even found MLAs outperforming the tradi-
tional parametric algorithms, especially for complex data with many predictors 
[22]. MLAs have the flexibility and capability to process large number and dif-
ferent types of data. They can learn and approximate complex non-linear map-
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pings by exploiting the information from reference data [23]. Moreover, they do 
not make assumptions about the data distribution, i.e., they are nonparametric 
methods [24]. Random Forest (RF) is among the most common and effective 
MLAs [25] [26], and its implementation provides opportunities to identify key 
drivers based on the relative contribution of predictors to the model performance. 

The present investigation focused on the Sudanian savanna of Burkina Faso, 
and its objective was to assess vegetation trends and driving factors from 2000 to 
2022. For that, NDVI was adopted as proxy indicator of vegetation state and to 
analyze trend. Key driving factors of vegetation trends were determined based on 
machine learning modelling and non-parametric correlation analysis.  

2. Materials and Methods 
2.1. Study Area 

The study deals with the Sudanian phytogeographical zone of Burkina Faso 
(Figure 1). Two phyto-geographical zones are encountered in the study area: the  
 

 
Figure 1. Location of the study area. 
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North and South Sudanian savannas [27]. The climate is characterized by a rainy 
season extending from May to October, and a dry season occurring from No-
vember to April [28]. The vegetation of the study area is mainly characterized by 
savanna biome (tree and shrub savanna) with dominant species such as Vitella-
ria paradoxa. Pterocarpus erinaceus. Parkia biglobosa. Terminalia laxiflora. Afzelia 
africana. Anogeisus leiocarpa and Adansonia digitata).  

The population is dynamic like in the entire West Africa, which has experienced 
high population growth rate in recent years due to high fertility rates [29]. Agri-
culture is the main source of livelihood in the study area as well as for the entire 
country where 86% of the workforce is primarily devoted to agriculture. How-
ever, agriculture is rudimentary and practiced by small-scale farmers who make 
reduced use of inputs such as fertilizers or pesticides. Cereals (e.g. sorghum. 
millet. maize and rice) are the main crops cultivated. In rural areas, population 
growth and cropland expansion lead to excessive pressure on vegetation and the 
depletion of natural resource stock in general [30]. 

2.2. Data Collection 
2.2.1. Remotely Sensed Vegetation Data  
The Normalized Difference Vegetation Index (NDVI) was employed as proxy to 
assess vegetation trend. NDVI data of the Moderate Resolution Imaging Spec-
trometer (MODIS) MOD13Q1 product, collected from Google Earth Engine 
(GEE) cloud platform, were analysed in this investigation. MOD13Q1 dataset 
are considered, since it has already been widely and successfully used in previous 
vegetation trends investigation [31] [32]. Time series of NDVI 16-day compo-
sites with a spatial resolution of 250 m were gathered for the 2000-2022 period. 
The MOD13Q1 NDVI product is delivered with pixel-level data quality indica-
tors which can be used to filter time series and interpolate bad values (e.g., 
cloud-induced noisy). Thus, the quality assurance (QA) mask was applied to the 
dataset, and only the best quality pixels (QA = 0) were considered in order to 
produce a high quality NDVI time series. Finally, a time series of annual mean 
NDVI was built for the period 2000-2022 and projected to UTM WGS 84 zone 
30. The yearly NDVI time series data were downloaded from GEE platform for 
trend analysis with the statistical platform R. 

2.2.2. Environmental Dataset 
Various geospatial data (biophysical, accessibility and demographic) were ga-
thered to for driving factors analysis of vegetation trends (Table 1). Gridded 
rainfall data were collected from TAMSAT for the period 2000-2022. These datasets 
are based on Meteosat thermal infra-red (TIR) imagery provided by EUMETSAT, 
and the TIR is calibrated against an extensive ground-based rain gauge data arc-
hive. Three indicators of rainfall variability were computed: coefficient of varia-
tion and mean annual rainfall as well as rainfall trend derived from Mann Ken-
dall trend test. Elevation above mean sea level was derived from the 30 m SRTM 
(Shuttle Radar Topography Mission) (https://earthexplorer.usgs.gov/), and soil  

https://doi.org/10.4236/ajps.2023.1410077
https://earthexplorer.usgs.gov/


B. J.-B. Zoungrana, K. Dimobé 
 

 

DOI: 10.4236/ajps.2023.1410077 1134 American Journal of Plant Sciences 
 

Table 1. Ancillary data used in this investigation. 

 Variables Sources 
Spatial  

resolution 

Climatic 

Coefficient of variation  
of annual rainfall (%) TAMSAT ~4 km 

Mean annual rainfall (mm) 

Rainfall trend (correlation coefficient)   

Topographic Elevation (m) SRTM 30 m 

Edaphic Soil types units BUNASOL BF Vector data 

Demographic Population growth (2000-2020 in %) GPWv4 1 km 

Accessibility Euclidean distance to river (m) IGB Vector data 

Land use/cover Classes ESA Vector data 

 
type data from the national soil office of Burkina Faso (BUNASOL). Accessibili-
ty data were also collected from the Geographical Institute of Burkina Faso 
(IGB) and computed as the Euclidean distance of each MODIS pixel to the nearest 
river. Population data were obtained from the Gridded Population of the World 
version 4 (GPWv4) dataset. These data were based on counts consistent with na-
tional censuses and population registers of the countries. Population growth 
between 2000 and 2020 was computed as in Equation (1). 

2015 2000

2000

100Gr
p p

P
p
−

= ×                      (1) 

where, GrP  indicates population growth. 
In addition, land cover data were also obtained from the European Space Agen-

cy (ESA). The ancillary data were projected to UTM WGS 84 zone 30 with spa-
tial resolution of 250 m to match the pixel size of MODIS NDVI. 

2.3. Data Analysis 
2.3.1. Vegetation Trend Detection  
The non-parametric Mann-Kendall’s monotonic trend test (MK test) was used 
to detect trends in the annual NDVI time series (2000-2022). MK test does not 
require data to meet specific criteria, such as normal distribution, and is less af-
fected by outliers, therefore, the method can be used to effectively analyze trend 
of NDVI time series [33]. It calculates the correlation between the observation 
data (here NDVI) and time. The Mann-Kendall’s test outputs the significance 
value (p-value) of the trend slope and the correlation coefficient, the so-called 
Kendall’s tau (τ), which provides information on the direction and the strength 
of trends. Thus, a trend was considered statistically significant if p-value was less 
than 0.05 (p < 0.05), while Kendall’s tau (τ) value higher than 0.5 (less than −0.5) 
was used as criteria of strong trend. The formula MK test is provided by the fol-
lowing equation: 
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where n is the numbers of data points. ix  and jx  are annual values in years j 
and i. j > 1 and Sign ( i jx x− ) calculated using the equation: 
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The computation of Mann Kendall significance produces a standardized Z 
(Equation (4)) and corresponding probability p (Equation (5)). 

( )

( )

1 if   0
Var

if  0
1 if  

0

0
Var

S S
S

Z S
S S

S

− >

= =
 + <


                      (4) 

and 

( )2 1p Zφ = −                           (5) 

where  

( ) 2

0

2 e d
π

Z tZ tφ −= ∫                        (6) 

Based on the two MK-test derived indicators; five (05) trend classes have been 
defined (Table 2) and analysed according to land use/cover types (e.g., natural 
vegetation types, cropland and agglomeration) and their spatial distribution. The 
MK test was performed using the time series of annual mean NDVI with the sta-
tistical software R.  

2.3.2. Driving Forces Analysis  
Driving factors analysis was performed firstly through variables importance 
score of Random Forest (RF) modelling. RF was selected due to its successful 
performance in predicting changes in vegetation cover [34]. RF is an ensemble 
machine learning algorithm developed by [35] for classification and regression. 
It is based on bagging. a technique used for training data creation by randomly  
 
Table 2. NDVI-derived vegetation trend classes defined in this study. 

Kendall’s tau (τ) P value Trend classes 

τ > 0.5 P < 0.05 Strong greening 

0 < τ < 0.5 P < 0.05 Weak greening 

−0.5 < τ < 0 P < 0.05 Weak browning 

τ < −0.5 P < 0.05 Strong browning 

Other τ values P > 0.5 No trend 
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resampling the original dataset with replacement. Here, RF is used under classi-
fication mode. For that, RF builds several trees with random samples of observa-
tions and a random sample of variables, then, the outputs of the classification 
trees are aggregated, and a class is assigned by majority voting [35]. RF provides 
importance score to characterize the effect of each predictor on the model. It has 
its own built-in variable importance computation mechanism. RF yields predic-
tion accuracy on the out-of-bag (OOB) portion of the data that is recorded for 
each tree built, and then the same is done after permuting each variable. The 
difference between the two accuracies is then averaged over all trees, and norma-
lized by the standard error to estimate variable importance [36].  

Based on the trend map, sample points were derived for strong greening, 
strong browning and no trend classes. To avoid high spatial autocorrelation in 
the dataset which can lead to overestimation of modelling accuracy, Moran’s 
I-based correlogram were produced, and it enabled the selection of a minimum 
distance between sample points. In this study, a minimum distance between 
sampling points was set to 3000 m (3 km) with Moran’s I value of 0.4. This is the 
result of a compromise between collecting more samples data and reducing spa-
tial autocorrelation. In all, 2000 reference samples (pixels) were randomly col-
lected and shared into training data (50%) and testing data (50%) for external 
validation. RF classification was implemented with the caret package of the sta-
tistical software R. Vegetation trends were set as response variable, and climatic, 
topographic, edaphic, accessibility and demographic variables were considered 
as model predictors. RF accuracy was evaluated with the overall accuracy and 
Kappa index. The RF permutation-based importance score was used to deter-
mine the most important variables that guide the occurrence of vegetation trend, 
as provided by the modelling [37].  

Furthermore, the Spearman’s correlation was also applied for driving factors 
analysis. It was performed between drivers and NDVI trend (Kendall tau) to de-
termine the direction of influence of drivers on vegetation trend. Spearman’s 
correlation is a non-parametric method and is computed as:  

( )
2

2

6
1

1
i

s
d

r
n n

= −
−

∑                         (7) 

where, ( ) ( )i i id rg X rg Y−= , which is the difference between the two ranks of 
each observation, and n is the number of observations. 

3. Results 
3.1. Vegetation Trends during 2000-2022 

Figure 2(a) shows the spatial distribution of mean NDVI pattern (2000-2022) in 
the study area with maximum NDVI value reaching 0.73 and minimum value of 
−0.12. NDVI distribution follows the south-north precipitation gradient with 
higher values particularly found in the southern part of the study area, and low 
values in the northern zone. The results of MK test are illustrated by Figure 2(b),  
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Figure 2. Vegetation trend analysis during 2000-2022: (a) mean NDVI from 2000-2022; (b) MK tau value; (c) NDVI-derived ve-
getation trend classes; (d) Land use/cover classes in the study area.  

 
Figure 2(c). Patterns of decreasing NDVI trends (red colour) as well as increas-
ing trends (green colour) are observed in the study area (Figure 2(b)). The inte-
gration of the MK tau value with the significance test (Figure 2(c)) produced the 
NDVI trend classes illustrated in Figure 2(d). More than half of vegetation cov-
er area (50.5%) was characterised by no trend patterns (Table 3), which are dis-
tributed throughout the study area. Greening trends are detected mainly in the 
half-west of the analysed area of which 19.1% and 12.8% exhibiting weak green-
ing and strong greening respectively. Large patterns of vegetation degradation 
signals are also observed, since 10.6% of weak browning trends and 7.1% of strong 
browning trends affected the study area, essentially, the eastern, south-western 
and southern parts. In general, most of the protected areas were often dominated 
by no trend and greening trends, contrary to declining trends that were particu-
larly found over non restricted area. 

3.2. Observed NDVI Trends in Land Use/Cover Types 

The results of the MK test show predominance of no trend in areas covered by 
natural vegetation types (tree cover, shrub cover and grassland), cropland and 
agglomeration (Figure 3). The natural vegetation types were more concerned 
with greening trends than browning. For example, 17.7% of tree cover and 15% 
of shrub cover exhibited strong greening tendency, while only 5% and 6.4% were 
affected by strong browning trend respectively. The opposite dynamics were 
found for LULC with high human footprint, such as agglomeration, in which 
browning trend were common compared to greening trend. Figure 4 highlights  
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Table 3. NDVI-derived vegetation trend classes. 

Trend classes % 

No trend 50.5 

Weak greening trend 19.1 

Strong greening trend 12.8 

Weak browning trend 10.5 

Strong browning trend 7.1 

Total 100 

 

 
Figure 3. Distribution of NDVI-derived trend classes per land use/cover type. 

 

 
Figure 4. Proportion of each LULC type per NDVI-derived trend class. 

 
the proportion of each LULC types in areas affected by trend classes. It reveals 
that areas under greening trend are mainly found in tree cover and shrub cover, 
while those exhibiting browning dynamics are particularly observed under 
cropland.  

3.3. Driving Factors of Vegetation Trends 

The RF predicted the vegetation trend classes with a classification overall accu-
racy and kappa value of 0.82 and 0.76 respectively. The relative importance of 
the predictors is shown in Table 4. According to RF modelling, climatic (rainfall 
trend and mean annual rainfall) and demographic (population growth) variables 
were by order of importance the key contributing variables. Soil type appeared 
as the least important driving factors. Table 5 shows the result of the Spearman’s  
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Table 4. Variable importance derived from RF. 

Variables Relative importance 

Rainfall trend 96 

Mean annual rainfall 88 

Population growth 81 

CV of annual rainfall 63.5 

Elevation 59.51 

Distance to river 33.26 

Soil type 2.38 

 
Table 5. Spearman’s correlation between NDVI trend (expressed as trend correlation 
coefficient) and set of potential drivers. 

  
Population 

change 
Distance 
to river 

Elevation 
Rainfall 

trend 
Mean PCP CV PCP 

NDVI 
trend 

Coefficient −0.446** −0.04 −0.197* 0.64** −0.549** 0.096 

Significance. <0.001 0.43 0.029 <0.001 <0.001 0.344 

N 500 500 500 500 500 500 

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 
0.05 level (2-tailed). 
 
correlation between NDVI trend (expressed as trend correlation coefficient) and 
set of climatic, topographic, accessibility and demographic variables. The Spear-
man’s correlation revealed significant (P value of 0.05) negative association of 
NDVI trends with population growth, mean annual rainfall and elevation. Un-
like, non-significant relationships were observed between NDVI trends and dis-
tance to river as well as with coefficient of variation of annual rainfall. 

4. Discussion 

The predominance of non-significant trends (no trend class) in the study area 
from is in line with previous reports that used NDVI trend to monitor vegeta-
tion dynamics in the West African Sudanian savanna [16] [19]. The observed 
changes of vegetation were mainly the result of the combined effect of climatic 
and anthropogenic factors. The improvement of rainfall since the beginning of 
the 2000s, as noticed by [38], and the reforestation activities have probably con-
tributed to the occurrence of the large greening patterns. The improvement of 
rainfall condition has also favoured a natural regeneration of vegetation species 
in this zone as found by [39]. This relevant role of climatic conditions was evi-
denced by the positive correlation between NDVI trend and rainfall trend in the 
study area. The variable importance score of RF modelling also identified rainfall 
trend and mean annual rainfall as key drivers of vegetation change in the study 
area. Such findings agreed with the work by [18] that found rainfall average over 
all growing seasons as the most important driver for the classification of vegeta-
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tion production trends in their study area in Niger. Rainfall constitutes a key 
factor of vegetation growth in semi-arid regions [40]. However, the negative re-
lationship noticed between the spatial patterns of mean annual rainfall and 
NDVI trends revealed that rainfall also constitutes a catalyst for human pressure 
on vegetation [19]. For example, in our study area, the large patterns of degrada-
tion found in the southern part were likely due to the favourable conditions for 
agricultural activity, which systematically increases human pressure on vegeta-
tion cover [41]. Actually, anthropogenic pressure seems to be an important 
threat for vegetation in the Sudanian savanna of Burkina Faso, as confirmed by 
the negative association of NDVI trend with population growth which also came 
up as the third most important variable in the RF modelling. In Burkina Faso for 
example, [42] attributed cropland expansion at the detriment of natural vegeta-
tion during 2001-2014 period to the rapid population growth noted in most of 
the provinces of the country. Several works attributed the degradation of vegeta-
tion cover in the Sudanian savanna to anthropogenic activities, such as agricul-
ture, livestock and wood harvesting [20] [21] [43] [44]. In our study area, agri-
culture appeared as the human activity that have most affected the vegetation 
during 2000-2022 period; indeed, our investigation found cropland dominating 
in areas affected by browning trends of vegetation in the study area. 

Studies carried out at large scale have found rainfall driving vegetation varia-
tion in West Africa [13] [40]. The present study noticed that, even at in-country 
vegetation biome scale, rainfall still plays an important role in vegetation dy-
namics. However, as observed by previous studies [16], local vegetation trends 
(NDVI trend-derived) are not fully explained by rainfall. This is confirmed by 
our investigation that found population growth as an additional key driving fac-
tor of vegetation trend in the Sudanian savanna of Burkina Faso.  

It appeared in the modelling that RF has good predictive capacity of vegeta-
tion change with climatic, topographic, edaphic, accessibility and demographic 
variables in the Sudanian savanna, at least in Burkina Faso. The predictive per-
formance of RF was also noticed by [18] that used RF to model local vegetation 
production trends in southwestern Niger and achieved an overall accuracy of 
80%. Our results accord with previous studies that found RF efficient in the 
mapping of vegetation cover change in the African savannas [45] [46] [47]. This 
highlights that RF can be preferably used with biophysical variables to predict 
vegetation trends and anticipate future change. It also showed that RF model of-
fers an opportunity to distinguish the influence of environmental variables op-
erating simultaneously on vegetation change [48]. 

The present study revealed a large predominance of no significant trends over 
the vegetation cover of the study area between 2000 and 2022. However, con-
trasted significant changes, mainly driven by the coupled effect of climatic and 
anthropogenic factors, were detected. The spots of vegetation degradation are 
mainly due to unsustainable land use practices particularly in agricultural zone. 
This calls for more measures as well as rigorous implementation of the existing 
land degradation policies to promote sustainable land use management practices 

https://doi.org/10.4236/ajps.2023.1410077


B. J.-B. Zoungrana, K. Dimobé 
 

 

DOI: 10.4236/ajps.2023.1410077 1141 American Journal of Plant Sciences 
 

in this part of Burkina Faso. The expansion of cropland constitutes a threat for 
protected areas of which existing monitoring and protective measures should be 
reinforced. 

The study also showed the capacity of RF algorithm to predict vegetation 
change, which is useful in the context of population growth and climate change. 
Indeed, RF could play a key role in the prediction of the impact of future demo-
graphic and climatic changes on vegetation cover. However, one weakness of 
this study remains the shortness of the NDVI time series (23 years). In fact, time 
series data that range over 30 years might be beneficial to draw strong conclu-
sion on vegetation trends. Moreover, the 250 m MODIS NDVI data might be 
coarse for the heterogeneous Sudanian savanna especially to capture local scale 
change. Therefore, the use of Earth Observation (EO) data of high spatiotem-
poral resolution will be of great asset for vegetation change monitoring in this 
area. The recent sentinel optical product with 10 m spatial resolution and 5-day 
revisiting frequency coupled with its radar imagery may be a solution, but cur-
rently, its data time series is too short for consistent vegetation trend analysis. 

5. Conclusion 

Monitoring and understanding vegetation dynamics is of great interest in the 
context of global environmental change and REDD+ (reducing emissions from 
deforestation and forest degradation) which is a viable climate change mitigation 
strategy. This is of paramount importance in the Sudanian savanna, a key biome 
in West Africa, but of which vegetation cover is threatened by anthropogenic 
and climatic pressures. However, in addition to the need of providing reliable 
response upon the debate related to vegetation trends in the Sudanian savanna, 
another challenge is to consistently document the underlying driving factors of 
vegetation change in this biome. The present study contributed to the filling of 
this gap by conducting an investigation in Burkina Faso. The study aimed at as-
sessing vegetation trends and driving factors from 2000 to 2022. The vegetation 
of the study area was largely characterised by no significant trends. Nevertheless, 
important patterns of greening and browning trends were detected. The driving 
factors analysis indicated rainfall dynamics (trend and mean annual) and popu-
lation growth as well as anthropogenic activities as the key underlaying driving 
factors of the observed trends. The study provided sound information to im-
prove the understanding of vegetation change and the underlying driving factors 
in the Sudanian savanna especially in Burkina Faso. The observed greening ten-
dency is a sign of hope in the combat against land degradation and climate 
change, but the patterns of browning trends call for more actions towards sus-
tainable land use. Agricultural practices and the anthropogenic activities in gen-
eral should be adapted to the context of climate change and land degradation, 
and afforestation activities should be reinforced across the country as well. The 
study highlighted the good predictive capacity of Random Forest (RF) algorithm 
which appeared as a valuable tool that can be used to predict vegetation dynam-
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ics with environmental variables and anticipate future change. RF could play a 
key role in the prediction of the impact of future demographic and climate change 
on vegetation. This study can help to better manage vegetation cover and effi-
ciently tackle land degradation in the Sudanian savanna. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Stavi, I. and Lal, R. (2015) Achieving Zero Net Land Degradation: Challenges and 

Opportunities. Journal of Arid Environments, 112, 44-51.  
https://doi.org/10.1016/j.jaridenv.2014.01.016 

[2] Peng, J., Li, Y., Tian, L., Liu, Y. and Wang, Y. (2015) Vegetation Dynamics and Asso-
ciated Driving Forces in Eastern China during 1999-2008. Remote Sensing, 7, 13641- 
13663. https://doi.org/10.3390/rs71013641 

[3] Liu, Z., Wimberly, M.C. and Dwomoh, F.K. (2016) Vegetation Dynamics in the 
Upper Guinean Forest Region of West Africa from 2001 to 2015. Remote Sensing, 9, 
5. https://doi.org/10.3390/rs9010005 

[4] Kaptué, A.T., Prihodko, L. and Hanan, N.P. (2015) On Regreening and Degradation 
in Sahelian Watersheds. Proceedings of the National Academy of Sciences, 112, 
12133-12138. https://doi.org/10.1073/pnas.1509645112 

[5] Li, Z., Li, X., Weia, D., Xub, X. and Wanga, H. (2010) An Assessment of Correlation 
on MODIS-NDVI and EVI with Natural Vegetation Coverage in Northern Hebei 
Province, China. Procedia Environmental Sciences, 2, 964-969.  
https://doi.org/10.1016/j.proenv.2010.10.108 

[6] Ribeiro, N.S., Matos, C.N., Moura, I.R., Washington-Allen, R.A. and Ribeiro, A.I. 
(2013) Monitoring Vegetation Dynamics and Carbon Stock Density in Miombo 
Woodlands. Carbon Balance and Management, 8, Article No. 11.  
https://doi.org/10.1186/1750-0680-8-11 

[7] Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo, L. and Asner, 
G.P. (2018) An Above-Ground Biomass Map of African Savannahs and Woodlands 
at 25 m Resolution Derived from ALOS PALSAR. Remote Sensing of Environment, 
206, 156-173. https://doi.org/10.1016/j.rse.2017.12.030 

[8] Braimoh, A.K. (2004) Seasonal Migration and Land-Use Change in Ghana. Land 
Degradation and Development, 15, 37-47. https://doi.org/10.1002/ldr.588 

[9] Hobbs, R.J. (1990) Remote Sensing of Spatial and Temporal Dynamics of Vegeta-
tion. Ecological Studies, 79, 203-219. https://doi.org/10.1007/978-1-4612-3302-2_10 

[10] Traore, S.S., Landmann, T., Forkuo, E.K. and Traore, P.C.S. (2014) Assessing 
Long-Term Trends in Vegetation Productivity Change over the Bani River Basin in 
Mali (West Africa). Journal of Geography and Earth Sciences, 2, 21-34.  
https://doi.org/10.15640/jges.v2n2a2 

[11] Fensholt, R. and Sandholt, I. (2005) Evaluation of MODIS and NOAA AVHRR Ve-
getation Indices with in Situ Measurements in a Semi-Arid Environment. Interna-
tional Journal of Remote Sensing, 26, 2561-2594.  
https://doi.org/10.1080/01431160500033724 

[12] Anyamba, A. and Tucker, C.J. (2005) Analysis of Sahelian Vegetation Dynamics 

https://doi.org/10.4236/ajps.2023.1410077
https://doi.org/10.1016/j.jaridenv.2014.01.016
https://doi.org/10.3390/rs71013641
https://doi.org/10.3390/rs9010005
https://doi.org/10.1073/pnas.1509645112
https://doi.org/10.1016/j.proenv.2010.10.108
https://doi.org/10.1186/1750-0680-8-11
https://doi.org/10.1016/j.rse.2017.12.030
https://doi.org/10.1002/ldr.588
https://doi.org/10.1007/978-1-4612-3302-2_10
https://doi.org/10.15640/jges.v2n2a2
https://doi.org/10.1080/01431160500033724


B. J.-B. Zoungrana, K. Dimobé 
 

 

DOI: 10.4236/ajps.2023.1410077 1143 American Journal of Plant Sciences 
 

Using NOAA-AVHRR NDVI Data from 1981-2003. Journal of Arid Environments, 
63, 596-614. https://doi.org/10.1016/j.jaridenv.2005.03.007 

[13] Olsson, L., Eklundh, L. and Ardo, J. (2005) A Recent Greening of the Sahel— 
Trends, Patterns and Potential Causes. Journal of Arid Environments, 63, 556-566.  
https://doi.org/10.1016/j.jaridenv.2005.03.008 

[14] Mbow, C., Brandt, M., Ouedraogo, I., de Leeuw, J. and Marshall, M. (2015) What 
Four Decades of Earth Observation Tell Us about Land Degradation in the Sahel? 
Remote Sensing, 7, 4048-4067. https://doi.org/10.3390/rs70404048 

[15] Knauer, K., Gessner, U., Dech, S. and Kuenzer, C. (2014) Remote Sensing of Vege-
tation Dynamics in West Africa. International Journal of Remote Sensing, 35, 6357- 
6396. https://doi.org/10.1080/01431161.2014.954062 

[16] Leroux, L., Bégué, A. and Lo, S.D. (2014) Regional Analysis of Crop and Natural 
Vegetation in West Africa Based on NDVI Metrics. International Geoscience and 
Remote Sensing Symposium (IGARSS), Quebec City, 13-18 July 2014, 5107-5110. 

[17] Rasmussen, K., Fensholt, R., Fog, B., Rasmussen, L.V. and Yanogo, I. (2014) Explain-
ing NDVI Trends in Northern Burkina Faso. Journal of Geography, 114, 17-24.  
https://doi.org/10.1080/00167223.2014.890522 

[18] Leroux, L., Bégué, A., Seen, D.L., Jolivot, A. and Kayitakire, F. (2017) Driving Forces 
of Recent Vegetation Changes in the Sahel: Lessons Learned from Regional and Lo-
cal Level Analyses. Remote Sensing of Environment, 191, 38-54.  
https://doi.org/10.1016/j.rse.2017.01.014 

[19] Zoungrana, B.J.-B., Conrad, C., Thiel, M., Amekudzi, L.K. and Da, E.D. (2018) 
MODIS NDVI Trends and Fractional Land Cover Change for Improved Assess-
ments of Vegetation Degradation in Burkina Faso, West Africa. Journal of Arid En-
vironments, 153, 66-75. https://doi.org/10.1016/j.jaridenv.2018.01.005 

[20] Braimoh, A.K. and Vlek, P.L.G. (2005) Land-Cover Change Trajectories in North-
ern Ghana. Environmental Management, 36, 356-373.  
https://doi.org/10.1007/s00267-004-0283-7 

[21] Dimobe, K., Ouédraogo, A., Soma, S., Goetze, D., Porembski, S. and Thiombiano, 
A. (2015) Identification of Driving Factors of Land Degradation and Deforestation 
in the Wildlife Reserve of Bontioli (Burkina Faso, West Africa). Global Ecology and 
Conservation, 4, 559-571. https://doi.org/10.1016/j.gecco.2015.10.006 

[22] Ghimire, B., Rogan, J., Rodríguez-Galiano, V., Panday, P. and Neeti, N. (2012) An 
Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification 
in Cape Cod, Massachusetts, USA. GIScience & Remote Sensing, 49, 623-643.  
https://doi.org/10.2747/1548-1603.49.5.623 

[23] Maxwell, A.E., Warner, T.A. and Fang, F. (2018) Implementation of Machine- 
Learning Classification in Remote Sensing: An Applied Review. International Jour-
nal of Remote Sensing, 39, 2784-2817.  
https://doi.org/10.1080/01431161.2018.1433343 

[24] Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M. and Notarnicola, C. (2015) 
Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals 
from Remote Sensing Data. Remote Sensing, 7, 16398-16421.  
https://doi.org/10.3390/rs71215841 

[25] Thanh Noi, P. and Kappas, M. (2017) Comparison of Random Forest, K-Nearest 
Neighbor, and Support Vector Machine Classifiers for Land Cover Classification 
Using Sentinel-2 Imagery. Sensors, 18, Article No. 18.  
https://doi.org/10.3390/s18010018 

[26] Löw, F., Knöfel, P. and Conrad, C. (2015) Analysis of Uncertainty in Multi-Temporal 

https://doi.org/10.4236/ajps.2023.1410077
https://doi.org/10.1016/j.jaridenv.2005.03.007
https://doi.org/10.1016/j.jaridenv.2005.03.008
https://doi.org/10.3390/rs70404048
https://doi.org/10.1080/01431161.2014.954062
https://doi.org/10.1080/00167223.2014.890522
https://doi.org/10.1016/j.rse.2017.01.014
https://doi.org/10.1016/j.jaridenv.2018.01.005
https://doi.org/10.1007/s00267-004-0283-7
https://doi.org/10.1016/j.gecco.2015.10.006
https://doi.org/10.2747/1548-1603.49.5.623
https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.3390/rs71215841
https://doi.org/10.3390/s18010018


B. J.-B. Zoungrana, K. Dimobé 
 

 

DOI: 10.4236/ajps.2023.1410077 1144 American Journal of Plant Sciences 
 

Object-Based Classification. ISPRS Journal of Photogrammetry and Remote Sens-
ing, 105, 91-106. https://doi.org/10.1016/j.isprsjprs.2015.03.004 

[27] Fontès, J. and Guinko, S. (1995) Vegetation Map and Land Use in Burkina Faso. 
Explanatory Note: French Ministry of Cooperation. 

[28] Zoungrana, B.J.-B., Conrad, C., Amekudzi, L.K., Thiel, M., Da, E.D., Forkuor, G. 
and Löw, F. (2015) Multi-Temporal Landsat Images and Ancillary Data for Land 
Use/Cover Change (LULCC) Detection in the Southwest of Burkina Faso, West 
Africa. Remote Sensing, 7, 12076-12102. https://doi.org/10.3390/rs70912076 

[29] Callo-Concha, D., Gaiser, T. and Ewert, F. (2012) Farming and Cropping Systems in 
the West African Sudanian Savanna. WASCAL Research Area: Northern Ghana, 
Southwest Burkina Faso and Northern Benin. Bonn, No. 100. 

[30] Derbile, E.K. (2010) Local Knowledge and Livelihood Sustainability under Envi-
ronmental Change in Northern Ghana. PhD Dissertation, University of Bonn, 
Bonn, 296 p. 

[31] Zhao, S., Zhao, X., Zhao, J., Liu, N., Sun, M., Mu, B., Sun, N. and Guo, Y. (2022) 
Grassland Conservation Effectiveness of National Nature Reserves in Northern 
China. Remote Sensing, 14, Article No. 1760. https://doi.org/10.3390/rs14071760 

[32] Najafi, Z., Fatehi, P. and Darvishsefat, A.A. (2019) Vegetation Dynamics Trend Us-
ing Satellite Time Series Imagery. The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, 42, 783-788.  
https://doi.org/10.5194/isprs-archives-XLII-4-W18-783-2019 

[33] Li, Y., Xie, Z., Qin, Y. and Zheng, Z. (2019) Estimating Relations of Vegetation, 
Climate Change, and Human Activity: A Case Study in the 400 mm Annual Preci-
pitation Fluctuation Zone, China. Remote Sensing, 11, Article No. 1159.  
https://doi.org/10.3390/rs11101159 

[34] Forkuor, G., Hounkpatin, O.K., Welp, G. and Thiel, M. (2017) High Resolution 
Mapping of Soil Properties Using Remote Sensing Variables in South-Western Bur-
kina Faso: A Comparison of Machine Learning and Multiple Linear Regression 
Models. PLOS ONE, 12, e0170478. https://doi.org/10.1371/journal.pone.0170478 

[35] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.  
https://doi.org/10.1023/A:1010933404324 

[36] Kuhn, M. (2008) Building Predictive Models in R Using the Caret Package. Journal 
of Statistical Software, 28, 1-26. https://doi.org/10.18637/jss.v028.i05 

[37] Strobl, C., Boulesteix, A.L., Zeileis, A. and Hothorn, T. (2007) Bias in Random For-
est Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bio-
informatics, 8, 8-25. https://doi.org/10.1186/1471-2105-8-25 

[38] Lucio, P.S., Molion, L.C.B., Valadão, C.E.A., Conde, F.C., Ramos, A.M. and de Me-
lo, M.L.D. (2012) Dynamical Outlines of the Rainfall Variability and the ITCZ Role 
over the West Sahel. Atmospheric and Climate Sciences, 2, 337-350.  
https://doi.org/10.4236/acs.2012.23030 

[39] Bognounou, F., Tigabu, M., Savadogo, P., Thiombiano, A., Boussim, I.J., Oden, P.C. 
and Guinko, S. (2010) Regeneration of Five Combretaceae Species along a Latitu-
dinal Gradient in Sahelo-Sudanian Savanna of Burkina Faso. Annals of Forest Science, 
67, 306. https://doi.org/10.1051/forest/2009119 

[40] Herrmann, S.M., Anyamba, A. and Tucker, C.J. (2005) Recent Trends in Vegetation 
Dynamics in the African Sahel and Their Relationship to Climate. Global Environ-
mental Change, 15, 394-404. https://doi.org/10.1016/j.gloenvcha.2005.08.004 

[41] Gray, C.L. (2005) What Kind of Intensification? Agricultural Practice, Soil Fertility 

https://doi.org/10.4236/ajps.2023.1410077
https://doi.org/10.1016/j.isprsjprs.2015.03.004
https://doi.org/10.3390/rs70912076
https://doi.org/10.3390/rs14071760
https://doi.org/10.5194/isprs-archives-XLII-4-W18-783-2019
https://doi.org/10.3390/rs11101159
https://doi.org/10.1371/journal.pone.0170478
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.4236/acs.2012.23030
https://doi.org/10.1051/forest/2009119
https://doi.org/10.1016/j.gloenvcha.2005.08.004


B. J.-B. Zoungrana, K. Dimobé 
 

 

DOI: 10.4236/ajps.2023.1410077 1145 American Journal of Plant Sciences 
 

and Socioeconomic Differentiation in Rural Burkina Faso. The Geographical Jour-
nal, 171, 70-82. https://doi.org/10.1111/j.1475-4959.2005.00150.x 

[42] Knauer, K., Gessner, U., Fensholt, R., Forkuor, G. and Kuenzer, C. (2017) Monitor-
ing Agricultural Expansion in Burkina Faso over 14 Years with 30 m Resolution 
Time Series: The Role of Population Growth and Implications for the Environment. 
Remote Sensing, 9, Article No. 132. https://doi.org/10.3390/rs9020132 

[43] Houessou, L.G., Teka, O., Imorou, I.T., Lykke, A.M. and Sinsin, B. (2013) Land Use 
and Land-Cover Change at “W” Biosphere Reserve and Its Surroundings Areas in 
Benin Republic (West Africa). Environment and Natural Resources Research, 3, 
87-101. https://doi.org/10.5539/enrr.v3n2p87 

[44] Ouedraogo, I., Tigabu, M., Savadogo, P., Compaore, H., Oden, P.C. and Ouadba, 
J.M. (2010) Land Cover Change and Its Relation with Population Dynamics in Bur-
kina Faso, West Africa. Land Degradation and Development, 21, 453-462.  
https://doi.org/10.1002/ldr.981 

[45] Gessner, U., Machwitz, M., Conrad, C. and Dech, S. (2013) Estimating the Frac-
tional Cover of Growth Forms and Bare Surface in Savannas. A Multi-Resolution 
Approach Based on Regression Tree Ensembles. Remote Sensing of Environment, 
129, 90-102. https://doi.org/10.1016/j.rse.2012.10.026 

[46] Gessner, U., Machwitz, M., Esch, T., Tillack, A., Naeimi, V., Kuenzer, C. and Dech, 
S. (2015) Multi-Sensor Mapping of West African Land Cover Using MODIS, ASAR 
and TanDEM-X/TerraSAR-X Data. Remote Sensing of Environment, 164, 282-297.  
https://doi.org/10.1016/j.rse.2015.03.029 

[47] Forkuor, G. (2014) Agricultural Land Use Mapping in West Africa Using Mul-
ti-Sensor. PhD Dissertation, Julius-Maximilians-Universität, Würzburg, 175 p. 

[48] Krakauer, N., Lakhankar, T. and Anadón, J. (2017) Mapping and Attributing Nor-
malized Difference Vegetation Index Trends for Nepal. Remote Sensing, 9, Article 
No. 986. https://doi.org/10.3390/rs9100986 

 
 

https://doi.org/10.4236/ajps.2023.1410077
https://doi.org/10.1111/j.1475-4959.2005.00150.x
https://doi.org/10.3390/rs9020132
https://doi.org/10.5539/enrr.v3n2p87
https://doi.org/10.1002/ldr.981
https://doi.org/10.1016/j.rse.2012.10.026
https://doi.org/10.1016/j.rse.2015.03.029
https://doi.org/10.3390/rs9100986

	NDVI-Derived Vegetation Trends and Driving Factors in West African Sudanian Savanna
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	2.2. Data Collection
	2.2.1. Remotely Sensed Vegetation Data 
	2.2.2. Environmental Dataset

	2.3. Data Analysis
	2.3.1. Vegetation Trend Detection 
	2.3.2. Driving Forces Analysis 


	3. Results
	3.1. Vegetation Trends during 2000-2022
	3.2. Observed NDVI Trends in Land Use/Cover Types
	3.3. Driving Factors of Vegetation Trends

	4. Discussion
	5. Conclusion
	Conflicts of Interest
	References

