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Abstract 
Linear programming is a method for solving linear optimization problems 
with constraints, widely met in real-world applications. In the vast majority of 
these applications, the number of constraints is significantly larger than the 
number of variables. Since the crucial subject of these problems is to detect 
the constraints that will be verified as equality in an optimal solution, there are 
methods for investigating such constraints to accelerate the whole process. In 
this paper, a technique named proximity technique is addressed, which under 
a proposed theoretical framework gives an ascending order to the constraints 
in such a way that those with low ranking are characterized of high priority to 
be binding. Under this framework, two new Linear programming optimiza-
tion algorithms are introduced, based on a proposed Utility matrix and a util-
ity vector accordingly. For testing the addressed algorithms firstly a generator 
of 10,000 random linear programming problems of dimension n with m con-
straints, where m n , is introduced in order to simulate as many as possible 
real-world problems, and secondly, real-life linear programming examples 
from the NETLIB repository are tested. A discussion of the numerical results 
is given. Furthermore, already known methods for solving linear program-
ming problems are suggested to be fitted under the proposed framework. 
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1. Introduction 

A linear programming (LP) problem can be described mathematically by the 
following general form: 
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                       (1) 

where z the given objective function, ( )T
1 2, , , nc c c c=  , ( )T

1 2, , , nx x x x=  , 

m n ijA a×  =    and ( )T
1 2, , , mb b b b=  , , ,ij j ia c b ∈ , 1,2, ,i m=  ,  

1,2, ,j n=   and *,m n∈  [1]. 
While formulating real-world LP problems, extra constraints usually are add-

ed besides the necessary ones, in order to avoid losing some useful information 
[2]. As a result, a plethora of redundant constraints exist, and not all of the con-
straints contribute to the detection of an optimal solution. The issue that must 
be faced is to avoid the usage of redundant information existing in the constraints. 
During the last six decades, due to the important role of LP problems both in 
theory and practice, attempts have been made by many researchers, regarding to 
either eliminate the redundant constraints or the detection of the binding ones 
in order to contribute to the reliability of the utilized algorithm to solve the 
problem and to save resources and computational time. 

The importance of focusing on binding constraints in order to achieve the 
above objectives is of major importance in real-world LP problems, where re-
sources are limited and constraints may vary. Identifying the binding constraints 
allows us to optimize the decisions by making more efficient use of available re-
sources. An example of a real-world LP problem considers the optimal allocation 
of resources among different products in order to maximize a company’s overall 
profit, where the variables correspond to the quantities produced of each prod-
uct, while constraints refer to the available resources, such as available workers, 
materials and equipment. To achieve maximum profit, the optimal allocation of 
these resources to each product must be found, taking into account the quanti-
ties of labour, materials and equipment required to produce each product. 

In the present paper, the LP problem is dealt with a proposed criterion, named 
proximity criterion. The innovative idea is based on [3], which is referred to 
two-dimensional LP problems. This criterion focuses on ranking the constraints 
according to the greater possibility to be binding by making use of a simple com-
parison process between the coefficients of the objective function and the coeffi-
cients of the constraints. The key idea is to take into account the proximity be-
tween the coefficients of the objective function and the coefficients of the con-
straints for every variable of the given LP problem. The direct use of the values 
of the coefficients of the constraints and of the objective function is avoided and 
the proposed methods do not be affected by the accuracy of the arithmetic opera-
tions. The constraints having their coefficients as close as possible to the coefficients 
of the objective function have the greatest possibility of being the binding ones. 

The proposed technique, named proximity technique, uses a matrix, named 
Utility matrix, to create indices per variable and per constraint and a ranking 
procedure that is based on this Utility matrix. Summarizing the information per 
each row of the Utility matrix a vector, named Utility vector, is proposed. Based 
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on the Utility matrix and Utility vector, correspondingly, two algorithms are in-
troduced and a proposed mathematical framework including both of them is pre-
sented. It is worth mentioning that the proposed algorithms are able to deal with 
LP problems with coefficients ,i ja  that are positive, negative or zero. The two 
presented algorithms are directly compared in terms of the numerical results 
with the algorithms RAD and GRAD [4] [5] [6] [7] [8]. Those two algorithms 
derive more information from the constraints and less information from the ob-
jective function. Our two algorithms make use of the proximity between the coef-
ficients of the constraints and those of the objective function. The approach here 
is this of the nonparametric statistics: By making use of the vectors’ ranking, in-
stead of their arithmetic values, it is impossible to deal with issues of arithmetic 
nature such as the precision of the operations. In other words, because of the 
simplicity of the arithmetic procedure, it is also possible to avoid arithmetic er-
rors. It is worth noticing that with the proposed technique, it is possible that 
some terms for ( )T

1 2, , , mb b b b=  , are equal to zero. Last but not least, under 
the notion of the proposed utility matrix, known methods such as those referred 
to in [9] and [10] can be formulated under the proposed framework. 

As has already been mentioned in many real-world problems, the number of 
constraints is much larger than the number of variables, thus the problems are 
more complicated. A generator of random linear programming problems with 
many constraints may represent the complexity of such problems. 

In the rest of the paper, in Section 2 a concise literature review to establish the 
current state of research in LP problems for handling binding and redundant 
constraints, is presented. In Section 3 the proposed mathematical framework 
and the new algorithms under this, are presented. In Section 4 an analytic step- 
by-step example for each of the new algorithms is given. In Section 5 firstly a 
way to create the random LP problems used for testing the effectiveness of the 
proposed algorithms is presented. In the same Section, the proposed algorithms 
are tested in well-known benchmarks (netlib problems), that in their majority 
make use of sparse matrices [11] [12]. Then, a discussion of these results is in-
troduced via hierarchical regression trees. Moreover, in the same Section, a proper 
fitting function is given. Finally, in Section 6 conclusions for the present paper 
and proposals for further research are described. 

2. Literature Review   

In [13] during progressively solving an LP problem with the simple method, 
having a feasible solution, it is estimated whether a constraint that does not par-
ticipate yet in this solution is redundant or not. In [14] a theorem is presented 
concerning whether a constraint is redundant or not in a specific LP problem. In 
[15], Gal proposed a procedure for the determination of redundant constraints 
when the nearby vertex is degenerated. 

In [10] the theorem given in [14] is used and the method classifies the con-
straints according to decreasing cos iθ , where iθ  is the angle between the i-th 
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constraint and the objective function. Moreover, the vector b is not taken under 
consideration for the classification, thus it is not affected by whether the initial 
LP problem is a minimization or a maximization one. In [16] [17], by using a ra-
tio of ib , ic  and ija , a constraint is classified either in the group of redundant 
constraints or the binding ones. This ratio expresses the contribution of the va-
riable ix  of this constraint in the maximum change (that arises when the con-
straint applies as equality) of the objective function. In [18] a method for finding 
solutions to LP problems using some of the constraints by a heuristic approach 
is proposed. 

In [2] [9] [19] new approaches that gradually add constraints to the given 
problem in order to solve and simultaneously alleviate the redundant constraints 
to LP problems, are addressed. The proposed method in [20] utilizes the bounds 
of the variables whenever it is possible in order to define redundant constraints. 
In [21] [22] techniques for removing redundant rows and columns utilizing ro-
bust bounds are proposed by making parallel use of the dual LP problem; in [23] 
a method is proposed for reducing time and for more data manipulation for the 
above techniques. 

Moreover, there is a class of methods comparing the ratios kj sja a  and k sb b  
concerning two constraints k, s, in order to investigate the redundancy [24] [25]. 
In addition, in [26] [27] heuristic methods have been proposed to identify the re-
dundant constraints in order to alleviate them for the solution process of the LP 
problem. In [28] [29], a comparison is presented between the heuristic method 
presented in [26] and Llewellyn’s rules [24]. Finally, in [30] the ratio 1

n
i ijjb a

=∑  
is used for each constraint. Constraints are ranked in ascending order according 
to the distance that this ratio has from the average of the ratios of all constraints. 
From the above, it can be observed that a lot of the research work concerns the 
identification of redundant constraints although binding constraints are the re-
quired ones as they determine the solution of the problem. A very good idea was 
presented in [4] [5] [6] [7] [8] [10] where an effort was made to locate the bind-
ings, by observing the angles that form the constraints with the objective func-
tion. 

In [3] using the sign of slopes of the constraints and the slope of the objective 
function, it becomes noticeable that the possibility for a constraint to be binding is 
reduced as the difference between its slope and the slope of the objective function 
becomes larger. In [31] the idea presented in [3] was generalized for n-dimensional 
LP problems. It presents a way of classifying the constraints based on the ratio of 
the coefficients ijα . In [32] a combination of the proximity technique, with the 
one proposed in [30] is developed, in order to derive a new ranking using the 
minimum or the average or the geometric mean of the ranking numbers of the 
constraints. 

3. The Proposed Methodology  

This section discusses a new technique, called proximity based on a proposed 
criterion, called the proximity criterion. This technique ranks the constraints by 
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prioritizing those that are more likely to be binding. Two new algorithms are in-
troduced with the proposed technique. 

3.1. Definitions 

Before the detailed presentation of the proximity technique, the basic necessary 
definitions are presented: 

Definition 1. A feasible solution is a solution for which all the constraints are 
satisfied [33].  

Definition 2. The feasible region is the area   denoted by all the feasible 
solutions [33].  

Definition 3. The optimal solution of an LP problem is the solution for which 
all the constraints of the problem are satisfied and which gives the maximum 
value of the objective function if we are referring to a problem of maximization 
and the minimum value for a problem of minimization, accordingly [33].  

Definition 4. A constraint on an LP problem is called redundant if its remov-
al from the list of constraints does not change the feasible area of the problem 
[34].  

Definition 5. A constraint is called weakly redundant if it is redundant and its 
boundary touches the feasible region [15] [35].  

Definition 6. The binding constraint is a constraint of an LP problem, for 
which equality in an optimal solution point applies [33] [34].  

3.2. The Proximity Criterion 

The key idea for the proposed criterion is to use the proximity between the coef-
ficients of the objective function and the corresponding coefficients of the con-
straints. Proximity has the advantage of having no cost and of not being complex 
while making comparisons and can be used in LP problems with a very large 
number of constraints. In order to define the proximity of each constraint with 
the objective function, a norm   is required. The proposed criterion, named 
proximity criterion, applies as follows: 

Definition 7. Proximity criterion: rank the constraints of an LP problem, 
based on the norm   between the coefficients jc  1, ,j n=   of the objective 
function and the coefficients of each constraint i, for 1, ,i m=  .  

3.3. The Framework 

The proposed framework under which LP algorithms focus on the detection of 
redundant or binding constraints is presented. In this specific framework, both 
the already existing algorithms referred to in [9] and [10] as well as the newly 
proposed ones can be included. For the setting of this framework, the following 
definitions are given: 

Definition 8. The Utility matrix U is a matrix with its elements to be norms. 
For the calculation of each element of the matrix U, it is possible to use data 
from matrix A, and vectors c and b given in Equation (1).  
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Definition 9. The Ranking matrix m nR ×  is the matrix having as elements the 
rankings that arise from the elements of the Utility matrix U taken either by 
rows or by columns.  

Definition 10. The Ranking vector mV  is the vector having as elements the 
rankings that arise from the Utility matrix U by applying a norm for each row of U.  

Due to the above definitions, the matrix used by Corley [10] is considered to 
be the Utility matrix: 

ij i
ij

i

a c
U u

a c
 = =  ⋅

 

Furthermore, the method presented in [10] may be considered to be the Rank-
ing Vector that reveals the position in descending order of the sum of the ele-
ments of each row of the Utility Matrix. 

Likewise, based on the definitions above, the Utility matrix that corresponds 
to the method presented at [9] is: 

i
ij

ij

bU u
a

 = =   

and the method presented at [9] may be considered to be the Ranking Vector 
that reveals the position in ascending order of the sum of the elements of each 
row of the Utility Matrix. 

3.4. The Proposed Technique 

For the implementation of the proposed technique two algorithms are presented 
where the utilized Utility matrices U are defined as follows: 

Definition 11. The PRMac Utility matrix is a Utility matrix PRMacU  with 
elements iju  given by: 

, 1,2, , ; 1,2, ,ij ij ju a c i m j n= − ∀ = = 
             (2) 

Definition 12. The ranking matrix m nR ×  of a Utility matrix PRMacU  is de-
fined as the matrix where each element ijr , for 1, ,i m=   and 1, ,j n=  , 
presents the ranking position of the element iju  for each j-th column of the 
matrix PRMacU , in ascending order.  

Definition 13. The ranking vector mRV  is defined as:  

 ( )
1

, 1, ,
n

i i ij
j

rv w u i m
=

= ⋅ =∑                     (3) 

where iw  is the ranking of the coefficients c of the objective function in des-
cending order.  

3.5. The Proximity Ranking Matrix (PRMac) Algorithm  

In the first of the two proposed algorithms, named Proximity Ranking Matrix 
(PRMac), the Utility matrix given in Definition 11 is used. Specifically, the pre-
sented algorithm takes under consideration for each constraint the proximity of 
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ija  to the corresponding jc , for 1, ,j n=  . The rising ranking indicates the 
possibility each constraint has to be binding. The constraints with smaller rank-
ings are assumed to the more likely to be the binding ones. Especially for the 
equality constraints, since they are classified to be binding in advance, they 
should receive a 1rank =  for every coordinate. In the proposed algorithm, the 
step-by-step procedure presented in [9] is utilized and the constraints are in-
serted by groups according to their ranking. 

Specifically, the proposed algorithm gradually puts into classes the constraints 
of the LP problem, in order to solve a smaller problem, by considering the rank-
ing of each variable. For this scaled insertion, the order given by the ranking 
matrix is taken under consideration, thus the smaller rankings per each variable 
are prioritized. During this insertion, the constraints that have not been used are 
checked according to their ranking, whether they are satisfied or not. In case 
they are satisfied, by making use of the Theorem 3.1 presented in [14], the solu-
tion that has been found is not affected. In the opposite case, they must be added 
to the existing system and a new solution point is searched. Thus, progressive 
insertion of the useful constraints for solving the given LP problem is taking 
place, by classifying the constraints according to the possibility to be binding. As 
the process evolves, the majority of the remaining constraints are utilized for the 
verification of an optimal solution. As a result, the minority of the remaining 
constraints is expected to be used in the solving procedure of the given LP prob-
lem. 

The proposed algorithm PRMac, is presented in Algorithm 1. 
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3.6. The Proximity Ranking Vector (PRVac) Algorithm  

A different approach is the information that arises from each line of the utility 
matrix by making use of the PRMac algorithm, to be substituted from a number. 
Thus, the matrix is substituted from a vector. In order to accomplish this, tech-
niques that calculate the norms of the vectors can be used, for instance  

1 2, , ,L L L∞  or statistical indicators like mean, median, geometric mean, har-
monic mean, etc. By making use of the same information as in the PRMac algo-
rithm, the new proposed algorithm, named Proximity Ranking Vector (PRVac) 
transforms the Utility matrix PRMacU  to a proximity vector, by applying 1L  norm 
for each row of the Utility matrix. The elements of the proximity vector are de-
rived from the inner product of the vector’s ranking of coefficients jc  of the 
objective function with the vector of the rankings iju , where iju  is given by De-
finition 12 for the i-th constraint. As a result, a ranking vector as it is given in 
Definition 13 is derived. 

On the contrary, with the proposed PRMac algorithm, the priority of the con-
straints is given in vector form instead of a matrix. Thus, the progressive inser-
tion of the constraints is implemented by ascending priority order instead of 
priority groups, using the Theorem 3.1 presented in [14], as before. 

The proposed PRVac algorithm is presented in Algorithm 2. A simple exam-
ple of the PRMac and PRVac algorithms is given in the next section. 
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4. Numerical Example 
TMaximize

subject to
0

z c x
Ax b
x

=
≤
≥

, 

where: 

1 2 7
3 7 5 7
1 6 7

1 7 1 7
3 7 4 7

A

 
 
 
 =
 
 
 
 

, 

2
15 7

6
1

12 7

b

 
 
 
 =
 
 
 
 

, 
4 7
3 7

c  
=  
 

. 

The optimum point is * 1.455
1.909

x  
=  
 

 and the binding constraints are the 1st 

and the 5th ones. 
Compute Utility matrix by relation (2) and the corresponding ranking matrix 

3 7 1 7 4 1.5
1 7 2 7 1.5 3.5

,3 7 3 7 4 5
3 7 2 7 4 3.5
1 7 1 7 1.5 1.5

PRMacU R

   
   
   
   = =
   
   
   
   

               (4) 

Set k = 1 
For k = 1 no constraint is selected, so the system has a solution that tends to 

infinity. 
Set k = 2 
For k = 2, based on the ranking matrix R, Equation (4), three constraints are 

selected: the 1st, the 2nd and the 5th. Thus 

1 2 7 2
3 7 5 7 , 15 7
3 7 4 7 12 7

A b
   
   = =   
   
   

. 

The optimum of the above problem satisfies the rest of the constraints of the 
given problem. Thus, in the following steps ( 3,4,5k = ) the PRMac algorithm 
checks, without solving the problem, that the rest of the constraints are met. 

In Figure 1 two steps of the PRMac algorithm are depicted. In the left hand  
 

 
Figure 1. Graphical representation of the algorithms PRMac and PRVac. 
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side, for 2k =  where the first insertion of constraints takes place and in the 
right hand side the final step of the algorithm, with all the constraints included. 

PRMac algorithm verifies that for 3,4,5k =  the constraints given by the lines 

3ε  and 4ε  are satisfied in the minimum point B defined for 2k = . 
By utilizing PRVac algorithm after the computation of Utility matrix, weights 

are given as follows: 

( )T 1,2w =  

1 4 2 1.5 7
1 1.5 2 3.5 8.5

1 4 2 5 14
1 4 2 3.5 11

1 1.5 2 1.5 4.5

R

× + ×   
   × + ×   
   = =× + ×
   

× + ×   
   × + ×   

                 (5) 

The PRVac algorithm, in its first step for 2k n= = , inserts the fifth and the 
first constraints that are the binding constraints of the problem. Thus, it will give 
the point B as the optimum for the given LP-problem. 

On the left-hand side of Figure 2, the ranking of the proximity of the con-
straints by coordinate is depicted according to the matrix R of the relation (4) 
for the PRMac algorithm. The corresponding representation for the matrix R, as 
given in relation (5), of the PRVac algorithm is given on the right-hand side of 
Figure 2. Because of the fact that the PRVac algorithm makes an overall consid-
eration of the rankings, due to uniformity, the rankings have been represented in 
the bisector of the first quadrant. In both figures, the numbering of the ranking 
vectors corresponds to the numbering of the constraints. The second constraint, 
in black, is chosen by the PRMac algorithm because it has the same ranking as  
 

 
Figure 2. Graphical representation of prioritization zones made by proximity rankings 
using R matrices of the PRMac and the PRVac algorithms. 
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the fifth constraint, in red, in terms of the first coordinate. The binding con-
straints, the first and fifth ones, are shown in red. With the PRVac algorithm, the 
second constraint is ranked to be third. Note that the optimal point has been lo-
cated already by using the first and the fifth constraints, which have been chosen 
as those with the smallest ranking. 

5. Numerical Results 

The R package was used for the numerical results [36]-[41]. The multivariate 
analysis was performed using mgcv and nlme libraries [42]-[48]. Graphs have 
been made using the libraries ggplot2, gridExtra, RColorBrewer and sjplot [49]-[55] 
while for the formatting of the tables libraries htmltools, kableExtra and jtools 
have been used [56] [57] [58]. Moreover, hierarchical regression trees were im-
plemented using rpart and rpart.plot R-libraries [59] [60]. The data files are all 
deposited to Github and it is possible to grant access to whoever it is desired to 
do so through the link given in [61]. 

From all those mentioned above, it can be noticed that the PRVac algorithm 
makes gradual insertion of the constraints in the LP problem that is going to be 
solved, contrary to the PRMac algorithm where the insertion takes place in 
groups (their number tends to the dimension n of the LP problem) and the 
number is analogous to the dimension of the LP problem, so it increases togeth-
er with the increment of the dimension. Thus, the PRMac algorithm inserts large 
groups of constraints regardless they are binding or not, whilst the PRVac algo-
rithm inserts a constraint only after checking it for being binding. As a result, 
while the dimension of the problem increases, this feature gives the PRVac an 
advantage over the PRMac algorithm, whereas in LP problems with a few num-
ber of constraints, the PRMac has an advantage, because of the insertion of small 
groups of constraints. For the testing of the proposed algorithms were used: 
• Set of 69 well-known benchmarks (netlib problems) [11] [12], where the 

number of the variables is significantly bigger than the number of the con-
straints (subsection 5.1).  

• Random problems, where the number of the constraints is significantly big-
ger than the number of the variables (subsection 5.2).  

5.1. Random LP-Problems 
5.1.1. Creating the Random LP-Problems 
The random LP-problems are constructed by randomly selected variables and 
coefficients as follows: 
• Dimension of each LP problem [ ]3,100n∈ , n N∈ ,  
• Number of constraints [ ]10 ,15m n n∈ ⋅ ⋅ , m N∈ ,  
• [ ]1,1ija ∈ − ,  
• [ ]1,1jc ∈ − .  

In order to increase the probability that a solution exists in the randomly con-
structed LP-problems, a random solution ( *x ) of the created LP-problem under 
the assumption the coefficients of *x  to be randomly chosen in the interval 
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[ ]0,1  is given. Afterwards, *
ijb a x= ⋅  is calculated and perturbation, with ran-

dom noise of scale 10% takes place. The chosen perturbation is not particularly 
great, because the objective is the creation of random LP problems that can be 
solved and it is a common assumption that while the dimension of the LP prob-
lem n increases, bigger perturbation in b could make extremely difficult the ex-
istence of an LP problem that can be solved. 

Figure 3 and Figure 4 depicts the histogram of the number of variables and  
 

 
Figure 3. Histogram of number of variables where different colors indicate the number of 
binding constraints (n.binding). 
 

 
Figure 4. Histogram of number of constraints where different colors indicate the number 
of binding constraints. 
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constraints for the test problems accordingly. Furthermore, Figure 5 shows the 
histogram of the percentages of binding constraints in the total number of con-
straints. In all those figures, a colourful escalation has been applied, depending 
on the number of binding constraints of the LP problem. 

Table 1 represents the frequencies of the ratio of the number of binding con-
straints divided by the total number of constraints. As can be observed, the greater 
frequency 3499 lies in the interval ( ]0.12,0.14  followed by the frequency 2748 
in the interval ( ]0.14,0.16 . Note that, the average of the binding constraints is 
13.168% of a total number of constraints. 

 

 
Figure 5. Histogram of percentage of the binding constraints. 
 
Table 1. Frequency table of the ratio of the number of binding constraints divided by the 
total number of constraints. 

level freq perc cumfreq cumperc 

[0.00, 0.02] 41 0.0041 41 0.0041 

(0.02, 0.04] 93 0.0093 134 0.0134 

(0.04, 0.06] 110 0.0110 244 0.0244 

(0.06, 0.08] 181 0.0181 425 0.0425 

(0.08, 0.10] 490 0.0490 915 0.0915 

(0.10, 0.12] 1684 0.1684 2599 0.2599 

(0.12, 0.14] 3499 0.3499 6098 0.6098 

(0.14, 0.16] 2748 0.2748 8846 0.8846 

(0.16, 0.18] 1048 0.1048 9894 0.9894 

(0.18, 0.20] 102 0.0102 9996 0.9996 

(0.20, 0.22] 2 0.0002 9998 0.9998 

(0.22, 0.24] 2 0.0002 10,000 1.0000 
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Remark 1. The constraints that satisfy the relation * 1210b A x −− ⋅ ≤  are con-
sidered to be the binding ones. Without further checking the linear independence 
of these constraints, this relationship does not ensure that the constraints are 
binding and not weakly redundant. Therefore, in numerical results, there is a 
possibility that a number of weakly redundant constraints may be included in 
the binding constraints.  

5.1.2. Including Binding Constraints by a Proper Ranking 
As has already been mentioned, whenever a mathematical formulation is given 
in order to describe a real-world LP problem, usually the number of constraints 
is more than the necessary ones [2]. Furthermore, when dealing with real-world 
LP problems, it is impossible to know which and how many the binding con-
straints are before spotting an optimal solution in case it exists. Utilizing the first 
k ranked constraints per variable the prop.binding is defined as: 

Number of binding constraints selected using prop.binding
Total number of binding constraints

k
=  

An ascending ranking procedure for classifying the constraints is considered 
to be successful if small rankings are given to the binding constraints where the 
number k, 1 k m< < , is randomly selected. In order to examine whether the 
constraints having small ranking in the PRMac and PRVac algorithms have a 
greater probability to be bindings, hierarchical regression trees for prop.binding 
are utilized. Specifically, hierarchical regression trees were used to check if the 
size of k (hence k/m) affects the size of the prop.binding. Figure 6 presents the 
hierarchical regression tree for prop.binding using the PRMac algorithm where  

k.over.m k
m

=  is the independent variable. Note that in every node or leaf of the  

hierarchical tree, it has depicted the percentage of the sample that the node or 
the leaf corresponds to, as well as the mean value of the dependent variable  
 

 
Figure 6. Hierarchical regression tree for PRMac algorithm. The gradations of colors 
from red to green reflect the average from the lowest to the highest average values of 
prop.binding. 
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(prob.binding). The leaves of the tree, refer to the conditions of the independent 
variable. When the condition is satisfied, then the left-hand side leaf of the hie-
rarchical tree is followed, otherwise, the right-hand side leaf is followed. Moreo-
ver, in order to reduce the risk of over-fitting, the process of pruning has been 
applied. From Figure 6, the following conclusions can be extracted: 
• On average the prop.binding for the 10,000 randomly constructed LP-problems 

is 0.97 (root of the tree).  
• If k is selected such that k/m is greater than 0.12 (that happens in 89% of the 

random LP problems) the number of prop.binding is 0.99, which means that 
the 99% of the binding constraints has been selected (the rightmost leaf of the 
tree).  

• If k is selected such that k/m is greater than 0.037 (that happens in 97% of the 
random LP-problems) the number of prop.binding is 0.98, which means that 
the 98% of the binding constraints has been selected (the node over the 
rightmost leaf of the tree).  

Thus, the PRMac algorithm is able to achieve high percentage in locating the 
bindings in a small number of selected constraints per variable, which leads to 
the conclusion that the information from every variable is important. 

Figure 7 represents the hierarchical regression tree for the PRVac algorithm. 
At this point, it is worthy to notice that the PRVac algorithm summarizes the 
information of the ranking matrix (which is used in PRMac algorithm) into a 
vector. A random number of k selected constraints, 1 k m< < , is defined and the 
first k ranked constraints are used. 
• On average the prop.binding for the 10,000 randomly constructed LP problems 

is 0.58 (root of the tree).  
• If k is selected such that k/m is greater than 0.75 (that happens in 27% of the 

random LP problems of the sample) the number of prop.binding is 0.91, 
which means that the 91% of the binding constraints has been selected (the 
rightmost leaf of the tree).  

 

 
Figure 7. Hierarchical regression tree for PRVac algorithm. The gradations of colors 
from red to green reflect the average from the lowest to the highest average values of 
prop.binding. 
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• If k is selected such that k/m is greater than 0.52 (that happens in 52% of the 
random LP problems of the sample) the number of prop.binding is 0.8, which 
means that the 80% of the binding constraints has been selected (the node 
over the rightmost leaf of the tree).  

5.1.3. Relation of the prop.binding with the Ranking 
In this subsection the research is focused on the model which would be able to  

interpret better the value of the prob.binding in relation to the ratio k
m

, by 

making use of the results from the randomly created LP-problems. 
In Figure 8, the scatter plot of the number of variables with the number of 

constraints for the 10,000 randomly constructed LP-problems is presented. In 
the same figure, for every LP problem, the ratio of detecting binding constraints 
has been illustrated colourfully by making use of darker colours for the smaller ra-
tio and lighter colours for the bigger values. This specific illustration has been se-
lected in order to detect visually whether the PRMac algorithm is behaving in the 
same way for all LP-problems having m constraints and n dimensions. This illu-
stration reveals on the one hand that yellow dots correspond to a high percentage 
for the prob.binding are the dominant ones—as a result the binding constraints  

are gathered in low rankings independently of the value of the ratio k
m

—and on  

the other hand the darker dots correspond in low percentage for the prob.binding, 
have a rather rare appearance and are evenly distributed among the yellow dots. 

Figure 9(a) presents on the left-hand side the scatter plot of the prob.binding  

in relation with the ratio k
m

 and Figure 9(b) presents the same figure with the  

 

 
Figure 8. Number of variables and number of constraints of the 10,000 random LP-problems. 

https://doi.org/10.4236/ajor.2023.136010


D. G. Tsarmpopoulos et al. 
 

 

DOI: 10.4236/ajor.2023.136010 193 American Journal of Operations Research 
 

 
(a) 

 
(b) 

Figure 9. Scatter plots of the prop.binding variable in accordance with (a) k/m (b) log(k/m). 
 
logarithmic transformation of the x axis. The left hand side of the scatter plot 

confirms the fact that for small values of the ratio k
m

, small changes of it cause 

big increment in prop.binding. While the value of the ratio k
m

 increases, the 

rate of change decreases. This exponential behaviour of the function leads to the 

logarithmic transformation of the ratio k
m

. Thus, on the right-hand side of 

Figure 9(b), a sigmoid relation that connects the possibility of including in the 

first k constraints the bindings and the logarithm of the ratio k
m

 is appeared. 

ANOVA Table 2 shows that the dependent variable prob.binding is affected 

by the ratio k
m

. 
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The influence of k/m on prop.binding is confirmed by ANOVA table given in 
Table 2. Hence, the logit model of the log of k over m is applied and the result of 
this model is presented in Table 3. 

From Table 3 it is confirmed that log k
m

 
 
 

 is statistically significant (p-value 

< 0.001). Moreover, the coefficient of k
m

 (41.40) derives that the increment of 

k
m

 will result in a fast increment of the ratio for the detection of the binding 

constraints. 
Figure 10 presents the graph of the logistic function (black curve) derived from 

the logit model. It can be observed that the points corresponding to the random 
problems are gathered by the majority above the approximation curve, so the 
approximated value underestimates the performance of the algorithm. As a  

result, in the randomly generated LP problems, the usage of k
m

 of the constraints  

is expected to be better in the detection of the binding constraints than the ap-
proximation. 

5.2. NETLIB LP-Problems 

The proposed algorithms were applied to the well-known 69 benchmark prob-
lems (netlib problems) [11] [12]. 

In Table 4 the results from the netlib problems are depicted with the follow-
ing labels: 
• netlib is the name of the netlib problem.  
• n the dimension of each LP problem.  
• m the number of constraints.  
• n.binding the percentage of the number of the constraints that are binding 

or weakly redundant constraints (see Remark in subsection 5.2).  
• 50 is the number of constraints that must be chosen after ranking the con-

straints with the proper algorithm, in order to include 50% of the n.binding 
constraints of the LP problem.  

 
Table 2. ANOVA Table of the prop.binding in relation with k over m. 

 Df Sum Sq Mean Sq F value Pr(>F) 

k.over.m 1 19.534 19.534 1558.299 0 

Residuals 9998 125.332 0.0125   

 
Table 3. Logit model. 

Predictors Odds ratios CI p 

(Intercept) 710.48 507.17 - 1019.21 <0.001 

k over m [log10] 41.40 31.74 - 54.72 <0.001 

Observations 10000   

R2 Tjur 0.036   
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Figure 10. The graph of the logistic function derived from the logit model. 

 
Table 4. Ranking results of the constraints by making use of the PRMac, PRVac, RAD and GRAD algorithms in netlib problems. 

    Sparsity PRMac PRVac RAD GRAD 

netlib n m n.binding A b c 50 90 50 90 50 90 50 90 

25fv47 1876 821 0.78 0.007 0.350 0.3875 0.49 0.49 0.43 0.89 0.50 0.89 0.49 0.87 

adlittle 138 56 0.82 0.055 0.661 0.5942 0.50 0.95 0.51 0.92 0.42 0.88 0.46 0.89 

afiro 51 27 0.85 0.074 0.259 0.0980 0.46 0.93 0.59 0.92 0.59 0.59 1.00 1.00 

agg 615 488 0.15 0.010 0.885 0.2130 0.47 0.47 0.57 0.92 0.16 0.98 0.23 0.98 

agg2 758 516 0.16 0.012 0.915 0.3047 0.47 0.47 0.41 0.74 0.26 0.98 0.16 0.97 

agg3 758 516 0.15 0.012 0.905 0.3047 0.47 0.47 0.41 0.74 0.21 0.97 0.14 0.97 

beaconfd 295 173 0.64 0.067 0.387 0.3424 0.43 0.43 0.52 0.85 0.61 0.61 0.33 0.78 

blend 114 74 0.81 0.062 0.108 0.2632 0.43 0.85 0.49 0.91 0.48 0.90 0.55 0.89 

bnl1 1586 643 0.79 0.005 0.429 0.6356 0.50 0.50 0.49 0.91 0.51 0.91 0.49 0.91 

bnl2 4486 2324 0.82 0.001 0.190 0.4737 0.50 0.50 0.44 0.89 0.56 0.88 0.40 0.89 

brandy 303 220 0.89 0.033 0.245 0.0066 0.44 0.90 0.47 0.87 1.00 1.00 0.50 0.50 

capri 482 271 0.79 0.015 0.480 0.0394 0.46 0.93 0.48 0.90 0.49 0.93 0.48 0.92 

cre_a 7248 3516 0.93 0.001 0.088 0.5611 0.50 0.50 0.49 0.90 0.48 0.90 0.49 0.91 

cre_c 6411 3068 0.93 0.001 0.104 0.5737 0.50 0.50 0.51 0.90 0.49 0.90 0.49 0.91 

czprob 3562 929 0.98 0.003 0.926 0.9837 0.50 0.50 0.49 0.90 0.50 0.90 0.50 0.90 

d2q06c 5831 2171 0.63 0.003 0.403 0.5586 0.49 0.49 0.38 0.81 0.55 0.89 0.49 0.86 

d6cube 6184 415 0.97 0.015 0.014 1.0000 0.50 0.50 0.50 0.90 0.51 0.91 0.49 0.90 

degen2 757 444 0.94 0.012 0.547 0.6222 0.48 0.48 0.48 0.88 0.49 0.88 0.48 0.87 

dfl001 12,230 6071 0.99 0.000 0.274 0.5103 0.50 0.50 0.49 0.90 0.50 0.90 0.42 0.91 

e226 472 223 0.70 0.026 0.444 0.4004 0.46 0.93 0.49 0.92 0.45 0.88 0.46 0.87 

fffff800 1028 524 0.58 0.012 0.389 0.0078 0.45 0.45 0.41 0.79 1.00 1.00 0.50 0.50 

fit1p 1677 627 0.60 0.009 1.000 0.6118 0.48 0.86 0.46 0.85 1.00 1.00 0.39 1.00 
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fit2p 13,525 3000 0.96 0.001 0.500 0.7763 0.50 0.88 0.49 0.89 0.30 1.00 1.00 1.00 

ganges 1706 1309 0.83 0.003 0.375 0.0639 0.50 0.50 0.48 0.87 0.37 0.91 0.37 0.91 

gfrd_pnc 1160 616 0.89 0.003 0.110 0.9397 0.50 0.50 0.52 0.88 0.45 0.91 0.55 0.92 

israel 316 174 0.19 0.044 0.983 0.2816 0.50 0.61 0.44 0.64 0.43 0.63 0.48 0.67 

lotfi 366 153 0.61 0.020 0.320 0.0219 0.50 0.50 0.52 0.93 0.49 0.49 1.00 1.00 

maros_r7 9408 3136 0.86 0.005 0.999 0.6667 1.00 1.00 0.59 0.59 1.00 1.00 1.00 1.00 

modszk1 1620 687 0.75 0.003 0.020 0.6111 0.50 0.50 0.52 0.86 1.00 1.00 1.00 1.00 

osa_07 25,067 1118 0.33 0.005 0.967 0.9554 1.00 1.00 0.45 0.79 0.53 0.92 0.51 0.76 

osa_14 54,797 2337 0.34 0.002 0.984 0.9574 1.00 1.00 0.52 0.81 0.52 0.93 0.47 0.77 

pds_02 7716 2953 0.96 0.001 0.069 0.6301 1.00 1.00 0.52 0.88 0.48 0.90 0.51 0.92 

perold 1506 625 0.73 0.007 0.344 0.0053 0.51 0.51 0.43 0.78 0.52 0.52 0.45 0.45 

pilot 4860 1441 0.88 0.006 0.196 0.0109 0.47 0.47 0.51 0.90 0.55 0.55 0.55 0.55 

pilot4 1123 410 0.68 0.011 0.402 0.0036 0.52 0.52 0.39 0.72 0.49 0.49 0.42 0.42 

pilotnov 2446 975 0.72 0.006 0.341 0.0294 0.48 0.48 0.43 0.80 0.50 0.50 0.49 0.49 

qap12 8856 3192 0.90 0.001 0.008 0.6707 0.50 0.50 0.50 0.50 0.52 0.91 0.71 1.00 

sc105 163 105 0.93 0.020 0.190 0.0061 0.50 0.50 0.37 0.91 1.00 1.00 1.00 1.00 

sc205 317 205 0.97 0.010 0.185 0.0032 0.50 0.50 0.37 0.91 1.00 1.00 1.00 1.00 

sc50a 78 50 0.94 0.041 0.200 0.0128 0.50 0.70 0.38 0.92 1.00 1.00 1.00 1.00 

scagr25 671 471 0.70 0.005 0.380 0.7079 0.49 0.49 0.55 0.92 0.63 0.90 0.63 0.89 

scagr7 185 129 0.76 0.019 0.411 0.7189 0.48 0.62 0.59 0.92 0.61 0.95 0.64 0.94 

scfxm1 600 330 0.81 0.014 0.352 0.0383 0.47 0.47 0.53 0.90 0.54 0.54 0.46 0.92 

scfxm2 1200 660 0.80 0.007 0.359 0.0383 0.50 0.50 0.52 0.90 0.54 0.54 0.46 0.92 

scfxm3 1800 990 0.80 0.005 0.362 0.0383 0.50 0.50 0.52 0.90 0.54 0.54 0.46 0.92 

scorpion 466 388 0.96 0.008 0.196 0.6052 0.50 0.50 0.51 0.90 0.51 0.90 0.51 0.92 

scrs8 1275 490 0.96 0.005 0.157 0.6643 1.00 1.00 0.34 0.91 0.52 0.90 0.53 0.86 

sctap1 660 300 0.82 0.009 0.513 0.5455 0.50 0.50 0.42 0.92 0.43 0.86 0.72 0.82 

sctap2 2500 1090 0.88 0.003 0.478 0.5640 0.50 0.50 0.45 0.91 0.39 0.87 0.76 0.76 

sctap3 3340 1480 0.92 0.002 0.461 0.5569 0.50 0.50 0.47 0.91 0.43 0.91 0.72 0.72 

share1b 253 117 0.46 0.040 0.880 0.1225 0.51 0.51 0.29 0.78 0.51 0.95 0.57 0.86 

share2b 162 96 0.60 0.050 0.250 0.2222 0.53 0.53 0.49 0.89 0.56 0.94 0.53 0.92 

shell 1777 536 1.00 0.004 0.004 0.7563 1.00 1.00 0.50 0.90 0.50 0.90 0.61 0.90 

ship04l 2166 402 0.96 0.007 0.654 0.9778 0.50 0.50 0.53 0.89 0.50 0.89 0.50 0.87 

ship04s 1506 402 0.96 0.007 0.654 0.9681 0.50 0.50 0.50 0.89 0.50 0.89 0.50 0.87 

ship08l 4363 778 0.98 0.004 0.531 0.9817 0.50 0.50 0.51 0.90 0.50 0.89 0.51 0.88 

ship08s 2467 778 0.98 0.004 0.531 0.9676 0.50 0.50 0.51 0.89 0.49 0.89 0.51 0.88 

ship12l 5533 1151 0.98 0.003 0.567 0.9808 0.50 0.50 0.53 0.89 0.49 0.89 0.51 0.87 

ship12s 2869 1151 0.98 0.003 0.567 0.9631 0.50 0.50 0.35 0.89 0.50 0.90 0.51 0.87 

sierra 2735 1227 0.50 0.002 0.637 0.7130 1.00 1.00 0.75 0.96 0.22 0.95 0.79 0.95 

https://doi.org/10.4236/ajor.2023.136010


D. G. Tsarmpopoulos et al. 
 

 

DOI: 10.4236/ajor.2023.136010 197 American Journal of Operations Research 
 

Continued 

stair 614 356 0.87 0.018 0.197 0.0016 0.48 0.48 0.45 0.88 0.53 0.53 0.53 0.53 

standata 1274 359 0.98 0.007 0.019 0.0055 0.50 0.50 0.50 0.92 1.00 1.00 0.49 0.49 

standgub 1383 361 0.98 0.007 0.019 0.0051 0.50 0.50 0.50 0.92 1.00 1.00 0.49 0.49 

standmps 1274 467 0.91 0.007 0.246 0.0055 0.50 0.50 0.49 0.88 1.00 1.00 0.50 0.50 

stocfor1 165 117 0.68 0.026 0.068 0.1636 0.50 0.50 0.26 0.92 0.48 0.88 0.44 0.91 

stocfor2 3045 2157 0.69 0.001 0.004 0.3773 0.50 0.50 0.30 0.85 0.50 0.89 0.51 0.88 

vtp_base 346 198 0.52 0.015 0.298 0.0173 1.00 1.00 0.52 0.92 1.00 1.00 0.49 0.49 

wood1p 2595 244 0.98 0.111 0.008 0.0004 0.49 0.49 0.49 0.88 1.00 1.00 0.50 0.50 

woodw 8418 1098 0.99 0.004 0.031 0.0005 0.50 0.50 0.50 0.89 1.00 1.00 0.50 0.50 

Mean 3587 941 0.78 0.015 0.392 0.4181 0.55 0.61 0.48 0.87 0.58 0.86 0.56 0.82 

 
• 90 is the number of the constraints that must be chosen after ranking the 

constraints with the proper algorithm, in order to include 90% of the 
n.binding constraints of the LP problem.  

• Sparsity the percentage of matrix A (or vectors b and c) elements that are 
non-zero.  

From Table 4 it can be derived that one feature of the netlib problems is that 
the number of binding constraints is significantly large (on average 78% of the 
constraints). It is worthy to mention, that those problems have a big percentage 
of coefficients equal to zero, both for the constraints and for the objective func-
tion. Specifically, on average 98.5% of the elements of array A are equal to zero 
(a sparsity of 0.015), 60.8% of elements of array b (a sparsity of 0.392) and 58.2% 
of elements of array c (a sparsity of 0.418) are equal to zero. Moreover, it is re-
markable the fact that by making use of the PRMac algorithm. The constraints 
are ranked in such a way that the first 61% of them, including 90% of the bind-
ing constraints of the LP problem, considering the fact that the PRMac is im-
plemented in problems with a large number of binding constraints. 

From Table 4 it can be revealed that one feature of the netlib problems is that 
the number of the constraints is on average 1/3 of the number of the variables 
(941 constraints - 3587 variables). 

In the random LP problems, the ranking of the constraints takes place in such 
a way that for solving the LP problem, 90% of the constraints are used on aver-
age. For the netlib problems, it can be observed that the first group of the con-
straints for the PRMac algorithm can include 61% of the constraints. 

Moreover, from Table 4 it can be observed that the average for including in 
the first k constraints the 50% of the binding constraints is slightly better in the 
PRVac algorithm, 0.48 instead of 0.55. For 90% of the constraints, the situation 
is reversed clearly in favour of the PRMac algorithm (0.61 instead of 0.87). On 
the other hand, the GRAD algorithm is proved to be slightly better in compari-
son with RAD, for both those cases, with the corresponding values to be 0.56 in-
stead of 0.58 and 0.82 instead of 0.86. Overall PRVac is proved to be slightly bet-
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ter in 50% of the binding constraints, while for 90% of the constraints, PRMac is 
proved to be far a way better than all the others. 

There are Netlib problems where due to their “nature” (the same ija  for one 
variable in all the constraints) the PRMac algorithm gives “poor” classification in 
some variables of the constraints. Thus, the PRMac algorithm attributes to a 
large number of the constraints the same ranking number. On the contrary, by 
making use of the PRVac algorithm this disadvantage is overcome and the Net-
lib problems can be faced efficiently. Consequently, in general, it is preferable 
when matrix A creates a “poor” classification, to make use of the PRVac algo-
rithm.    

5.3. An Overview of the Numerical Results of PRMac and PRVac  
Algorithm 

In order to calculate the mean number of iterations while solving an n-dimen- 
sional LP problem with m constraints by using the Simplex Method [62] [63] [64] 
[65] presented the following approximation relations: 

( ) ( )
1 2

1.12 1.050.486 , 0.546L LT m n T m n= + = +              (6) 

where L1 and L2 are the minimization norms used in the regression process. As it 
can be observed, because the exponent in 

2LT  is smaller in comparison with 

1LT , 
2LT  is expected to do a smaller number of iterations. Moreover, for the 

same problem by using the dual Simplex method in [62] [63] [64] [65], the fol-
lowing relation is given for both of the norms:  

 ( )1.460.8min ,T m n=                           (7) 

The above relations calculate the mean number of iterations. As in every itera-
tion, the dimension of the utilized vectors is m + n and every reduction in the 
number of m leads both in the reduction of the mean number of iterations as 
well as of the dimension of vectors used in every iteration. 

Next, the relations (6) and (7) are going to be used in order to evaluate the 
reduction of the computational cost given under the proposed algorithms, for 
the netlib problems provided in Table 4. Based on the percentages derived from 
columns Mac90 and Vac90 of Table 4, it is estimated that the percentage of the 
constraints required in order to include the 100% of the binding constraints lie 
in the half distance between the 100% and Mac90 or the 100% and Vac90 accor-
dingly. It gives a percentage of 79.19 for the PRMac algorithm and 93.07 for the 
PRVac algorithm, respectively. 

According to relation (6), if the Simplex method is going to be used in order 
to solve the given LP problem, the mean number of iterations is going to be ap-
proximately 501 - 703, and the dimension of vectors used in every iteration is 
approximately 663, because 

1
501LT =  and 

2
703LT = . 

So, by making use of the PRMac algorithm, the reduction of m by 20.81 leads 
on average in 101 - 150 fewer iterations, while the vectors used in every iteration 
have on average 177 fewer dimensions. This is equivalent to a reduction of the 
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iterations from 5.54% to 10.34% with the PRMac algorithm. Likewise, by making 
use of the PRVac algorithm, a reduction of m by 6.93% leads on average in 34 - 
50 fewer iterations, while the vectors used in every iteration, have on average 92 
fewer dimensions. This is equivalent to a reduction of the iterations from 6.94% 
to 8.72% with the PRVac algorithm. 

Similar results derive from (7) concerning the Dual Simplex method. The 
usage of the Dual Simplex method requires approximately 238 iterations and the 
vectors used in every iteration have on average 663 dimensions. By making use 
of the PRMac algorithm, the number of vectors used in every iteration, have on 
average 177 fewer coordinates. In case the dual simplex method is used, the re-
duction of the iterations is going to be on average 5969, which leads to a percen-
tage decrease of 63.01%. Whereas with the PRVac algorithm, the dimension of 
vectors used in every iteration has on average 92 fewer dimensions. In case the 
dual simplex method is used, the reduction of the iterations is going to be on av-
erage 2763, which leads to a percentage decrease of 40.27%. Despite the excep-
tional approach in ranking the binding constraints that become feasible by using 

ij j ia c b∗ , the fact that primarily ib  may be zero and secondarily if 0jc =  the 
j-th variable is not taken under consideration in the ranking of the constraints is 
a shortcoming. On the contrary, the proposed algorithms of this paper make use 
of proximity in the classification of the constraints, so both the coefficients of the 
constraints ija  as well as the coefficients of the objective function jc  are taken 
into consideration, without worsening the functional cost. As a result, arithmetic 
operations between vectors do not take place and the precision of the operations 
is not affected. More precisely, in the PRVac algorithm, the classification takes 
place by taking into account the rankings per coordinate and by setting as 
weights the values of jc , giving the smaller value to the coordinate of jc  hav-
ing the greater absolute value. Netlib problems, have 0ib =  in a regular basis, 
so in order to test the RAD algorithm, ib  was set to be 6410ib −=  instead of 

0ib = . In the same algorithm, the constraints are classified by considering as 
best the one with the biggest RAD (smallest ranking). 

6. Conclusions and Further Research 

In the present paper, two new algorithms for solving LP problems are presented. 
The proposed algorithms rank the constraints according to the possibility of be-
ing binding based on the idea of proximity which can be used in LP problems 
with a very large number of constraints. Moreover, in the theoretical framework 
of the proposed algorithms already known algorithms can be involved. By mak-
ing use of the distance of the coefficients of the constraints with the correspond-
ing coefficients of the objective function, the proposed PRMac and PRVac algo-
rithms, utilize a utility matrix or a utility vector correspondingly. In order to 
rank the constraints the process is simple, as it is only based on comparisons 
between the coefficients and does not require any further calculations. 

For testing PRMac and PRVac algorithms, a generator of random LP problems 
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is addressed for constructing 10,000 random LP problems of dimension n with 
m constraints, where m n . As has already been mentioned a generator of 
random linear problems with many constraints may represent a wide range of 
real-world problems. From the numerical results, it is derived that in the major-
ity of the random LP problems, the proposed algorithms are considered to be ef-
ficient since they rank the constraints in such a way that the binding ones are 
gathered in a lower ranking. Moreover, the application of the proposed algo-
rithms to problems of the Netlib repository gave slightly better numerical results 
than their application to random problems. The algorithms that use as a classifi-
cation criterion a ratio where jc  lies in the numerator, multiply the numerator 
with zero, even when a single 0jc = . Thus, the other variable of the numerator 
does not affect the result. In reality, though, jc  affects only the constraints but 
not the objective function. For instance, the constraints that may be met in 
transportation companies (logistics), may affect the profits but are not related to 
the company. As a result, the company has not the ability to improve the con-
straints in order to increase its profits. In the objective function that reflects the 
profits, these variables exist with a 0jc =  coefficient. In the methods where jc  
lies in the numerator, it remains unchanged, whether the aforementioned va-
riables exist or not, while it is well known that they contribute significantly in 
the definition of the feasible area. With the proposed methodology in this paper, 
the proximity of each ija  with the corresponding jc  is calculated, so even if 

0jc = , the j-th variable is taken into account for the ranking and the classifica-
tion of the constraints. The already existing algorithms use a measure of com-
parison and afterwards based on this measure. They rank the constraints. The 
renovation of the proposed algorithms here is that by knowing in advance that 
they are intended in ranking instead of using precise data. They focus in advance 
on ranking the proximity of ija  with the corresponding jc  and based on those 
values they classify the constraints. In other words, the achievement of great 
precision in the arithmetic operations is sacrificed, just in order for the algo-
rithms to remain efficient under any circumstances as it was shown above. In 
general, when dealing with optimization problems with constraints, the constraints 
contribute the major part in comparison with the objective function, because 
they define the feasible area of the LP problem. As it concerns the objective func-
tion, the only point of interest is the extreme point that lies in the feasible area. 
So, it is obvious that an efficient algorithm should prioritize the constraints over 
the objective function. 

As a future research, extensive use of the proposed theoretical framework can 
be done, by making use of different utility functions or by combining different 
techniques. The promising results of the present paper reveal the worthiness of 
dedicating time and research for the adaptation of the proposed algorithms in 
various categories of LP problems with constraints. 

Moreover, it is worth to study the implementation of the substitution of the 
utility matrix used in the PRMac algorithm by utilizing a different norm or dif-
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ferent statistical indices of univariate analysis. 
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