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Abstract 
It is increasingly relevant to study the effects of climate change on species ha-
bitats. Using a maximum entropy model, 22 environmental factors with sig-
nificant effects on sorghum habitat distribution in China were selected to 
predict the potential habitat distribution of sorghum in China. The potential 
distribution of sorghum under baseline climate conditions and future climate 
conditions (2050s and 2070s) under two climate change scenarios, RCP4.5 
and RCP8.5, were simulated, and the receiver operating curve under. The ac-
curacy of the model was evaluated using the area under the receiver operating 
curve (AUC). The results showed that the maximum entropy model predicted 
the potential sorghum habitat distribution with high accuracy, with Bio2 
(monthly mean diurnal temperature difference), Bio6 (minimum temperature 
in the coldest month), and Bio13 (rainfall in the wettest month) as the main 
climatic factors affecting sorghum distribution among the 22 environmental 
factors. Under the baseline climate conditions, potential sorghum habitats are 
mainly distributed in the southwest, central, and east China. Over time, the 
potential sorghum habitat expanded into northern and southern China, with 
significant additions and negligible decreases in potential sorghum habitat in 
the study area, and a significant increase in total area, with the RCP8.5 scenario 
adding much more area than the RCP4.5 scenario. 
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1. Introduction 

Sorghum liquor has a long history and reputation as a unique liquor in China. 
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Sorghum is rich in starch and a small amount of protein, and is used as the raw 
material for many of China’s most famous liquors. Some of the more famous 
Chinese liquors that use red sorghum as the main raw material are the following: 
Moutai, Wuliangye, Luzhou Laojiao, and Fenjiu. 

Climatic conditions are one of the most important conditions affecting the 
geographical distribution of plants [1]. Since the 21st century, with the continuous 
progress and development of human civilization, greenhouse gas emissions have 
been increasing year by year, and the global climate has become warmer and 
warmer, which has led to corresponding changes in the survival conditions of spe-
cies [2] [3]. In recent years, the Species Distribution Model (SDM) has emerged 
[4], and many scholars have predicted and studied the trends of potential 
distribution areas of species based on climate change. By combining climate 
change and ecological niche models, SDM predicts areas with high ecological 
stability, thus demonstrating the objective law of species’ suitable develop-
mental changes, which has certain conservation significance for the suitable 
distribution of species and has important theoretical and practical signific-
ance for strengthening the management of plant diversity in hotspots. In recent 
years, as the research on species fitness under climate development changes has 
become more and more extensive, the development of species distribution models 
based on statistical algorithms and ecological niches has been rapid, and there are 
dozens of models available. The model is widely used for species distribution 
prediction, and it can predict the prediction results with high accuracy with 
fewer sample points. 

There are many specific studies based on the MaxEnt model. Wang Rulin [5] 
used the MaxEnt ecological niche model to predict the distribution area of the 
Tibetan locust, which mainly combined 23 climatic index data and topographic 
factors, and the results showed that the Tibetan locust has a high degree of habi-
tability in China, and analyzed and studied the main environmental variables af-
fecting the Tibetan locust. Li Lihe [6] used the MaxEnt model to establish the 
key monitoring area of Canada’s Lepidoptera by integrating various influencing 
factors; Xiong Qiaoli [7] used the maximum entropy model to simulate the dis-
tribution pattern under different climate scenarios and analyze the suitable areas 
for the geographical distribution of alpine vegetation in southwest China by 
combining the vegetation type map and climate variables data in China; Zhu 
Mengjie [8] used the maximum entropy model to combine the current climate 
scenario model and the geographic distribution records of civet-tailed bean 
(Uraria The maximum entropy model combined with the current climate scena-
rio model and the geographic distribution records of Uraria plants to analyze the 
climatic factors of the current fitness distribution of plants and infer their poten-
tial ranges of fitness distribution under past (LGM), current and future climate 
scenarios; Xueping Cao [9] et al. Geographic Information System (GIS) to assess 
the geographic distribution of Acanthopanax, and to study and analyze the main 
environmental factors affecting the geographic distribution of Acanthopanax 
[10].  
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In this paper, MaxEnt ecological niche modeling was selected to predict the 
nationwide distribution of sorghum fitness based on certain species distribution 
records and relevant environmental variables. 

2. Overview of the Study Area 

Sorghum, as one of the five wine grains of Wuliangye, is a traditional cereal 
crop, an annual herb of the grass family Sorghum, with multiple edible and me-
dicinal effects. The main production areas are concentrated in the northeastern 
region, eastern Inner Mongolia, and the hilly mountains of the southwestern re-
gion. The historical survey of sorghum distribution in China shows that sorg-
hum is grown in China across five climatic zones: cold temperate, temperate, 
warm temperate, subtropical, and tropical. China is a vast country with complex 
topography that spans the subtropical and northern temperate zones with vary-
ing climates. 

3. Data Sources and Research Methods 
3.1. Spatial Distribution of Sorghum Research Data 

In this paper, literature and specimen data were reviewed to obtain the distribu-
tion loci of sorghum. For this study, sorghum sample point data were selected 
from data recorded in the Chinese Herbarium (CVH, http://www.cvh.ac.cn) as 
well as the National Specimen Platform (NSII, http://www.nsii.org.cn/). The da-
ta were selected by removing specimens that were too old and trying to select 
sample points with clear records. As some of the data were recorded as approx-
imate locations without specific latitude and longitude information, they be-
longed to the surface data, which were obtained through ArcGis combined with 
Baidu maps to get the central latitude and longitude information of these surface 
data, and 128 sample points were obtained. 

As shown in Figure 1, the sorghum suitability distribution map generated in 
the current climate was compared with 128 sample point distribution data, and 
the suitability distribution map of sorghum in Arcgis 10.8 was overlaid with a 1:1 
million digital plant layer to remove distribution record points that were not 
within the sorghum suitability distribution area. In addition, the distribution 
points were subjected to buffer analysis and 128 data sample points were proo-
fread and screened to finally identify 108 sorghum distribution points [11]. 

3.2. Predictive Environmental Factors 

Climate factors are widely used as important environmental variables and mod-
eling references in biodistribution prediction [12]. In this study, a total of 22 
predictive environmental factors related to sorghum distribution were selected, 
of which 19 climatic factors represent mainly temperature and precipitation and 
seasonal variation characteristics [13], and the other three are topographic fac-
tors mainly containing elevation slope slope direction. The WorldClim climate 
dataset (version 1.4) is the highest resolution climate data publicly available, and  
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Figure 1. Distribution of sample points. 

 
the current (year 2000) 19 climate factors and future climate factors (2050s and 
2070s) for different emission scenarios with a resolution of about 1 km were ob-
tained from the WorldClim website. Topographic data were obtained from the 
National Geographic. The topographic data were downloaded from the National 
Geographic Data Cloud SRTM dataset (version 4.1) with a resolution of 30 m. 
The topographic factors of elevation, slope, and slope direction were extracted 
using the 3D Analyst tool in ArcGIS 10.8.1 software. 

Using ArcGIS 10.8.1, the 22 environmental factor raster data were processed 
separately into a transformed format and unified to the same coordinate system, 
same range, and 1kmx1km resolution. 

There are certain correlations among environmental factors [14]. In correla-
tion analysis, the correlation coefficient is a quantity that describes the degree 
and direction of the prevailing relationship. Correlation analysis refers to the 
analysis of two or more variable elements with correlation, so as to measure the 
correlation degree of two variable factors. Correlation analysis can be carried out 
only when there is a certain connection or probability between the elements of 
correlation. It is generally expressed as r. Generally, an absolute value of r is great-
er than 0.95 represents the presence of a significant correlation, and an absolute 
value of r is greater than 0.80 is highly correlated. Highly correlated environmental 
factors are highly likely to be over-fitted, which will increase the AUC value in 
prediction, so correlation analysis and screening of environmental variables should 
be performed.  

As shown in Table 1, according to the study in this paper, Pearson correlation 
analysis was performed on 22 environmental variables by SPSS software to cal-
culate the correlation coefficient matrix between variables, remove variables with 
little biological significance in the group of significantly correlated variables, and 
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establish independent and biologically significant environmental variables [15]. 
The final 12 climate factors were identified as Bio2 monthly mean diurnal tem-
perature difference, Bio3 ratio of diurnal temperature difference to annual tem-
perature difference, Bio4 standard deviation of temperature seasonal variation, 
Bio5 maximum temperature in the hottest month, Bio6 minimum temperature 
in the coldest month, Bio9 mean temperature in the driest quarter, Bio13 rainfall 
in the wettest month, Bio14 rainfall in the driest month, Bio15 variance of rain-
fall Bio16 wettest quarter rainfall, Bio18 warmest quarter average rainfall, Bio19 
coldest quarter average rainfall for modeling. 

 
Table 1. Correlation matrix of bioclimatic variables. 

 
bio_1_ 
Band_1 

bio_2_ 
Band_1 

bio_3_ 
Band_1 

bio_4_ 
Band_1 

bio_5_ 
Band_1 

bio_6_ 
Band_1 

bio_7_ 
Band_1 

bio_8_ 
Band_1 

bio_9_ 
Band_1 

bio_10_ 
Band_1 

bio_11_ 
Band_1 

bio_12_ 
Band_1 

bio_13_ 
Band_1 

bio_14_ 
Band_1 

bio_15_ 
Band_1 

bio_16_ 
Band_1 

bio_17_ 
Band_1 

bio_18_ 
Band_1 

bio_19_ 
Band_1 

bio_1_ 
Band_1 

Pears
on 

1 
                  

bio_2_ 
Band_1 

Pears
on 

−0.867** 1 
                 

bio_3_ 
Band_1 

Pears
on 

0.758** −0.729** 1 
                

bio_4_ 
Band_1 

Pears
on 

−0.295** 0.135 0.317** 1 
               

bio_5_ 
Band_1 

Pears
on 

0.948** −0.794** 0.715** −0.406** 1 
              

bio_6_ 
Band_1 

Pears
on 

−0.308** 0.695** −0.354** −0.291** −0.142 1 
             

bio_7_ 
Band_1 

Pears
on 

−0.938** 0.962** −0.839** 0.129 −0.906** 0.520** 1 
            

bio_8_ 
Band_1 

Pears
on 

0.955** −0.837** 0.825** −0.258** 0.982** −0.215* −0.946** 1 
           

bio_9_ 
Band_1 

Pears
on 

−0.293** 0.676** −0.302** −0.008 −0.245* 0.757** 0.523** −0.311** 1 
          

bio_10_ 
Band_1 

Pears
on 

−0.933** 0.963** −0.770** 0.195* −0.881** 0.536** 0.976** −0.912** 0.552** 1 
         

bio_11_ 
Band_1 

Pears
on 

−0.496** 0.839** −0.521** −0.197* −0.341** 0.957** 0.692** −0.428** 0.820** 0.707** 1 
        

bio_12_ 
Band_1 

Pears
on 

−0.943** 0.972** −0.771** 0.233* −0.915** 0.518** 0.992** −0.938** 0.542** 0.983** 0.692** 1 
       

bio_13_ 
Band_1 

Pears
on 

−0.884** 0.777** −0.790** 0.038 −0.771** 0.349** 0.833** −0.821** 0.244* 0.830** 0.513** 0.816** 1 
      

bio_14_ 
Band_1 

Pears
on 

−0.677** 0.658** −0.459** 0.305** −0.609** 0.257** 0.640** −0.634** 0.380** 0.664** 0.439** 0.665** 0.799** 1 
     

bio_15_ 
Band_1 

Pears
on 

−0.679** 0.605** −0.664** −0.218* −0.464** 0.440** 0.622** −0.544** 0.161 0.666** 0.536** 0.591** 0.822** 0.521** 1 
    

bio_16_ 
Band_1 

Pears
on 

0.675** −0.544** 0.751** 0.287** 0.538** −0.327** −0.637** 0.604** −0.063 −0.618** −0.407** −0.583** −0.700** −0.191* −0.802** 1 
   

bio_17_ 
Band_1 

Pears
on 

−0.804** 0.716** −0.607** 0.259** −0.732** 0.240* 0.742** −0.758** 0.283** 0.747** 0.427** 0.753** 0.908** 0.959** 0.621** −0.373** 1 
  

bio_18_ 
Band_1 

Pears
on 

−0.668** 0.599** −0.634** −0.199* −0.445** 0.447** 0.605** −0.522** 0.150 0.654** 0.541** 0.579** 0.817** 0.527** 0.992** −0.789** 0.622** 1 
 

bio_19_ 
Band_1 

Pears
on 

−0.752** 0.682** −0.573** 0.315** −0.730** 0.171 0.714** −0.752** 0.360** 0.713** 0.376** 0.728** 0.830** 0.943** 0.474** −0.270** 0.962** 0.471** 1 

** was significant correlation at the 01 level (bilateral). * was significantly correlated at the 0.05 level (bilateral). 
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3.3. Future Climate Scenario Data 

In this paper, the distribution of sorghum under future climate scenarios is 
modeled using two GHG emission scenarios, the medium GHG emission scenario 
(RCP4.5) and the highest GHG emission scenario (RCP8.5). The RCPs (Repre-
sentative Concentration Pathways), as new climate change scenarios, contain four 
scenarios ( SRES (Special Report on Emissions Scenarios, SRES), a climate sce-
nario used in past studies, focuses more on future changes in greenhouse gas 
emissions than the RCPs scenario. It also combines greenhouse gas emissions 
with climate change, and has a stronger scientific and accurate prediction of fu-
ture climate change. 

Future climate scenarios for the years 2050s and 2070s were chosen for this 
study. The corresponding 19 climate factors for 2050s and 2070s are the average 
of the climate factor data for the decade 2041-2060 and 2061-2080, respectively. 
Under the RCP4.5 scenario, the annual mean temperature in the 2050s study 
area increases by 2.71˚C and the annual precipitation increases by 61.82 mm, 
respectively, compared with the base year. In the RCP8.5 scenario, the mean 
annual temperature in the 2050s study area increases by 3.55˚C and the annual 
precipitation increases by 70.41 mm. The mean annual temperature in the 2070s 
study area increases by 5.52˚C and the annual precipitation increases by 84.58 
mm compared to the base year. 

3.4. Model Simulation and Evaluation 

In this paper, the Maxent model was selected to predict the sorghum fitness dis-
tribution under different climate patterns. The model has the advantages of sim-
ple modeling, accurate prediction, and high stability, and is widely used in sev-
eral research areas. 

Research related to species distribution models has developed rapidly in re-
cent years, and several distribution prediction models that are currently widely 
used are mainly as follows. First is the bioclimatic (Bioclim) model [16], the Bi-
oclim model as the earliest species distribution model, the early application of 
the MaxEnt model has a great relevance [17], the disadvantage of this model is 
that it is only suitable for some species and has limitations for some species bio-
logical categories, the advantage is that the simulation results are more accurate 
in the case of specific ecological amplitude and environmental characteristics 
[17] [18]; followed by the regional environmental (Domain) model [19], which 
has the disadvantage of requiring a high level of specialized knowledge, requir-
ing subjective judgment thresholds, and low requirements for objectivity, lead-
ing to unstable accuracy of simulation results; followed by the genetic rule set 
(GARP) model: the disadvantage of the GARP model is its high sample size re-
quirements and poor simulation results [20]; CLIMEX is a climate specific tool 
that assesses region-specific adaptation of target species in terms of climate 
change and predicts potential distribution, climate similarity and seasonal phe-
nology [21]. 
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The MaxEnt model helps one to adapt environmental variables such as land 
cover, distance and geographical factors and to evaluate the contribution of each 
variable [22]. The MaxEnt model has more advantages than several traditional 
species distribution models, which are based on certain algorithms to project the 
ecological requirements of species and combine different climate scenario mod-
els to make scientific predictions of suitable species distribution areas, with high 
objective accuracy of the prediction results and without restricting species cate-
gories, which can be predicted with less data on sample points [13]. 

In this study, MaxEnt 3.4.1 maximum entropy model prediction software was 
used to model the data and ArcGis software was used to analyze the data. Max-
Ent software was used to load the sorghum sample point distribution data in 
CSV format and the processed environmental factor data, and the proportion of 
distribution points in the test set was set to 25% (testing data) and the propor-
tion of distribution points in the training set was set to 75% (training data), and 
the contribution of each climate factor to the model in the prediction was ana-
lyzed using the Jackknife method (Jackknife). The contribution of each climate 
factor to the model was analyzed using the Jackknife method. The accuracy was 
evaluated using the receiver operating characteristic curve (ROC), and the area 
under the ROC curve is the AUC value. The AUC value is independent of the 
diagnostic threshold and has a low sensitivity to species occurrence, and is cur-
rently recognized as the best model predictor. The correlation between the envi-
ronmental variables and the distribution model is positively correlated, and 
when the AUC value is greater than 0.8 it indicates that the prediction results are 
quite accurate [14] [23]. The AUC value evaluation the model was evaluated 
with reference to the following criteria: 0.90 - 1.00, excellent; 0.80 - 0.90, good; 
0.70 - 0.80, fair; 0.60 - 0.70, poor; 0.50 - 0.60, failure [12]. 

Model simulations generated species presence probability raster plots as si-
mulation results, with values within 0 - 1. Values closer to 0 indicate a lower proba-
bility of presence at the point, while the opposite indicates a high probability of 
species presence at the point [11]. In this study, the probability value P (P = 
0.32) was used as a threshold [24] to classify sorghum habitats as highly suitable 
(P ≥ 0.5), suitable (0.32 < P < 0.5), and non-suitable (P < 0.32) [11]. 

4. Research Results 
4.1. Current Potential Habitat Distribution of Sorghum 

As shown in Figure 2, Contemporary climatic conditions of sorghum are mainly 
distributed at 22˚ - 44˚N and 103˚ - 125˚E, and the above suitable distribution 
areas coincide with the distribution of actual sorghum specimen sites. The spe-
cies presence probability raster map showed a suitable habitat distribution area 
of 229.677413 (in Decimal Degrees), and the results of sorghum suitability dis-
tribution under the current climate scenario model showed that about 40% of 
the areas in China are suitable for sorghum growth with a large suitability area, 
with the Golden Triangle of Baijiu (Yibin, Guizhou, and Luzhou) being located  
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Figure 2. Suitable distribution areas for sorghum. 

 
in areas with high suitability. To further analyze the suitability of potential habi-
tats, the suitable habitats for sorghum were classified into the most suitable ha-
bitats (P > 0.5) and medium suitable habitats [25] (0.32 < P < 0.5). The high 
suitable areas are mainly distributed in southwest, central and east China. It 
starts from the central part of Sichuan Province in the west and covers Chongq-
ing City in the east, Hunan, Anhui, Jiangsu and Shandong Provinces, and is also 
present in large areas in Guizhou, Hebei, Zhejiang, Henan and Hubei Provinces. 
The distribution of the general fitness zone is more continuous compared with 
that of the high fitness zone, and since the distribution of the high fitness zone 
spreads like north and south, covering the eastern part of southwest China, 
south, central and east China, and a small part of north China. Shaanxi Province, 
Shanxi Province, Hebei Province, Liaoning Province, Guangxi Zhuang Auto-
nomous Region, Guangdong Province, Jiangxi Province and Fujian Province are 
all located within the distribution of the general fitness zone. 

4.2. Analysis of Important Factors Affecting Potential Sorghum  
Habitat Distribution 

As shown in Figure 3, the results of the knife-cut test showed that Bio2 (monthly 
mean diurnal temperature difference), Bio6 (minimum temperature in the cold-
est month), Bio13 (rainfall in the wettest month) and Bio14 (rainfall in the driest 
month) were prominent in the gain of the tested variables. 

As shown in Figure 4, the monthly mean diurnal temperature difference is 
the sum of the diurnal difference in daily temperature for a given month divided 
by the number of days. The response curves of the monthly mean diurnal tem-
perature difference and the probability of existence are as follows: The results 
show that the probability of existence remains at a certain level when the monthly 
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Figure 3. Knife cut method to test the importance of environmental variables on the distribu-
tion of sorghum. 

 

 
Monthly average diurnal temperature difference Minimum temperature in the coldest month (unit: ˚C*10) 

 
Rainfall in the wettest month (mm)                         Rainfall in the driest month (mm) 

Figure 4. Response curves of important environmental variables. 
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mean diurnal temperature difference is less than 69, and after the mean value 
exceeds 69, the probability of existence drops sharply and the diurnal tempera-
ture difference is too large for the growth of sorghum. The minimum tempera-
ture in the coldest month remained positively correlated with the probability of 
existence, and as the temperature increased, the probability of existence in-
creased to 17˚C when the probability of existence was maximum and the proba-
bility of existence then remained constant. The response curves for rainfall and 
probability of presence in the wettest month indicate that sorghum growth is 
appropriate when precipitation in the wettest month ranges from 130 mm to 410 
mm, with a positive correlation from 130 mm to 180 mm and a negative correla-
tion when precipitation is greater than 180 mm. Combined with the relationship 
between precipitation and temperature, when precipitation is not higher than 
180 mm and the minimum temperature is greater than minus ten degrees, the 
probability of existence of the genus is greater than 0.32, meeting the minimum 
fitness conditions. When the rainfall in the driest month was between 10 mm 
and 52 mm, the probability of existence was greater than 0.5, and the fitness 
probability was high. 

As shown in Table 2, the 13 environmental variables were ranked in des-
cending order according to the contribution and importance of the variables in 
the output results. The top four were rainfall in the wettest month, rainfall in the 
driest month, the ratio of diurnal temperature difference to annual temperature 
difference, and minimum temperature in the coldest month, and these four en-
vironmental variables contributed 86.2% to the model, accounting for 29.5%, 
27.5%, 27.5%, and 14.2%, respectively. The contribution of precipitation to the 
model was higher than the temperature-related variables, and the environmental 
factors that contributed less than 1% were altitude 0.8%, Bio5 maximum tem-
perature in the hottest month 0.8%, Slope slope 0.8%, Bio15 rainfall variance 
0.5%, and slope direction 0.3%, which shows that the importance of temperature 
and humidity on the distribution of suitable areas for sorghum is much greater 
than the influence of topographic factors on suitable areas This shows that tem-
perature and moisture have a much greater impact on the distribution of suita-
ble areas for sorghum than topographic factors on the suitable areas. 

4.3. Changes in Spatial Distribution Patterns of Sorghum under  
Climate Change 

The fitness results under the four climate models were reclassified using ArcGIS 
10.8.1 software [26], and the results under each of the four climate models were 
overlaid with the current fitness results for mapping, resulting in a map of fit-
ness changes under the four climate scenarios, as shown in Figure 5. As can be 
seen from the figure, compared to the suitability distribution area under the 
current climate model, the divisional change map under the future climate sce-
nario model more clearly shows that the suitability area of sorghum increases 
more significantly and shows a northward expansion. Most of the suitable areas 
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remain unchanged, a small number of suitable areas are lost, and the lost areas 
are scattered in southern China, with an overall trend of expansion of suitable 
areas. 

 

 
 

 
 
 

 
Figure 5. Distribution of suitable sorghum habitats under different climatic conditions. 
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Table 2. Contribution and importance ranking of variables in MaxEnt output results. 

Climate variables describe Contribution rate 

Bio13 Rainfall in the wettest month 29.5% 

Bio14 Rainfall in the driest month 27.5% 

Bio3 Ratio of diurnal temperature difference to annual temperature difference 15% 

Bio6 Lowest temperature in the coldest month 14.2% 

Bio2 Monthly mean temperature difference between day and night 4.9% 

Bio9 Average temperature in the driest quarter 2.4% 

Bio19 Coldest season precipitation 1.9% 

Bio4 Standard deviation of seasonal variation of temperature 1.2% 

Alt altitude 0.8% 

Bio5 Highest temperature in hottest month 0.8% 

Slope slope 0.8% 

Bio15 Variance of rainfall variation 0.5% 

Aspect Slope direction 0.3% 

4.4. Changes in Sorghum Range Area under Climate Change 

Using ArcGIS10.8 to rank future sorghum suitable habitats according to the (P > 
0.32) criteria, the changes in the area of suitable areas and the percentage of 
them were counted, and Table 3 shows that climate change has a great impact 
on the distribution of sorghum habitats. By comparing the change in area of 
suitable sorghum habitat at different stages and under different emission scena-
rios, it was concluded that the overall area of sorghum habitat showed an in-
creasing trend. 

A comparison of the suitable area under the future climate model with the 
current suitable area shows that the suitable area for sorghum under both future 
climate scenarios increases significantly, and the area increases more signifi-
cantly under the high concentration emission scenario, while the reduction in 
suitable area is few, and the total area shows a significant increase. The addition-
al area showed less variation in extent between projection time periods for the 
same future emission scenarios. Compared to contemporary times, the most sig-
nificant rate of additions was found in the 2070s under the RCP8.5 emission 
scenario, reaching 26.56%, with most of the new areas spreading to the north 
and a small portion of new areas in southern China. The total suitable habitat 
area for sorghum increased by 12.82% and 15% in the 2050s and 2070s phases, 
respectively, in the RCP4.5 scenario, and by 20.8% and 26.56% in the 2050s and 
2070s phases, respectively, in the RCP8.5 scenario, with a significantly higher 
increase in the total suitable habitat area for sorghum than in the RCP4.5 scena-
rio. 
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Table 3. Variation in sorghum area under different climate scenarios (in Decimal Degrees). 

Climate scenario Comparison period Increase in habitat Decrease in habitat Total habitat growth 

RCP4.5 now-2050s 29.436698 2.469239 26.967459 

RCP4.5 now-2070s 34.50024 6.390336 28.109904 

RCP8.5 now-2050s 47.807343 1.705689 46.101654 

RCP8.5 now-2070s 61.012129 4.018414 58.993715 

5. Discussion 
5.1. Sorghum Distribution in Relation to Environmental Factors 

In the future, with global warming, the sorghum suitability pattern changes sig-
nificantly and the area of suitability increases significantly. In this study envi-
ronmental data as an important factor influencing sorghum fitness distribution, 
temperature, humidity, and topographic data all have an impact on the geo-
graphic distribution of sorghum. The ranking of contribution and importance 
showed that rainfall was more important in the wet and dry months, while the 
results of the knife cut test showed that the temperature factor was more impor-
tant. In this case, the wettest month has precipitation between 130 mm and 410 
mm for sorghum growth. When the precipitation is not higher than 180 mm and 
the minimum temperature is greater than minus ten degrees, the genus has a 
probability of existence greater than 0.32 and meets the minimum fitness condi-
tions. When the rainfall in the driest month was between 10 mm - 52 mm the 
probability of existence P value was greater than 0.5 and the probability of fitness 
was high. The presence probability is high when the monthly average value of 
diurnal temperature difference is less than 69, and the presence probability is 
highest when the minimum temperature is up to 17˚C in the coldest month. 

Drought and flood tolerance as characteristics of sorghum are sensitive to 
both temperature and moisture. The results of this study showed that tempera-
ture and precipitation environmental variables contributed 86.2% to the model, 
with rainfall in wet and dry months affecting sorghum habitat distribution by as 
much as 57%, fully demonstrating that sorghum is heat tolerant but not cold to-
lerant, and in the selection of habitat, try to avoid places with high low tempera-
tures and humidity. 

5.2. Accuracy Evaluation of Simulation Results 

This study used sample data from the Chinese Natural Herbarium and Botanical 
Library combined with the MaxEnt model ecological niche modeling to establish 
a predictive map of the distribution of sorghum suitability zones across the 
country. A comprehensive analysis of the ecological characteristics affecting 
sorghum was conducted and the distribution of sorghum suitability areas was 
obtained visually. The maximum entropy model was validated by ROC curve 
analysis, and the ROC curve was relatively close to 1. The AUC value for the 
training model dataset was 0.881, and the AUC value for the test dataset was 
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0.841, indicating good prediction results. 
In this study, nineteen climatic factors and three topographic factors were used 

to model the main effects of climate change on the distribution of sorghum in 
China. However, the conditions of species present are quite complex and there are 
likely to be some environmental factors of species presence that we do not know 
at present. This study has not yet considered the effects of soil, water quality, and 
community environment elements on sorghum growth and some stochastic fac-
tors. From the analysis of the modeling results, it was determined that the habi-
tat of sorghum suitable for growth is similar to that of known sorghum, but this 
determination is not absolute and does not necessarily mean that sorghum exists 
in this area. Environmental factors and climatic conditions are not static, and the 
survival dynamics of any one species can change. In addition, the prediction re-
sults may vary depending on the climate scenario model selected [27]. In sum-
mary, multiple realistic factors need to be fully considered in future studies to 
make the prediction results more accurate. 
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