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Abstract 
The main purpose of this paper is to build a new approach for solving a fuzzy 
linear multi-criterion problem by defining a function called “error function”. 
For this end, the concept of level set α  is used to construct the error func-
tion. In addition, we introduce the concept of deviation variable in the defini-
tion of the error function. The algorithm of the new approach is summarized 
in three main steps: first, we transform the original fuzzy problem into a de-
terministic one by choosing a specific level α . second, we solve separately 
each uni-criteria problem and we compute the error function for each crite-
ria. Finally, we minimize the sum of error functions in order to obtain the de-
sired compromise solution. A numerical example is done for a comparative 
study with some existing approaches to show the effectiveness of the new ap-
proach. 
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1. Introduction 

The application of theory and methods of multi-criteria linear programming 
requires that the data determining a linear problem be real numbers known with 
certainty. However, sometimes we encounter situations that the data describe a 
real situation that is not known with certainty [1] [2]. This justifies the ineffi-
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cient information or incomplete information that an investor can receive from 
the real world. 

To reflect this vagueness due to the lack of data, the fuzzy set theory intro-
duced by [3], will be used. The fuzzy set theory provides a framework in which 
vague concepts can be precisely and rigorously studied in order to take into ac-
count the imprecision of data. Some authors proposed approaches and algo-
rithms for solving fuzzy linear multi criteria problems. We can cite [4]-[9]. The 
vagueness in a multi criteria problem consists of systematic substitution of fuzzy 
data for deterministic one into the multi criteria problem. In 2018, Y.T. Man-
gongo et al., [1] used fuzzy concepts to propose a fuzzy multi criteria model to 
truck the portfolio selection problem. More recently, Y.T. Mangongo and J.D.B. 
Kampempe [5] proposed two approaches to bring a balance between effective-
ness and efficiency while solving a multiobjective programming problem with 
fuzzy objective functions. In the first approach, they used the Nearest Interval 
Approximation Operator for fuzzy numbers to propose the deterministic coun-
terpart of the original fuzzy problem. In their second approach, they used the 
Embedding Theorem for fuzzy numbers. 

Following this way, in this paper, we introduce a new approach for solving a 
fuzzy linear multi-criteria problem based on the new function introduced in this 
paper, called “error function”. The algorithme of our main contribution is sum-
marized in three steps. First of all, we transform the fuzzy initial problem into a 
deterministic one, secondly, we define the error function for each criteria and 
finally we minimize the sum of error functions. This new approach improves the 
approaches of M. Sakawa and H. Yano [8], and B.J. Reardon [6]. A numerical 
example is done in order to see the effectiveness of the new approach compared 
with the solutions obtained by the approaches of M. Sakawa and H. Yano [8], 
and B.J. Reardon [6]. 

The paper is organized as follows: the first section will be devoted to prelimi-
nary concepts and it will be ended by providing the approaches of M. Sakawa 
and H. Yano [8] and B.J. Reardon [6]. In the second section, we will present the 
new approach. In the third section, a numerical example will be done in order to 
compare the three approaches. Finally, the paper will be ended with some con-
cluding remarks. 

2. Preliminaries 

Definition 1 (3) Let X be a non empty set, called “universe”. A fuzzy set, de-
noted by A  is defined as follow:  

( )( ){ }, : ,= ∈




AA x f x x X  

where 

Af  is called the membership function of a fuzzy set A , defined on X ans 
takes values on the closed interval [ ]0,1 . 

A fuzzy measure f is a function defined on the power set ( ) X  into [0, 1], 
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satisfying the following conditions [10] [11] [12]:  
• Limits cases: ( ) 0∅ =f  and ( ) 1=f X   
• Monotonicity: for all ( ), ∈A B X  such that ⊆A B  then ( ) ( )≤f A f B   
• Continuity: for any nested part 1 2⊂ ⊂ ⊂ nA A A  or ( ) 11−⊂ ⊂ ⊂n nA A A  

we have: ( ) ( )( )lim lim→+∞ →+∞=n n n nf A f A .  
Definition 2 (12) A possibility measure is an application, Poss  

( ) [ ]: 0,1≡ Π →P X  such that:  
• ( ) 0Π ∅ =   
• ( ) 1Π =X   
• ( ) ( )1 , , ,∀ ∈ ∈ iA P X A P X , then ( ) ( )supΠ = Π

 i i ii
A A .  

One can show that the possibility measure satisfies the following properties:  
• ( ) ( ),∀ ∈ ∈A P X B P X , we have ( ) ( ) ( )( )max ,Π ∪ = Π ΠA B A B .  
• ( ) ( ),∀ ∈ ∈A P X B P X , we have ( ) ( ) ( )( )min ,Π ∩ ≤ Π ΠA B A B .  
• if ⊂B A  then ( ) ( )Π ≥ ΠA B .  
• ( )∀ ∈A P X , ( ) ( )( )max , 1Π Π =cA A   
Definition 3 (12)  
A distribution of possibility is an application [ ]: 0,1π →X  such that  

( )sup 1π∈ =x X x .  
• A possibility measure verify: ( )∀ ∈A P X , ( ) ( )sup π∈Π = x AA x   
• One can obtain the possibility distribution from a possibility measure as fol-

low: 

( ) { }( ) , .π = Π ∀ ∈x x x X   

Definition 4 (3)  
A necessity measure is an application ( ) [ ]: 0,1→N P X  such that:  
• ( ) 0∅ =N   
• ( ) 1=N X   
• ( ) ( )1 , , ,∀ ∈ ∈ iA P X A P X , then ( ) ( )inf=

 i i ii
N A N A .  

It can be shown that the necessity measure satisfies the following properties:  
• ( ) ( ),∀ ∈ ∈A P X B P X , we have ( ) ( ) ( )( )min ,∩ =N A B N A N B .  
• ( ) ( ),∀ ∈ ∈A P X B P X , we have ( ) ( ) ( )( )max ,∪ ≥N A B N A N B .  
• if ⊂B A  then ( ) ( )≥N A N B .  
• ( )∀ ∈A P X  we have: ( ) ( )( )max , 1=cN A N A .  
Also, for all ( )∈A P X , the following relations hold:  
• ( ) ( )1= −Π cN A A ,  
• ( ) ( )( )1sup π∉= −x AN A x ,  
• ( ) ( )≤ ΠN A A .  
Definition 5 (12) A fuzzy linear multi criteria problem is formulated as follows:  

( )1 2

1

"min" , , ,

0;1 ;1
=



 ≤

 ≥ ≤ ≤ ≤ ≤

∑

  







k

n

ij j i
j

j

c x c x c x

a x b

x j n i m

;                    (1) 

where:  jc  is the (1×n ) matrix; x is the ( 1×n ) matrix and rjc , ija , ib  the 
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fuzzy intervals with the respective membership functions µ
rjc , µ

ija , µ


ib , with 
1≤ ≤r k , in addition   expresses the multiplication of fuzzy numbers.  

Bellow, we recall two methods (approaches), (Sakawa’s method [8] and Rear-
don’s method [6]). 

The Sakawa’s method [8] is very interesting because it involves fuzzy logic at 
all levels of the problem (on the parameters of criteria and on the parameters of 
the constraints). The set of solutions that will be found will also involve fuzzy 
logic. The solutions are given with a degree of belonging and have a correlation 
with the initial criteria; knowing that the correlation with the initial criteria is 
fixed by the investor. 

The method starts by a fuzzy problem which will be transformed by a deter-
ministic one by assigning an element of a level set α  of the form:  

( ) ( )
( )

1"min" , ,

0
0




≤
 ≥

 k

i

f x f x

g x
x

;                     (2) 

where  

( ) =i if x c x  

and  

( ) = −∑i ij j ijg x a x b .  

Under the constraints ( ) 0≤ig x , one minimizes then maximizes, each crite-
ria separately, so that one obtains an interval of variation of the value of criteria.  

One defines the membership functions as follows:  

( ) ( )1

1 0

µ
−

=
−

i i
i

i i

f f x
x

f f
; where:                   (3) 

0if  is the least interesting value of the criteria and 1if  is the most interesting 
value of the criteria.  

One defines the decision-making functions iDM  as follows:  

( )
( )

( ) ( )
( )

0, si 0
, si 0 1

1, si 1

µ
µ µ

µ

≤
= < <
 ≥

i

i i i

i

x
DM x x x

x
 where:            (4) 

( ) 1=iDM x  when the objective is reached and ( ) 0=iDM x  when the ob-
jective is not reached.  

One maximizes the iDM  functions.  
If there is no solution, or if the solution does not satisfy the investor, then one 

must change the membership functions, and return to step 3.  
Stop and display the solution.  
For further informations the readers can be referenced on the cited paper. 
The Reardon’s method [6] is a less complex method than Sakawa’s method 

which involves also the fuzzy logic at each level. 
The deterministic equivalent of the above Problem (1) is this below linear 
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multi-criteria problem:  

( )

( )
( ) ( )

( )( )
( ) ( )( )

1

1

1

1

min

, , 0

, ,

, ,

0

 
 


 

 ≤
 ∈
 ∈


∈


≥







 

 

k

m
n

k
k

m
m

f x

f x

g x g x
x

f f x

g x g x

x

.                   (5) 

For each criterion, one should define a membership function called the Rear-
don’s membership function. The representation of Reardon’s membership func-
tion and more details about it can be found in [6]. Here are some significations 
of the parameters of Reardon’s membership function:  

Smax: fuzzy scale factor max.  
Smin: fuzzy scale factor min.  
fimin: minimum value of the ith criteria.  
fimax: maximum value of the ith criteria.  
Oi: experimental value of the ith criteria. We wanted that =i if O .  
Ei: a margin of acceptable error (the criteria iO  is defined with error iE ).  
Reardon define the expressions of his membership functions as follows:  
• If ( )≤ −i i if O E  then:  

( ) ( ) ( )( )max

min

.
 

′ = ⋅ − − 
− −  

i i i i
i i i

S
f f f O E

f O E
            (6) 

• If ( ) ( )− ≤ ≤ +i i i i iO E f O E  then:  

( ) 0.′ =if f                            (7) 

• If ( )+ ≤i i iO E f  then:  

( ) ( ) ( )( )min

max

.
 

′ = ⋅ − + 
+ −  

i i i i
i i i

Sf f f O E
O E f

            (8) 

Comparing with the classical methods of fuzzy optimisation, in this algorithm 
the level is in inverse. Instead of having 1 for the value of membership function 
when if  is belongs to the set of desired values (that means in the interval 
[ ],− +i i i iO E O E ), the value of membership function is null. This inversion of 
the degree of belonging allows us to obtain very simple global criteria which ag-
gregate all criterion. 

( )
1

1
=

′= ∑
k

i
i

F f f
k

                         (9) 

As one can see, F is the mean of the Reardon’s membership functions of crite-
rion. All these Reardon’s membership’s functions has been normalized by an in-
termediate of minS  and of maxS . 
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3. New Approach Based on Minimization of Errors Functions 

In this section, we present the new approach. The approach which involves the 
systematically definition of the errors functions, where their sum will be mini-
mized in order to obtain the compromise solution of the initial fuzzy problem. 

We need to transform this non deterministic problem (1) into a deterministic 
one by defining the level set α ; see [8]. For an exigent investor, we fix the level 
α  very closer to 1 and obtain the following deterministic problem:  

( )1 2

1

"max" , , ,

0;1 ;1
=



 ⋅ ≤

 ≥ ≤ ≤ ≤ ≤

∑

 k

n

ij j i
j

j

c x c x c x

a x b

x j n i m

.                    (10) 

Then, we solve each problem separately with one criterion and we compute 
α

rf ; which is the value of a criterion to a level α . If one problem does not have 
a solution; we should revise the value of α . After that, we compute for each 
criterion the error function defined below. 

Definition 6 (error function) We define an “error function” by:  

( ) ( )
;

α

α ε
− +

=
+

r r r
r

r

f f x E
u x

f
                     (11) 

where ε  is an arbitrary positive constant, ( ) =r rf x c x  (criterion), rE  the devia-
tion variable of a given criteria with the denominator 0α ε+ ≠rf  for 1≤ ≤r k . 
The presence of ε  ensure that, the denominator can not be zero.  

Finally, we minimize the sum of all these errors functions on the criterion 
under the constraints below:  

( )
( )

1

0 1

0;1 ;1

α α

=

≤ ≤


− ≤ ≤ +



⋅ ≤

 ≥ ≤ ≤ ≤ ≤

∑

r

r r r r r

n

ij j i
j

j

u x

f E f x f E

a x b

x j n i m

. 

Thus, the founded solution of the above problem is the compromise solution 
of the Problem (1). The algorithm of this new approach can be summarized as 
follows: 

• The fuzzy Problem (1) is transformed into the deterministic one, Problem (10): 
• For 1, ,= r k ,  
1) Solve the problem: 

1

max

0;1 ;1
=



 ⋅ ≤

 ≥ ≤ ≤ ≤ ≤

∑
r

n

ij j i
j

j

c x

a x b

x j n i m

                    (12) 

and obtain α
rf  the value of criteria ( )rf x  at a given level α . If no solution is 

obtained, then go back to 1.  
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2) Compute for each criteria, the error function: 

( ) ( )
.

α

α ε
− +

=
+

r r r
r

r

f f x E
u x

f
 

• Minimize the sum of all errors functions:  

( )

( )
( )

1

1

min

0 1

0; 0;1 ;1

α α

=

=




 ≤ ≤
 − ≤ ≤ +
 ⋅ ≤ ≥ ≥ ≤ ≤ ≤ ≤

∑

∑

k

r
r

r

r r r r r

n

ij j i
j

j i

u x

u x

f E f x f E

a x b

x E j n i m

               (13) 

Proposition 1 The set of solutions of the above problem, Problem (13) is: 

( ) ( )
1

: 0 1; ; and 0 .
n

n
r r r r r r ij j i

j
D x u x f E f x f E a x b xα α

=

 
= ∈ ≤ ≤ − ≤ ≤ + ⋅ ≤ ≥ ≠ ∅ 
 

∑  

Proof 
The set D is non empty by the fact that there exists always an [ ]0,1α ∈  such 

that α ∈rf , { }1, ,∀ ∈ r k . Which ensure the existence of solution. Thus 
≠ ∅D    
The complexity of this new approach depends on the number of criterion that 

the problem contains. By the definition of error functions, the values of criterion 
are adjusted by taking into account of criterion with their associated constraints 
simultaneously. 

Below, we do one numerical example to show the effectiveness of our new ap-
proach, comparing with some existing approaches. 

4. Numerical Example 

In order to see the effectiveness of this new approach, a numerical example will 
be done and the solution will be compared with the solutions obtained by the 
Sakawa and Reardon approaches.  

4.1. Problem’s Presentation 

Let us consider the following problem problem which contains two decisions va-
riables ( )1 2,=x x x ; three criterion ( )1 11 1 12 2= +

 f x c x c x , ( )2 21 1 22 2= +

 f x c x c x  
and ( )3 1 23 26= +

f x x c x ; two constraints 11 1 12 2 1+ ≤  a x a x b  and 21 1 22 2 2+ ≤  a x a x b . 
The membership functions of each fuzzy set are defined as below:  

11

2

2

0, 5
25 , 5 7

24
1, 7 9
100 , 9 10

19
0, 10

µ

≤


− < ≤

= < ≤
 − < <

 ≤

c

x
x x

x
x x

x

; 
12

2

0, 2
2 , 2 7

5
1, 7 12
196 , 12 14

52
0, 14

µ

≤
 − < ≤

 < ≤= 
 − < <

 ≤

c

x
x x

x
x x

x

; 
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21

2

2

0, 14
196 , 14 18

188
1, 18 22
576 , 22 24

92
0, 24

µ

≤


− < ≤

= < ≤
 − < <

 ≤

c

x
x x

x
x x

x

; 
22

2

2

0, 30
900 , 30 35

325
1, 35 40
2025 , 40 45

425
0, 45

µ

≤


− < ≤

= < ≤
 − < <

 ≤

c

x
x x

x
x x

x

; 

11

0, 0
2 , 0 0.5
1, 0.5 2
25 5 , 2 5

15
0, 5

µ

≤
 < ≤
 < ≤= 

− < <
 ≤

a

x
x x

x
x x

x

; 
12

0, 0
5 , 0 0.2
1, 0.2 1
9 3 , 1 3

6
0, 3

µ

≤
 < ≤
 < ≤= 

− < <
 ≤

a

x
x x

x
x x

x

; 

21

0, 0
4 , 0 0.25
1, 0.25 5
64 8 , 5 8

24
0, 8

µ

≤
 < ≤
 < ≤= 

− < <
 ≤

a

x
x x

x
x x

x

; 
22

0, 5
2 10 , 5 6

2
1, 6 7
64 8 , 7 8

8
0, 8

µ

≤
 − < ≤

= < ≤
 − < <

 ≤

a

x
x x

x
x x

x

; 

1

0, 12
12 , 12 15

3
1, 15 18
42 2 , 18 21

6
0, 21

µ

≤
 − < ≤

= < ≤
 − < <

 ≤

b

x
x x

x
x x

x

; 
2

0, 56
2 112 , 56 68

24
1, 68 74
258 3 , 74 86

36
0, 86

µ

≤
 − < ≤

= < ≤
 − < <

 ≤

b

x
x x

x
x x

x

; 

23

0, 5
5, 5 6

7, 6 7
0, 7

µ

≤
 − < ≤= − + < <
 ≤

c

x
x x

x x
x

. 

The problem described above can be formulated as follow: 

( )
( )
( )
( )

1 11 1 12 2

2 21 1 22 2

3 1 23 2

11 1 12 2 1

21 1 22 2 2

Max "max"

6

0

  = +
  ≡ = +
 

= + 
 + ≤


+ ≤
 ≥



 

 

 







 



 

f x c x c x

f x f x c x c x

f x x c x

a x a x b

a x a x b
x

             (14) 

4.2. Resolution by Sakawa’s Approach 
4.2.1. Deterministic Equivalent Problem 
By defining the level set α  for 0.8α = , we obtain the following deterministic 
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problem:  

( )
( )
( )

1 1 2

2 1 2

3 1 2

1 2

1 2

9.2 12.43

Max ( ) "max" 22.4 41.1

6 6.2

2.6 1.4 18.6
5.6 7.2 76.4

0

 = +
 

= = + 
  = + 

+ ≤
 + ≤
 ≥

f x x x

f x f x x x

f x x x

x x
x x

x

.           (15) 

By minimizing each criteria separately and maximizing them on the same way, 
we obtain than: 

( )10 131.9≤ ≤f x  

( )20 436.12≤ ≤f x  

( )30 68.71≤ ≤f x . 

4.2.2. Definition of Criteria’s Memberships Functions 
We should first investigate for the less interesting values and the more interest-
ing values for each criteria. So for this, we need to define the deterministic prob-
lems as below respectively for 0α =  and 1α = :  

( )
( )
( )
( )

1 1 2

2 1 2

3 1 2

1 2

1 2

10 14
Max "max" 24 45

6 7

5 1.3 21
8 8 86

0

 = +
 ≡ = +

 = + 
+ ≤

 + ≤
≥

f x x x
f x f x x x

f x x x

x x
x x

x

             (16) 

and  

( )
( )
( )
( )

1 1 2

2 1 2

3 1 2

1 2

1 2

9 12
Max "max" 22 40

6 6

2 1 18
5 7 74

0

 = +
 ≡ = +

 = + 
+ ≤

 + ≤
≥

f x x x
f x f x x x

f x x x

x x
x x

x

             (17) 

Hence by solving these problems, we found: 10 98=f , 20 341=f  and 

30 49=f  which are the less interesting values of criterion. And 11 129.33=f , 

21 422.86=f  and 31 73.33=f  which are the more interesting value of crite-
rion. 

Now we define the membership functions as follow: 

( ) 1 2
1 1 2

129.33 9.2 12.43 4.13 0.2936 0.3967 .
129.33 98

µ
− −

= = − −
−

x xx x x  

( ) 1 2
2 1 2

422.86 22.4 41.1 3.8844 0.2058 0.377 .
422.86 314

µ
− −

= = − −
−
x xx x x  

( ) 1 2
3 1 2

73.33 6 6.2 3.014 0.2466 0.2548 .
73.33 49

µ
− −

= = − −
−

x xx x x  
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4.2.3. Definition of Decision Making Functions DMi 
For each criteria, we have these decision making functions:  

( )
1 2

1 1 2 1 2

1 2

0, if 4.13 0.2936 0.3967 0
4.13 0.2936 0.3967 , if 0 4.13 0.2936 0.3967 1
1, if 4.13 0.2936 0.3967 1

− − ≤
= − − < − − <
 − − ≥

x x
DM x x x x x

x x
 

( )
1 2

2 1 2 1 2

1 2

0, if 3.8844 0.2058 0.377 0
3.8844 0.2058 0.377 , if 0 3.8844 0.2058 0.377 1
1, if 3.8844 0.2058 0.377 1

− − ≤
= − − < − − <
 − − ≥

x x
DM x x x x x

x x
 

( )
1 2

3 1 2 1 2

1 2

0, if 3.014 0.2466 0.2548 0
3.014 0.2466 0.2548 , if 0 3.014 0.2466 0.2548 1
1, if 3.014 0.2466 0.2548 1

− − ≤
= − − < − − <
 − − ≥

x x
DM x x x x x

x x
 

4.2.4. Maximisation of Functions DMi 
We solve the problem below:  

( )1 2 3

1

2

3

1 2

1 2

1 2

"max" , ,
0 1
0 1
0 1
2.6 1.4 18.6
5.6 7.2 76.4

, 0

D

x x
x x

x x

µ µ µ µ
µ
µ
µ


 < <
 < <


< <
 + ≤
 + ≤
 ≥

.                    (18) 

By the use of aggregation function ( )1 2 3min , ,µ µ µ , the Problem (18) be-
comes:  

( )1 2 3

1

2

3

1 2

1 2

1 2

"max" min , ,
0 1
0 1
0 1
2.6 1.4 18.6
5.6 7.2 76.4

, 0

µ µ µ
µ
µ
µ


 < <
 < <


< <
 + ≤
 + ≤
 ≥

x x
x x

x x

.                    (19) 

Applying the techniques for solving the max-min problem, the Problem (19) 
can be transformed into:  

1

2

3

1

2

3

1 2

1 2

1 2

max

0 1
0 1
0 1
2.6 1.4 18.6
5.6 7.2 76.4
0 1

, 0

x x
x x

x x

λ
λ µ
λ µ
λ µ

µ
µ
µ

λ


 ≤
 ≤


≤
 < <


< <
 < <

+ ≤
 + ≤
 ≤ ≤


≥

.                     (20) 
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Replacing each criteria by the Sakawa’s membership functions, we have the 
following Problem:  

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

max
4.13 0.2936 0.3967
3.8844 0.2058 0.377
3.014 0.2466 0.2548

0 4.13 0.2936 0.3967 1
0 3.8844 0.2058 0.377 1
0 3.014 0.2466 0.2548 1
2.6 1.4 18.6
5.6 7.2 76.4
0 1

,

λ
λ
λ
λ

λ

≤ − −
≤ − −
≤ − −
< − − <
< − − <
< − − <

+ ≤
+ ≤

≤ ≤

x x
x x

x x
x x

x x
x x

x x
x x

x x 0


















≥

.                (21) 

After solving the Problem (21), we get the following solution:  

1 2
5165551 28063 569735; 0.7144 and 7.3613.
536870 39281 77396

λ = = ≈ = ≈x x  

In this case, the compromise solution is ( ) ( )1 2, 0.7144;7.3613=x x  with  

1 2 398.0734; 318.552 and 49.9265.≈ ≈ ≈f f f  

In the case where the solution does not meet the investor’s interest, we should 
change the membership functions otherwise the founded solution is the com-
promise solution of Problem (14).  

4.3. Resolution by Reardon’s Approach 
4.3.1. Deterministic Equivalent Problem 
For 0.8α = ; the deterministic equivalent problem of Problem (14) is given below:  

( )
( )
( )
( )

1 1 2

2 1 2

3 1 2

1 2

1 2

9.2 12.43
Max "max" 22.4 41.1

6 6.2

2.6 1.4 18.6
5.6 7.2 76.4

0

 = +
 ≡ = +

 = + 
+ ≤

 + ≤
≥

f x x x
f x f x x x

f x x x

x x
x x

x

.           (22) 

We set that the fuzzy scale factors max and min are given respectively by: 

max 0.8=S  and min 0.5=S . The minimal and maximal values of criterion are 
given by:  

1min 1max0, 131.9;= =f f  

2min 2max0, 436.12;= =f f  

3min 3max0, 68.71.= =f f  

After that, we define the experimental values of each criteria:  

1 2 3131.9; 436.12 and 68.71.= = =O O O  

We define also the margin errors for each experimental value of criterion:  
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1 2 32; 5; 5.= = =E E E  

4.3.2. Definition of Reardon’s Membership Functions 
By defining these, we want that:  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3131.9 2 ; 436.12 5 and 68.71 5 68.71 5 .≤ − ≤ − − ≤ ≤ +f x f x f x  

We have then  

( ) ( ) ( )1 2 3129.9; 431.12 and 63.71 73.71.≤ ≤ ≤ ≤f x f x f x  

We have now the following Reardon’s membership functions:  

• ( ) ( )1 1 2 1 2
0.8 9.2 12.43 129.9 0.057 0.0771 0.8
129.9

′ = + − = − − +
−

f f x x x x ;  

• ( ) ( )2 1 2 1 2
0.8 22.4 41.1 431.12 0.0416 0.0781 0.8

431.12
′ = + − = − − +

−
f f x x x x ;  

• ( )3 0′ =f f .  
Hence, the mean of these Reardon’s membership functions is given by:  

( )
3

1 2
1

1 0.0329 0.05173 0.5333.
3 =

′= = − − +∑ i
i

F f f x x  

4.3.3. Minimization of F 
The minimization problem of F is given by:  

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

min
0.0329 0.05173 0.5333

0.057 0.0771 0.8
0.057 0.0771 0.2
0.0416 0.0781 0.8
0.0416 0.0781 0.8
2.6 1.4 18.6
5.6 7.2 76.4
9.2 12.43 129.9
22.4 41.1 431.12
6 6.2 63.71

β
β + + =

+ ≤
+ ≥ −
+ ≤
+ ≥

+ ≤
+ ≤
+ ≤
+ ≤

+ ≥

x x
x x
x x
x x
x x

x x
x x
x x

x x
x x

1 2

1 2

6 6.2 73.71
, , 0β




















+ ≤
 ≥

x x
x x

                (23) 

After solving the above problem, we get the solution below:  

1 2
114273 95835400.647; 9.898
176630 968247

= ≈ = ≈x x  

with 

1 2 3128.98; 421.3006; 65.25.≈ ≈ ≈f f f  

Thus the founded solution is the compromise solution of Problem (14).  

4.4. Resolution by the New Approach Based on Errors Functions 
4.4.1. Deterministic Equivalent Problem 
For this approach, we will solve the problem with two different degrees of possi-

https://doi.org/10.4236/ajor.2023.131001


J. L. Makubikua et al. 
 

 

DOI: 10.4236/ajor.2023.131001 13 American Journal of Operations Research 
 

bilities, 0.8α =  and 1α = .  
• For 0.8α = , we have this below deterministic equivalent problem:  

( )
( )
( )
( )

1 1 2

2 1 2

3 1 2

1 2

1 2

9.2 12.43
Max "max" 22.4 41.1

6 6.2

2.6 1.4 18.6
5.6 7.2 76.4

0

 = +
 ≡ = +

 = + 
+ ≤

 + ≤
≥

f x x x
f x f x x x

f x x x

x x
x x

x

            (24) 

• For 1α = , we have this below deterministic equivalent problem:  

( )
( )
( )
( )

1 1 2

2 1 2

3 1 2

1 2

1 2

9 12
Max "max" 22 40

6 6

2 1 18
5 7 74

0

 = +
 ≡ = +

 = + 
+ ≤

 + ≤
≥

f x x x
f x f x x x

f x x x

x x
x x

x

             (25) 

4.4.2. Determination of rf α  

• For 0.8α = , we solve the problems below: 

( )
1 2

1 2

max
2.6 1.4 18.6
5.6 7.2 76.4

0;


 + ≤


+ ≤
 ≥

rf x
x x
x x

x

 { }1,2,3=r . 

After solving these problems, we obtain: 

0.8
1

237413 131.9
1800

= ≈f , 0.8
2

26167 436.12
60

= ≈f  and 0.8
3

46721 68.71
680

= ≈f . 

With 
1910,
18

 
 
 

 solution of problem for r = 1 and r = 2, and 
337 1181,
136 136
 
 
 

 so-

lution of problem for r = 3.  
• For 1α = , we solve the problems below: 

( )
1 2

1 2

max
2 1 18
5 7 74

0;


 + ≤


+ ≤
 ≥

rf x
x x
x x

x

 { }1,2,3=r . 

After solving these problems, we obtain: 

1
1

388 129.33
3

= ≈f , 1
2

2960 422.86
7

= ≈f  and  

1
3

220 73.33
3

= ≈f . 

With 
52 58,
9 9

 
 
 

 solution of problem for r = 1 and r = 3, and 
740,
7

 
 
 

 solu-
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tion of problem for r = 2.  

4.4.3. Definition of Errors Functions ( )ru x  and Minimisation of Their  
Sum 

We do this for two different values of α . In these two cases, we assume that 
1ε = .  

• For 0.8α = , we have: 

( ) 1 2 1
1

1 2 1

131.9 9.2 12.43
132.9

0.9925 0.0692 0.0935 0.0075

− − +
=

= − − +

x x Eu x

x x E
 

( ) 1 2 2
2

1 2 2

436.12 22.4 41.1
437.12

0.9977 0.0512 0.0940 0.0023

− − +
=

= − − +

x x Eu x

x x E
 

( ) 1 2 3
3

1 2 3

68.71 6 6.2
69.71

0.9857 0.0861 0.0889 0.0143

− − +
=

= − − +

x x E
u x

x x E
. 

The sum gives: 

( )3
1 2 1 2 31 2.9759 0.2065 0.2764 0.0075 0.0023 0.0143

=
= − − + + +∑ rr u x x x E E E . 

Hence, we have this problem which minimize the sum of ( )ru x : 

1 2 1 2 3

1 2 1

1 2 1

1 2 2

1 2 2

"min"
0.2065 0.2764 0.0075 0.0023 0.0143 2.9759

0.9925 0.0692 0.0935 0.0075 0
0.9925 0.0692 0.0935 0.0075 1
0.9977 0.0512 0.0940 0.0023 0
0.9977 0.0512 0.0940 0.0023 1
0

β
β + + − − − =

− − + ≥
− − + ≤
− − + ≥
− − + ≤

x x E E E
x x E
x x E
x x E
x x E

1 2 2

1 2 2

1 2 1

1 2 1

1 2 2

1 2 2

1 2 3

1 2 3

1

.9857 0.0861 0.0889 0.0143 0
0.9857 0.0861 0.0889 0.0143 1
9.2 12.43 131.9
9.2 12.43 131.9
22.4 41.1 436.12
22.4 41.1 436.12
6 6.2 68.71
6 6.2 68.71
2.6

− − + ≥
− − + ≤

+ + ≥
+ − ≤
+ + ≥
+ − ≤

+ + ≥
+ − ≤

x x E
x x E

x x E
x x E

x x E
x x E

x x E
x x E

x 2

1 2

1 2

1.4 18.6
5.6 7.2 76.4

, 0























 + ≤


+ ≤
 ≥

x
x x

x x

  (26) 

After solving this problem, we obtain the following solution: 

( )1 2 1 2 3
455239 71020 67133 1 2629, , , , , ;0; ; ; ; .

5368700 6693 13985800 391 900
β  =  

 
x x E E E  

Thus the compromise solution of the Problem (14) is given by:  

( )1 2
71020, 0;
6693

 =  
 

x x  with  
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1 2 3131.896; 436.11; 65.79.≈ ≈ ≈f f f  

• For 1α = , we have: 

( ) 1 2 1
1

1 2 1

129.33 9 12
130.33

0.9923 0.0691 0.0921 0.0077 ;

− − +
=

= − − +

x x Eu x

x x E
 

( ) 1 2 2
2

1 2 2

422.86 22 40
423.86

0.9976 0.0519 0.0944 0.0024 ;

− − +
=

= − − +

x x Eu x

x x E
 

( ) 1 2 3
3

1 2 3

73.33 6 6
74.33

0.9866 0.0807 0.0807 0.0135 .

− − +
=

= − − +

x x E
u x

x x E
 

The sum gives: 

( )3
1 2 1 2 31 2.9765 0.2017 0.2672 0.0077 0.0024 0.0135

=
= − − + + +∑ rr u x x x E E E . 

Hence, we have this Problem which minimize the sum of ( )ru x : 

1 2 1 2 3

1 2 1

1 2 1

1 2 2

1 2 2

"min"
0.2017 0.2672 0.0077 0.0024 0.0135 2.9765

0.9923 0.0691 0.0921 0.0077 0
0.9923 0.0691 0.0921 0.0077 1
0.9976 0.0519 0.0944 0.0024 0
0.9976 0.0519 0.0944 0.0024 1
0

β
β + + − − − =

− − + ≥
− − + ≤
− − + ≥
− − + ≤

x x E E E
x x E
x x E
x x E
x x E

1 2 2

1 2 2

1 2 1

1 2 1

1 2 2

1 2 2

1 2 3

1 2 3

1 2

1 2

1 2

.9866 0.0807 0.0807 0.0135 0
0.9866 0.0807 0.0807 0.0135 1
9 12 129.33
9 12 129.33
22 40 422.86
22 40 422.86
6 6 73.33
6 6 73.33
2 18
5 7 74

,

− − + ≥
− − + ≤

+ + ≥
+ − ≤
+ + ≥
+ − ≤
+ + ≥
+ − ≤
+ ≤
+ ≤
≥

x x E
x x E

x x E
x x E

x x E
x x E

x x E
x x E
x x
x x

x x 0





























 (27) 

After solving this problem, we obtain the following solution: 

( )1 2 1 2 3, , , , ,

194607 2115190 1871510 60881 8495170 368073; ; ; ; ; .
1073740 370977 287977 2079710 228277 2899100

β

 =  
 

x x E E E
 

Hence the compromise solution of Problem (14) is given by:  

( )1 2
2115190 1871510, ;
370977 287977

 =  
 

x x  with  

1 2 3129.318; 385.44; 73.212.≈ ≈ ≈f f f  

By this numerical example, we see clearly that the Reardon’s approach is easily 
applied and provides an optimal solution by comparing with Sakawa’s approach. 
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The Reardon’s approach is less complex than Sakawa approach of the limited 
number of steps for reaching the solution. The common point is that all solu-
tions provide by these two approaches depend on the level α  chosen by the 
investor. 

We can see clearly also that the solution obtained by the new approach is 
more effective (improved) than the solution obtained by Reardon approach 
without invoking the one obtained by Sakawa approach. As Sakawa and Reardon 
approaches, the solution of this new approach depends also on the choice of a 
level α  by the investor. In addition, this new approach is less complex than 
others. 

5. Concluding Remarks 

In this article, we analyzed Sakawa and Reardon approaches in order to solve a 
fuzzy multi criterion linear problem. This analysis leads us to a new approach 
more effective in terms of solutions obtained compared with Sakawa and Rear-
don approaches. 

Indeed, in the Sakawa and Reardon approaches, one defines the membership 
functions for each criterion. Sakawa’s approach wants that the defined member-
ship functions being maximal inversely to the Reardon’s approach. But, in the 
new approach we define systematically the error functions in which their sum 
should be minimized on the sequel of the method for finding the desired com-
promise solution. And we see that the solution obtained by this new approach 
improves the one obtained by the Sakawa and Reardon approaches. 

As Sakawa and Reardon approach, this new approach takes into account of 
fuzzy data in the formulation of the problem inside of constraints and criterion. 
The algorithm of this new approach is summarized in three important steps: first 
of all, we transform the fuzzy problem into its deterministic equivalent using 
level set α  of a fuzzy number. Secondly, after maximization of each criterion 
separately, we compute the error functions on each criterion. Finally, we mi-
nimize the sum of error functions for obtaining the compromise solution. 

The Sakawa approach gives a no satisfactory solution (less effective) compared 
with solutions from others approaches studied in this paper. The new approach 
gives the best solution (more effective) than the solutions from the previous one. 
The new approach becomes more complex when we have many criterion (at 
least 4). 
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