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Abstract 
Kentucky bluegrass (Poa pratensis L.) is the most common perennial turfgrass 
species grown on playgrounds, municipal and residential lawn areas, and golf 
tees, fairways and roughs. Fertilization is the most efficient way to improve 
and maintain turfgrass aesthetic quality. Tissue diagnosis can guide fertiliza-
tion, but tissue concentration ranges are biased by not taking into considera-
tion nutrient inter-relationships, carryover effects and other key features. The 
centered log-ratio transformation reflects nutrient interactions in plants and 
avoids statistical biases. Machine learning (ML) models relate the target vari-
able to the key features ex ante, and can predict future events from prior know-
ledge. The objective of his study was to predict turfgrass quality from key 
features and rank nutrients in the order of their limitations. The experimental 
setup comprised four N, three P, and four K rates applied on permanent plots 
during three consecutive years. Soils were a loam and an USGA sand. Eleven 
elements (N, S, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe) were quantified in clippings 
collected during spring, summer and autumn every year. Turfgrass quality 
was categorized as target variable by color rating. Concentrations were cen-
tered log-ratioed (clr) partitioned into four quadrants in the confusion matrix 
generated by the xgboost ML model. The area under curve (AUC) and model 
accuracy were high to predict turfgrass color from the nutrient analyses of 
clippings collected in the preceding season, facilitating the seasonal adjust-
ment of the fertilization regime to sustain high turfgrass quality. We provide 
a computational example to run the ML model and rank nutrients in the or-
der of their limitations. 
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1. Introduction 

Kentucky bluegrass (Poa pratensis L.) is the most common perennial turfgrass 
species grown on playgrounds, golf tees, fairways and roughs, and municipal and 
residential lawns [1]. Soils are generally of sandy or loamy texture. Fertilization 
is the most efficient way to improve and maintain turfgrass aesthetic quality in 
terms of shoot density and foliage color [1] [2].  

The demand for high-quality turfgrass often prompts golf managers to over-
fertilize. Nitrogen increases turfgrass foliage color and shoot density non-linearly, 
but decreases turfgrass belowground biomass linearly [1]. The excessive nitrogen 
(N) fertilization may inhibit the growth of rhizomes, stolons, and roots [3] [4] 
[5] [6] and increase the risk of pest damage [7]. Because turfgrass color is easier 
to monitor than the labour-intensive measure of belowground biomass or shoot 
density, Badra et al. [8] elaborated an easy-to-use rating for foliage color or 
greenness in the narrow range of 7.0 to 8.9 based on the color chart of the Royal 
Horticultural Society (London).  

The nutrient status of perennial turfgrass stands is assessed by nutrient tests. 
By diagnosing each nutrient independently of others, it is assumed that all nu-
trients but the one being addressed are equal or at their optimum levels (ceteris 
paribus assumption), which is a nonsense by just looking at the unequal results 
of soil or tissue tests [9]. Moreover, the interpretation of tissue tests does not 
take into consideration the seasonal variations in nutrient contents, carryover 
effects of stored carbohydrates and nutrients, and nutrient interactions. The re-
sults of laboratory analyses to assess nutritional deficiencies, sufficiency or ex-
cesses are not predictive and often arrive too late in the season for early adjust-
ment of fertilization. The impacts of seasonal variations and carryover effects on 
turfgrass quality could be addressed ex ante using predictive machine learning 
(ML) models [10] [11].  

Nutrient data are compositional in nature, i.e., they are intrinsically inter-rela- 
ted and multivariate, and “resonate” on each other due to closure of the bounded 
compositional space expressed as measurement unit or scale [12]. In contrast, 
statistical analysis assumes that the data are distributed in the real space (±∞) 
[13]. If computed from data restricted to the compositional space (e.g., 0% - 
100%), the standard deviation (or variance) has no statistical relevance and may 
even lead to absurd results such as confidence intervals exceeding the lower or 
upper limits of the predefined compositional space [14] [15]. The results of la-
boratory analyses expressed as raw concentrations could be log-ratio transformed 
to allow scanning the real space (±∞) and run statistical analysis unbiasedly [12] 
[13] [16] [17]. 

The centered log ratio (clr) is the natural logarithm of the ratio between any 
component and the geometric mean of others. The sources of “resonance” among 
nutrients quantified in analytical report are dual interactions [18], partial re-
placement (e.g., K-Na) [19], dilution [20] and cross-talks [21]. The clr integrates 
dual nutrient ratios into a single multi-ratio expression and is a convenient means 
to diagnose nutrients unbiasedly [21]. 
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The ML methodology can be combined with log-ratio transformations to 
model compositional data [22]. Several combinations of key features have been 
used to model the mineral nutrition of perennials [10] [11] and to derive clr nu-
trient standards for diagnostic purposes [23] [24] [25]. As perennial, a turfgrass 
stand can be monitored every season across several years to allow diagnosing the 
plant nutrient status from laboratory analyses made available one season in ad-
vance, and to predict the quality of the stand during the following season for 
early adjustment of the fertilization program. 

We hypothesized that the aesthetic quality of turfgrass as foliage color can be 
predicted accurately from features collected at least one season in advance. The 
objective of this paper was to develop ML models and clr nutrient standards to 
predict turfgrass aesthetic quality for an early adjustment of the fertilization 
program. Such prediction requires an experimental design maintained during 
several consecutive seasons and years. 

2. Material and Methods 
2.1. Experimental Design 

The data were collected on an experimental site established in L’Acadie, Quebec, 
Canada [1] [8]. The turfgrass stands were composed of equal proportions of Ken-
tucky bluegrass cultivars Baron, Argyle, Gnome, and Regent. Soils were a St- 
Blaise-Macdonald loamy soil (Haplaquent) and a normalized USGA sandy soil. 
Soil physical and chemical analyses, sampling procedure, and climatic condi-
tions were reported in [1]. The soils were analyzed at the onset of the experiment 
for grain-size distribution by sedimentation, pH in water (1:1), Mehlich3-ex- 
tractible nutrients [26] and Walkley-Black carbon content [1]. Soil pH was 6.17 
± 0.27 in the loam and 7.10 ± 0.16 in the sand. Mehlich-III extracts averaged 68 
mg P kg–1, 63 mg K kg–1, 165 mg Mg kg–1, 2587 mg Ca kg–1 and 1131 mg Al kg–1 
in the loam, and 58 mg P kg–1, 39 mg K kg–1, 143 mg Mg kg–1, 1925 mg Ca kg–1 
and 333 mg Al kg–1 in the sand. Carbon content was 17.4 g C kg–1 in the loam 
and 10.4 g C kg–1 in the sand.  

The stand was deemed uniform during the summer following the establish-
ment one year earlier. The trial was a factorial combination of four rates of N (0 
or 50, 100, 200, and 300 kg N ha−1), three rates of P (0 or 21.8, 43.7 and 87.3 kg P 
ha−1), and four rates of K (0 or 41.7, 83.3, 166.7, and 250 kg K ha−1) applied at 
eight occasions during three consecutive years. The stands were irrigated to 
avoid drought stress and facilitate the incorporation of fertilizer granules into 
the soil. Foliage color was rated during eight consecutive periods, i.e., in summer 
and autumn of year 1, and in the spring, summer and autumn of year 2, and in 
the spring, summer and autumn of year 3. Color ratings were recorded weekly 
and summarized as the median value across weekly evaluations preceding and 
including each clipping harvest. 

2.2. Plant Analyses 

Clippings were collected at the same time as foliage color was rated, two days 
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following fertilization to avoid collecting fertilizer granules in mower’s basket. 
Mowing height was 38 mm for clipping harvest on areas of 2.38 by 0.56 m, and 
50 mm otherwise (2 - 3 times per week as a regular maintenance). Harvests 
started in April or May and ended in September or October. Clippings were 
weighed then dried at 70˚C. Total carbon was not quantified in the clipping bio-
mass but may range between 360 and 395 g C kg−1 [27] or 355 to 418 g C kg−1 
[28], averaging 380 g C kg−1. Total N was determined by micro-Kjeldahl. Tissues 
were acid-digested [29]. The dissolved nutrients were quantified by plasma emis-
sion spectroscopy.  

2.3. Log Ratio Transformation 

The foliage compositional simplex comprised eleven elements and a filling value 
as follows:  

[ ]{ [
]
}

v

v

1
v

N,S,P,K,Mg,Ca,B,Fe,Mn, Zn,Cu,F ; N 0,S 0,P 0,
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N S P K Mg Ca B Fe Mn Zn Cu F 1000 g kg
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   (1) 

where Fv is the filling value between measurement unit (here, 1000 g∙kg−1) and 
the sum of the individual nutrient concentrations expressed in g∙kg−1. The cen-
tered log ratios were computed as follows Equation (2) [16]: 

ln i
i

c
clr

G
 =  
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                          (2) 

where ln is the natural logarithm, ci is ith concentration, and G is the geometric 
mean across components of the whole including the filling value, computed as 
follows (3): 

12
vN S P K Mg Ca B Fe Mn Zn Cu FG = × × × × × × × × × × ×         (3) 

The geometric mean across components avoids over-optimistic assumptions 
on equal (Law of minimum) or optimum (Law of optimum) levels of other nu-
trients [30]. Equation (2) is a combination of pairwise ratios reflecting dual inte-
ractions, as follows for N Equation (4): 
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   (4) 

The N/P ratio that relates protein production to internal energy [31] and the 
N/K ratio that highlights the role of K in regulating the N transfer from roots to 
shoot [19] should be properly balanced in turfgrass [32]. Other nutrient interac-
tions and cross-talks are documented in [18] and [21]. 
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2.4. Statistical Analysis 

Three relational models were tested as follows:  
( )t tY f X= ,                          (5) 

( )1t tY f X −= ,                         (6) 

( )2t tY f X −= ,                         (7) 

where tY  is foliage color rating at time t (the season), whereas tX , 1tX −  and 

2tX −  are features collected at times t, t − 1 and t − 2, respectively. Equation (5) 
represents the current diagnosis where laboratory analyses are calibrated against 
plant performance at time t [8]. Equation (6) predicts future plant performance 
at time t from the results of laboratory analyses of tissues sampled at time t − 1. 
Equation (7) predicts future plant performance at time t from laboratory analys-
es of tissues sampled at time t − 2.  

Features were periods, soil texture, NPK fertilization, tissue nutrients and clip-
ping biomass. Soils were a loam and an USGA sand. Periods were spring, summer 
and autumn. Because there are D − 1 degrees of freedom in the D clr variables 
adding up exactly to zero [33], one redundant clr variable (here, 

vFclr ) was re-
moved from the ML model. The target variable was the category of turfgrass color 
(within or outside the range between 7.0 and 8.9) for high quality turfgrass. We 
used the Orange Data Mining software 3.32 to process the data  
(https://orangedatamining.com/download/#windows). The most accurate ML mod-
el was extreme gradient boosting (xgboost) using 40 trees, learning rate of 0.100 
and a limiting depth to three individual trees. Data were partitioned in the con-
fusion matrix as follows: 

1) True negative (TN) specimens showing balanced mineral nutrition and 
high turfgrass quality. 

2) False negative (FN) specimens showing balanced mineral nutrition but low 
turfgrass quality (Type II error).  

3) True positive (TP) specimens showing imbalanced mineral nutrition but 
high turfgrass quality. 

4) False positive (FP) specimens showing imbalanced mineral nutrition and 
low turfgrass quality (Type I error). 

Model accuracy was measured as follows: 

( ) VN TPAccuracy % 100
TN TP FN FP

+
= ×

+ + +
              (8) 

The area under curve (AUC) is another criterion for model performance. It 
has been suggested that AUC of 0.5 has no diagnostic interest [34]. The model 
would be little informative in the AUC range of 0.5 to 0.7, moderately informa-
tive if 0.7 ≤ AUC < 0.9 and very informative if AUC ≥ 0.9.  

Nutrient standards were computed as mean and standard deviation of the clr 
values of true negative (TN) specimens. The clr indices were computed to rank 
nutrients, as follows [16]: 
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where 
ixclr  is the clr value for component ix , and *

ixclr  and *
ixSD  are the 

corresponding seasonal clr nutrient standards.  

3. Results and Discussion 
3.1. Model Accuracy 

There were 3072 observations to run model 1. Model 2 processed 2688 observa-
tions because one of the eight periods must be sacrificed at both the loamy and 
the sandy sites to account for carryover effects. Model 3 processed 2304 observa-
tions. The most successful combination of features comprised soil texture, sea-
son, clipping biomass, nutrients and NPK fertilization (Table 1). The model was 
little affected after excluding clipping biomass. Soil texture was an important 
feature, particularly in models 2 and 3 (scenario no. 3 vs. scenario no. 2). The 
minimum dataset to predict color rating comprised soil texture, season and NPK 
fertilization provided by the field manager, as well as nutrient analyses from the 
preceding season supplied by the laboratory. 

Table 1 shows that collecting tissue samples one or two periods in advance to 
predict color rating provided higher area under curve (AUC) compared to nu-
trient analysis and concomitant color rating at the time of tissue sampling. Mod-
els were moderately to very informative. The AUC and accuracy were compara-
ble to other perennials [10] [11] [23] [24] [25]. 

3.2. Nutrient Standards 

Model 2 allows laboratory analyses to be available in time for the early correc-
tion of the fertilizer program. Nutrient standards for turfgrass, computed for  
 
Table 1. Effect of selected datasets on the area under curve (AUC) and accuracy of xgboost 
to predict turfgrass color from features. 

Features included in models 
Model 1 Model 2 Model 3 

AUC§ Accuracy§ AUC Accuracy AUC Accuracy 

1) Soil, season, clippings, 
nutrients, NPK fertilization 

0.963 0.908 0.980 0.917 0.983 0.924 

2) Soil, season, nutrients, 
NPK fertilization 

0.962 0.904 0.979 0.918 0.982 0.924 

3) Season, nutrients, 
NPK fertilization 

0.956 0.893 0.965 0.881 0.970 0.885 

4) Soil, season, clippings, 
nutrients 

0.889 0.809 0.932 0.817 0.925 0.801 

5) Soil, season, nutrients 0.842 0.762 0.902 0.767 0.903 0.765 

6) Season, clippings, 
nutrients 

0.882 0.794 0.915 0.796 0.908 0.782 

7) Season, nutrients 0.834 0.754 0.880 0.748 0.877 0.736 

8) Nutrients 0.833 0.750 0.866 0.727 0.863 0.722 

§The highest AUC or accuracy value is 1. 
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every season using the feature combination no. 7 in model 2, were not stationary 
across seasons (Table 1). The means and standard deviations of the clr values for 
TN specimens are presented in Table 2. Between spring and autumn, tissue S 
tended to increase and tissue N and P to decrease by more than 0.2 clr unit. The 
quartile concentration ranges for tissue N, P and S did not overlap, indicating 
seasonal effects on plant nutrition that are attributable in part to differential nu-
trient mobility [35] or nutrient dilution in the growing plant [20]. 
 
Table 2. Nutrient standards for the preceding season (t − 1) in model ( )1t tY f X −=  to 

reach color ratings of 7.0 to 8.9 during the next season (t). 

Nutrient N 
Mean SD§ LQ† HQ† 

N 
Mean SD LQ HQ 

clr g∙kg−1 clr g∙kg−1 

 Spring Summer 

N 151 3.661 0.224 36.3 44.5 267 3.266 0.147 26.3 32.5 

S 151 0.688 0.178 1.7 2.6 267 0.978 0.152 2.6 3.3 

P 151 1.623 0.222 4.9 5.7 267 1.357 0.159 4.0 4.9 

K 151 3.377 0.071 28.4 31.9 267 3.298 0.223 26.3 35.6 

Mg 151 0.652 0.104 1.8 2.1 267 0.639 0.232 1.6 2.8 

Ca 151 1.526 0.109 4.4 5.0 267 1.582 0.184 4.6 6.5 

B 151 −4.676 0.644 0.005 0.024 267 −4.075 0.249 0.016 0.022 

Fe 151 −2.122 0.242 0.096 0.153 267 −2.243 0.189 0.104 0.136 

Mn 151 −2.975 0.197 0.047 0.059 267 −3.056 0.223 0.044 0.063 

Zn 151 −3.742 0.295 0.021 0.027 267 −3.771 0.193 0.022 0.031 

Cu 151 −4.804 0.290 0.006 0.012 267 −4.689 0.269 0.009 0.013 

Fv 151 6.793 0.083 - - 267 6.715 0.088 - - 

 Autumn Overall 

N 531 3.464 0.232 28.6 40.9 949 3.440 0.247 28.6 40.9 

S 531 0.927 0.255 2.2 3.2 949 0.903 0.239 2.2 3.2 

P 531 1.497 0.165 4.2 5.5 949 1.478 0.195 4.2 5.5 

K 531 3.364 0.102 27.8 32.5 949 3.348 0.147 27.8 32.5 

Mg 531 0.535 0.095 1.7 2.1 949 0.583 0.157 1.7 2.1 

Ca 531 1.293 0.147 3.6 5.1 949 1.411 0.204 3.6 5.1 

B 531 −4.258 0.231 0.012 0.020 949 −4.273 0.387 0.012 0.020 

Fe 531 −2.247 0.191 0.098 0.131 949 −2.226 0.205 0.098 0.131 

Mn 531 −2.996 0.208 0.045 0.060 949 −3.009 0.213 0.045 0.060 

Zn 531 −3.652 0.213 0.022 0.032 949 −3.700 0.229 0.022 0.032 

Cu 531 −4.706 0.289 0.008 0.012 949 −4.717 0.286 0.008 0.012 

Fv 531 6.778 0.083 - - 949 6.763 0.095 - - 

§Standard deviation; †Lower and higher quartiles, respectively. 
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Adams [32] reported optimum N/K ratio varying between 1.0 and 1.4 and op-
timum N/P ratio in the range of 5.7 to 9.0 for turfgrass. The N/K and N/P ratios 
of TN specimens used to run Model 2 averaged 1.06 ± 0.26 and 6.69 ± 1.34, re-
spectively, across seasons. While a concept of optimum N:K:P:Ca:Mg propor-
tions in plants stable during the exponential growth of woody perennials has 
been elaborated by [36], such diagnostic approach appeared to be illusionary for 
turfgrass due to seasonal variations attributable to large seasonal variation in 
clipping removal. The highest rate of removal occurred in summer (Table 3) 
where nutrient balances were most impacted compared to spring conditions 
(Table 2).  

Nutrient standards averaged across seasons differed from those presented by 
[8] because the FP specimens were excluded by the confusion matrix to derive 
the clr standards. False positive specimens comprise cases of luxury consump-
tion or suboptimal nutrient levels leading to high aesthetic turfgrass quality de-
spite nutrient imbalance. The ML model can isolate the high-quality and nutri-
tionally balanced TN specimens in the confusion matrix. 

3.3. Steps to Conduct the Compositional Nutrient Diagnosis of  
Turfgrass 

We propose following five steps from data collection to diagnosis: 
1) Collect nutrient concentration data using the same measurement unit (g∙kg−1) 

or scale (dry matter basis) to constitute a large and diversified dataset of turfgrass 
experimental and observational data as reference file. 

2) In a separate file, organize data for the specimens under diagnosis using the 
same features and measurement units as those documented in the reference data 
set. 

3) Run the ML model to classify the diagnosed specimens into the high- (color 
rating between 7.0 and 8.9) or low-quality (outside range) categories.  

4) If turfgrass quality is declared low by the ML model, compare clr values to 
clr standards and rank the clr indices from the most negative (relative shortage) 
to the most positive (relative excess).  

5) Draw a histogram of clr indices to illustrate the diagnosis. 
 
Table 3. Seasonal changes in clipping biomass. 

Season 
Mean SD§ 

g∙m−2 

Spring 8.8 1.4 

Summer 26.3 5.8 

Autumn 15.2 7.0 

Overall 17.3 8.6 

§Standard deviation. 
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3.4. Computational Example 

Turfgrass clippings are collected on an USGA sand in the spring. The manager 
reports a fertilizer regime of 300 kg N ha−1∙yr−1, 100 kg P2O5 ha−1∙yr−1, and 300 kg 
K2O ha−1∙yr−1. Soil properties were comparable to those of the one used in the 
above experiment. The manager asks whether the fertilization could be reduced 
to prevent grass degradation, the eutrophication of surrounding ponds, and, 
overall, the apparently imbalanced or excessive fertilization and nutrient waste.  

The Orange 3.32 Machine Learning Software processed the data using ob-
ject-oriented algorithms (Figure 1). The software can be easily operated by field 
managers and crop advisers. The reference dataset is first retrieved. Variables are 
selected (select columns) as features or target to run the model. Several learners 
are available in Orange 3.32. After sampling 100% of the data, run the ML model 
using stratified cross-validation, setting the number of folds at 10. Use 40 trees to 
run xgboost. Note that data can also be divided into calibration and validation 
data sets to assess model accuracy. Data are partitioned in a confusion matrix 
(Figure 2).  

The mineral analysis of clippings is presented in Table 4. Data to be diag-
nosed are saved in a separate file. The diagnosed specimen is classified by the 
ML model as high- or low-quality specimen, and nutrients are ranked in an or-
der of limitation. The xgboost model predicted a higher probability to reach high 
than low aesthetic quality at the time of sampling the grass in the spring. Using 
Excel, the clr indices in Table 4 can be presented in a histogram to illustrate rel-
ative nutrient imbalance even if the specimens appeared to be well rated (Figure 
3). False positive specimens could be rebalanced. 
 
Table 4. Composition of clippings to be diagnosed by the ML model. 

Component 
Concentration clr clr mean 

clr SD Clr index 
g∙kg−1 unitless 

N 37.9 3.662 3.661 0.224 0.004 

S 2.7 1.011 0.688 0.178 1.815 

P 5.3 1.695 1.623 0.222 0.324 

K 28.7 3.384 3.377 0.071 0.099 

Mg 1.7 0.557 0.652 0.104 −0.913 

Ca 4.3 1.485 1.526 0.109 −0.376 

B 0.008 −4.802 −4.676 0.644 −0.196 

Fe 0.084 −2.450 −2.122 0.242 −1.355 

Mn 0.045 −3.074 −2.975 0.197 −0.503 

Zn 0.034 −3.355 −3.742 0.295 1.312 

Cu 0.007 −4.964 −4.804 0.290 −0.552 

Fv 919.2 6.850 6.793 0.083 0.687 
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Figure 1. Caneva of the orange 3.32 data mining software  
(https://orangedatamining.com/download/#windows) to diagnose the aesthetic quality of 
turfgrass stands. 
 

 

Figure 2. Confusion matrix of the ML model partitioning the predicted and the actual 
target variable (turfgrass color category) into True Negative (TN), False Negative (FN), 
False Positive (FP) and True Positive (TP) specimens. 
 

 

Figure 3. Graphical representation of nutrient ranking for an actual low-quality turfgrass. 
The clr indices are unitless. 
 

The nitrogen appeared to be well balanced (clr value near zero), yet at rela-
tively higher level under spring conditions compared to summer and autumn 
(Table 2). However, N fertilization should still sustain turfgrass aesthetic quality 
by fertilization due to high removal rate of the clippings at high N application 
rate. Tissue N tended to decrease in the summer (Table 2) due in part to higher 
rate of clipping removal that reduced N storage (Table 3). Because turfgrass re-
sponse to added N is nor-linear, achieving a color rating of 7.0 in an USGA 
sandy soil was found to be ≥245 kg N ha−1 [1], a potential gain of 55 kg N ha−1 
compared to current N management. The P and K fertilization could also be re-
duced substantially without quality loss because turfgrass was little or not res-
ponsive to P and K additions at those levels of soil test [1]. 

The apparent S excess indicated that potassium sulfate could be replaced by 
the less expensive potassium sources. Less potassium could also have a positive 
impact on Mg and Ca acquisition by the plant by alleviating antagonisms [18]. 
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Excess sulfur may also impact the transfer of metals from the roots to the shoot 
through cross-talks, depending on the plant [21]. The Zn appeared to be in rela-
tive excess and could be skipped from the fertilization program. 

4. Conclusions 

Plant nutrient diagnosis has been conducted traditionally using sufficiency ranges 
of nutrient concentrations. However, nutrients that “resonate” on each other 
within the plant system are inherently multivariate data and should be analyzed 
as combinations specific to the specimen under diagnosis. Nutrients were cen-
tered log-ratio transformed to account for nutrient inter-relationships before run-
ning the xgboost ML model. The diagnostic model combined xgboost to classify 
the diagnosed specimen and clr indices to rank nutrients in the order of limita-
tion. In contrast with the traditional diagnostic approaches, ML models can in-
clude several other features and are predictive, allowing to anticipate turfgrass 
quality one season earlier in order to adjust the fertilization program. 

The xgboost ML model was accurate in predicting turfgrass color rate based 
on prior knowledge of features documented in a reference dataset (e.g., soil tex-
ture, season, irrigation, NPK fertilization, clipping biomass and tissue nutrient 
composition). Nutrient standards were elaborated for the preceding season to 
forecast turfgrass quality in the following season and readjust fertilization accor-
dingly. Readjusting regularly the turfgrass fertilization program could be profit-
able both economically and, most importantly, environmentally. 

The dataset used in this paper was specific to a single turfgrass species grown 
on two sites and cannot be generalized to a larger diversity of playgrounds, golf 
tees, fairways and roughs, and municipal and residential lawn areas. However, 
additional experimental and observational data could be acquired collaboratively 
to build up the large and diversified data sets on nutrient requirements of turfgrass 
ecosystems needed to run ML models.  
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