A New Approach for Solving Fuzzy Linear Multi-Criterion Problems: An Approach Based on Minimization of the Errors Functions

Joél Lema Makubikua ${ }^{1,2}$, Amani Wema ${ }^{1,2}$, Yves Tinda Mangongo ${ }^{1,2}{ }^{\text {© }}$, Joseph-Désiré Kyemba Bukweli ${ }^{1,2}$, Justin Dupar Busili Kampempe ${ }^{1,2}$
${ }^{1}$ Département des Mathématiques et Informatique, Université de Kinshasa, Kinshasa, The Democratic Republic of the Congo
${ }^{2}$ Conférence Congolaise de Recherche en Informatique et en Mathématiques Appliquées, COCORIMA, Kinshasa, The Democratic Republic of the Congo
Email: joelmakubikua@gmail.com, Yahyaamani73@gmail.com, yves.mangongo@unikin.ac.cd, desire.bukweli@unikin.ac.cd, justin-dupar.kampempe@unikin.ac.cd

How to cite this paper: Makubikua, J.L., Wema, A., Mangongo, Y.T., Bukweli, J.-D.K. and Kampempe, J.D.B. (2023) A New Approach for Solving Fuzzy Linear Multi-Criterion Problems: An Approach Based on Minimization of the Errors Functions. American Journal of Operations Research, 13, 1-17.
https://doi.org/10.4236/ajor.2023.131001

Received: November 12, 2022
Accepted: January 17, 2023
Published: January 20, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

The main purpose of this paper is to build a new approach for solving a fuzzy linear multi-criterion problem by defining a function called "error function". For this end, the concept of level set α is used to construct the error function. In addition, we introduce the concept of deviation variable in the definition of the error function. The algorithm of the new approach is summarized in three main steps: first, we transform the original fuzzy problem into a deterministic one by choosing a specific level α. second, we solve separately each uni-criteria problem and we compute the error function for each criteria. Finally, we minimize the sum of error functions in order to obtain the desired compromise solution. A numerical example is done for a comparative study with some existing approaches to show the effectiveness of the new approach.

Keywords

Deviation Variable, Compromise Solution, Membership Function, Error Function, Decision-Making Function

1. Introduction

The application of theory and methods of multi-criteria linear programming requires that the data determining a linear problem be real numbers known with certainty. However, sometimes we encounter situations that the data describe a real situation that is not known with certainty [1] [2]. This justifies the ineffi-
cient information or incomplete information that an investor can receive from the real world.

To reflect this vagueness due to the lack of data, the fuzzy set theory introduced by [3], will be used. The fuzzy set theory provides a framework in which vague concepts can be precisely and rigorously studied in order to take into account the imprecision of data. Some authors proposed approaches and algorithms for solving fuzzy linear multi criteria problems. We can cite [4]-[9]. The vagueness in a multi criteria problem consists of systematic substitution of fuzzy data for deterministic one into the multi criteria problem. In 2018, Y.T. Mangongo et al., [1] used fuzzy concepts to propose a fuzzy multi criteria model to truck the portfolio selection problem. More recently, Y.T. Mangongo and J.D.B. Kampempe [5] proposed two approaches to bring a balance between effectiveness and efficiency while solving a multiobjective programming problem with fuzzy objective functions. In the first approach, they used the Nearest Interval Approximation Operator for fuzzy numbers to propose the deterministic counterpart of the original fuzzy problem. In their second approach, they used the Embedding Theorem for fuzzy numbers.

Following this way, in this paper, we introduce a new approach for solving a fuzzy linear multi-criteria problem based on the new function introduced in this paper, called "error function". The algorithme of our main contribution is summarized in three steps. First of all, we transform the fuzzy initial problem into a deterministic one, secondly, we define the error function for each criteria and finally we minimize the sum of error functions. This new approach improves the approaches of M. Sakawa and H. Yano [8], and B.J. Reardon [6]. A numerical example is done in order to see the effectiveness of the new approach compared with the solutions obtained by the approaches of M. Sakawa and H. Yano [8], and B.J. Reardon [6].

The paper is organized as follows: the first section will be devoted to preliminary concepts and it will be ended by providing the approaches of M. Sakawa and H. Yano [8] and B.J. Reardon [6]. In the second section, we will present the new approach. In the third section, a numerical example will be done in order to compare the three approaches. Finally, the paper will be ended with some concluding remarks.

2. Preliminaries

Definition 1 (3) Let X be a non empty set, called "universe". A fuzzy set, denoted by \tilde{A} is defined as follow.

$$
\tilde{A}=\left\{\left(x, f_{\tilde{A}}(x)\right): x \in X\right\}
$$

where
$f_{\tilde{A}}$ is called the membership function of a fuzzy set \tilde{A}, defined on X ans takes values on the closed interval $[0,1]$.

A fuzzy measure f is a function defined on the power set $\mathcal{P}(X)$ into [0, 1],
satisfying the following conditions [10] [11] [12]:

- Limits cases: $f(\varnothing)=0$ and $f(X)=1$
- Monotonicity: for all $A, B \in \mathcal{P}(X)$ such that $A \subseteq B$ then $f(A) \leq f(B)$
- Continuity: for any nested part $A_{1} \subset A_{2} \subset \cdots \subset A_{n}$ or $A_{n} \subset A_{(n-1)} \subset \cdots \subset A_{1}$ we have: $\lim _{n \rightarrow+\infty} f\left(A_{n}\right)=f\left(\lim _{n \rightarrow+\infty}\left(A_{n}\right)\right)$.

Definition 2 (12) A possibility measure is an application, Poss
$\equiv \Pi: P(X) \rightarrow[0,1]$ such that:

- $\Pi(\varnothing)=0$
- $\Pi(X)=1$
- $\forall A_{1} \in P(X), \cdots, A_{i} \in P(X), \cdots$, then $\Pi\left(\bigcup_{i} A_{i}\right)=\sup _{i} \Pi\left(A_{i}\right)$.

One can show that the possibility measure satisfies the following properties:

- $\forall A \in P(X), B \in P(X)$, we have $\Pi(A \cup B)=\max (\Pi(A), \Pi(B))$.
- $\forall A \in P(X), B \in P(X)$, we have $\Pi(A \cap B) \leq \min (\Pi(A), \Pi(B))$.
- if $B \subset A$ then $\Pi(A) \geq \Pi(B)$.
- $\forall A \in P(X), \max \left(\Pi(A), \Pi\left(A^{c}\right)\right)=1$

Definition 3 (12)

A distribution of possibility is an application $\pi: X \rightarrow[0,1]$ such that $\sup _{x \in X} \pi(x)=1$.

- A possibility measure verify: $\forall A \in P(X), \Pi(A)=\sup _{x \in A} \pi(x)$
- One can obtain the possibility distribution from a possibility measure as follow:

$$
\pi(x)=\Pi(\{x\}), \forall x \in X
$$

Definition 4 (3)

A necessity measure is an application $N: P(X) \rightarrow[0,1]$ such that:

- $N(\varnothing)=0$
- $N(X)=1$
- $\forall A_{1} \in P(X), \cdots, A_{i} \in P(X), \cdots$, then $N\left(\bigcap_{i} A_{i}\right)=\inf _{i} N\left(A_{i}\right)$.

It can be shown that the necessity measure satisfies the following properties:

- $\forall A \in P(X), B \in P(X)$, we have $N(A \cap B)=\min (N(A), N(B))$.
- $\forall A \in P(X), B \in P(X)$, we have $N(A \cup B) \geq \max (N(A), N(B))$.
- if $B \subset A$ then $N(A) \geq N(B)$.
- $\forall A \in P(X)$ we have: $\max \left(N(A), N\left(A^{c}\right)\right)=1$.

Also, for all $A \in P(X)$, the following relations hold:

- $N(A)=1-\Pi\left(A^{c}\right)$,
- $N(A)=\sup _{x \notin A}(1-\pi(x))$,
- $N(A) \leq \Pi(A)$.

Definition 5 (12) A fuzzy linear multi criteria problem is formulated as follows.

$$
\left\{\begin{array}{l}
" \min "\left(\tilde{c}_{1} x, \tilde{c}_{2} x, \cdots, \tilde{c}_{k} x\right) \tag{1}\\
\sum_{j=1}^{n} \tilde{a}_{i j} \odot x_{j} \leq \tilde{b}_{i} \\
x_{j} \geq 0 ; 1 \leq j \leq n ; 1 \leq i \leq m
\end{array}\right.
$$

where: \tilde{c}_{j} is the $(1 \times n)$ matrix; x is the $(n \times 1)$ matrix and $\tilde{c}_{r j}, \tilde{a}_{i j}, \tilde{b}_{i}$ the
fuzzy intervals with the respective membership functions $\mu_{\tilde{c}_{r_{j}}}, \mu_{\tilde{a}_{i j}}, \mu_{\tilde{b}_{i}}$, with $1 \leq r \leq k$, in addition \odot expresses the multiplication of fuzzy numbers.

Bellow, we recall two methods (approaches), (Sakawa's method [8] and Reardon's method [6]).

The Sakawa's method [8] is very interesting because it involves fuzzy logic at all levels of the problem (on the parameters of criteria and on the parameters of the constraints). The set of solutions that will be found will also involve fuzzy logic. The solutions are given with a degree of belonging and have a correlation with the initial criteria; knowing that the correlation with the initial criteria is fixed by the investor.

The method starts by a fuzzy problem which will be transformed by a deterministic one by assigning an element of a level set α of the form:

$$
\left\{\begin{array}{l}
" \min " f_{1}(x), \cdots, f_{k}(x) \tag{2}\\
g_{i}(x) \leq 0 \\
x \geq 0
\end{array}\right.
$$

where

$$
f_{i}(x)=c_{i} x
$$

and

$$
g_{i}(x)=\sum_{j} a_{i j} x_{j}-b_{i}
$$

Under the constraints $g_{i}(x) \leq 0$, one minimizes then maximizes, each criteria separately, so that one obtains an interval of variation of the value of criteria.

One defines the membership functions as follows:

$$
\begin{equation*}
\mu_{i}(x)=\frac{f_{i 1}-f_{i}(x)}{f_{i 1}-f_{i 0}} ; \text { where: } \tag{3}
\end{equation*}
$$

$f_{i 0}$ is the least interesting value of the criteria and $f_{i 1}$ is the most interesting value of the criteria.

One defines the decision-making functions $D M_{i}$ as follows:

$$
D M_{i}(x)=\left\{\begin{array}{ll}
0, & \text { si } \mu_{i}(x) \leq 0 \tag{4}\\
\mu_{i}(x), & \text { si } 0<\mu_{i}(x)<1 \\
1, & \text { si } \mu_{i}(x) \geq 1
\end{array}\right. \text { where: }
$$

$D M_{i}(x)=1$ when the objective is reached and $D M_{i}(x)=0$ when the objective is not reached.

One maximizes the $D M_{i}$ functions.
If there is no solution, or if the solution does not satisfy the investor, then one must change the membership functions, and return to step 3.

Stop and display the solution.
For further informations the readers can be referenced on the cited paper.
The Reardon's method [6] is a less complex method than Sakawa's method which involves also the fuzzy logic at each level.

The deterministic equivalent of the above Problem (1) is this below linear
multi-criteria problem:

$$
\left\{\begin{array}{l}
\min \left\{\begin{array}{l}
f_{1}(x) \\
\cdots \\
f_{k}(x)
\end{array}\right. \tag{5}\\
g_{1}(x), \cdots, g_{m}(x) \leq 0 \\
x \in \mathbb{R}^{n} \\
\left(f_{1}, \cdots, f_{k}(x)\right) \in \mathbb{R}^{k} \\
\left(g_{1}(x), \cdots, g_{m}(x)\right) \in \mathbb{R}^{m} \\
x \geq 0
\end{array}\right.
$$

For each criterion, one should define a membership function called the Reardon's membership function. The representation of Reardon's membership function and more details about it can be found in [6]. Here are some significations of the parameters of Reardon's membership function:
$S_{\text {max }}$ fuzzy scale factor max.
$S_{\text {min }}$ fuzzy scale factor min.
$f_{\text {min }}$: minimum value of the $f^{\text {th }}$ criteria.
$f_{\text {maxa }}$: maximum value of the $i^{\text {th }}$ criteria.
O_{i} experimental value of the $i^{\text {th }}$ criteria. We wanted that $f_{i}=O_{i}$.
E_{i} a margin of acceptable error (the criteria O_{i} is defined with error E_{i}).
Reardon define the expressions of his membership functions as follows:

- If $f_{i} \leq\left(O_{i}-E_{i}\right)$ then:

$$
\begin{equation*}
f^{\prime}\left(f_{i}\right)=\left[\frac{S_{\max }}{f_{i \min }-\left(O_{i}-E_{i}\right)}\right] \cdot\left(f_{i}-\left(O_{i}-E_{i}\right)\right) . \tag{6}
\end{equation*}
$$

- If $\left(O_{i}-E_{i}\right) \leq f_{i} \leq\left(O_{i}+E_{i}\right)$ then:

$$
\begin{equation*}
f^{\prime}\left(f_{i}\right)=0 . \tag{7}
\end{equation*}
$$

- If $\left(O_{i}+E_{i}\right) \leq f_{i}$ then:

$$
\begin{equation*}
f^{\prime}\left(f_{i}\right)=\left[\frac{S_{\min }}{\left(O_{i}+E_{i}\right)-f_{i \max }}\right] \cdot\left(f_{i}-\left(O_{i}+E_{i}\right)\right) . \tag{8}
\end{equation*}
$$

Comparing with the classical methods of fuzzy optimisation, in this algorithm the level is in inverse. Instead of having 1 for the value of membership function when f_{i} is belongs to the set of desired values (that means in the interval $\left[O_{i}-E_{i}, O_{i}+E_{i}\right]$), the value of membership function is null. This inversion of the degree of belonging allows us to obtain very simple global criteria which aggregate all criterion.

$$
\begin{equation*}
F=\frac{1}{k} \sum_{i=1}^{k} f^{\prime}\left(f_{i}\right) \tag{9}
\end{equation*}
$$

As one can see, F is the mean of the Reardon's membership functions of criterion. All these Reardon's membership's functions has been normalized by an intermediate of $S_{\min }$ and of $S_{\max }$.

3. New Approach Based on Minimization of Errors Functions

In this section, we present the new approach. The approach which involves the systematically definition of the errors functions, where their sum will be minimized in order to obtain the compromise solution of the initial fuzzy problem.

We need to transform this non deterministic problem (1) into a deterministic one by defining the level set α; see [8]. For an exigent investor, we fix the level α very closer to 1 and obtain the following deterministic problem:

$$
\left\{\begin{array}{l}
" \max "\left(c_{1} x, c_{2} x, \cdots, c_{k} x\right) \tag{10}\\
\sum_{j=1}^{n} a_{i j} \cdot x_{j} \leq b_{i} \\
x_{j} \geq 0 ; 1 \leq j \leq n ; 1 \leq i \leq m
\end{array} .\right.
$$

Then, we solve each problem separately with one criterion and we compute f_{r}^{α}; which is the value of a criterion to a level α. If one problem does not have a solution; we should revise the value of α. After that, we compute for each criterion the error function defined below.

Definition 6 (error function) We define an "error function" by:

$$
\begin{equation*}
u_{r}(x)=\frac{f_{r}^{\alpha}-f_{r}(x)+E_{r}}{f_{r}^{\alpha}+\varepsilon} \tag{11}
\end{equation*}
$$

where ε is an arbitrary positive constant, $f_{r}(x)=c_{r} x$ (criterion), E_{r} the deviation variable of a given criteria with the denominator $f_{r}^{\alpha}+\varepsilon \neq 0$ for $1 \leq r \leq k$. The presence of ε ensure that, the denominator can not be zero.

Finally, we minimize the sum of all these errors functions on the criterion under the constraints below:

$$
\left\{\begin{array}{l}
0 \leq u_{r}(x) \leq 1 \\
f_{r}^{\alpha}-E_{r} \leq f_{r}(x) \leq f_{r}^{\alpha}+E_{r} \\
\sum_{j=1}^{n} a_{i j} \cdot x_{j} \leq b_{i} \\
x_{j} \geq 0 ; 1 \leq j \leq n ; 1 \leq i \leq m
\end{array}\right.
$$

Thus, the founded solution of the above problem is the compromise solution of the Problem (1). The algorithm of this new approach can be summarized as follows:

- The fuzzy Problem (1) is transformed into the deterministic one, Problem (10):
- For $r=1, \cdots, k$,

1) Solve the problem:

$$
\left\{\begin{array}{l}
\max c_{r} x \tag{12}\\
\sum_{j=1}^{n} a_{i j} \cdot x_{j} \leq b_{i} \\
x_{j} \geq 0 ; 1 \leq j \leq n ; 1 \leq i \leq m
\end{array}\right.
$$

and obtain f_{r}^{α} the value of criteria $f_{r}(x)$ at a given level α. If no solution is obtained, then go back to 1 .
2) Compute for each criteria, the error function:

$$
u_{r}(x)=\frac{f_{r}^{\alpha}-f_{r}(x)+E_{r}}{f_{r}^{\alpha}+\varepsilon}
$$

- Minimize the sum of all errors functions:

$$
\left\{\begin{array}{l}
\min \sum_{r=1}^{k} u_{r}(x) \tag{13}\\
\left\{\begin{array}{l}
0 \leq u_{r}(x) \leq 1 \\
f_{r}^{\alpha}-E_{r} \leq f_{r}(x) \leq f_{r}^{\alpha}+E_{r} \\
\sum_{j=1}^{n} a_{i j} \cdot x_{j} \leq b_{i} \\
x_{j} \geq 0 ; E_{i} \geq 0 ; 1 \leq j \leq n ; 1 \leq i \leq m
\end{array}\right.
\end{array}\right.
$$

Proposition 1 The set of solutions of the above problem, Problem (13) is. $D=\left\{x \in \mathbb{R}^{n}: 0 \leq u_{r}(x) \leq 1 ; f_{r}^{\alpha}-E_{r} \leq f_{r}(x) \leq f_{r}^{\alpha}+E_{r} ; \sum_{j=1}^{n} a_{i j} \cdot x_{j} \leq b_{i}\right.$ and $\left.x \geq 0\right\} \neq \varnothing$.

Proof
The set D is non empty by the fact that there exists always an $\alpha \in[0,1]$ such that $f_{r}^{\alpha} \in \mathbb{R}, \forall r \in\{1, \cdots, k\}$. Which ensure the existence of solution. Thus $D \neq \varnothing$

The complexity of this new approach depends on the number of criterion that the problem contains. By the definition of error functions, the values of criterion are adjusted by taking into account of criterion with their associated constraints simultaneously.

Below, we do one numerical example to show the effectiveness of our new approach, comparing with some existing approaches.

4. Numerical Example

In order to see the effectiveness of this new approach, a numerical example will be done and the solution will be compared with the solutions obtained by the Sakawa and Reardon approaches.

4.1. Problem's Presentation

Let us consider the following problem problem which contains two decisions variables $x=\left(x_{1}, x_{2}\right)$; three criterion $\tilde{f}_{1}(x)=\tilde{c}_{11} x_{1}+\tilde{c}_{12} x_{2}, \quad \tilde{f}_{2}(x)=\tilde{c}_{21} x_{1}+\tilde{c}_{22} x_{2}$ and $\tilde{f}_{3}(x)=6 x_{1}+\tilde{c}_{23} x_{2}$; two constraints $\tilde{a}_{11} x_{1}+\tilde{a}_{12} x_{2} \leq \tilde{b}_{1}$ and $\tilde{a}_{21} x_{1}+\tilde{a}_{22} x_{2} \leq \tilde{b}_{2}$. The membership functions of each fuzzy set are defined as below:

$$
\mu_{\tilde{c}_{11}}=\left\{\begin{array}{ll}
0, & x \leq 5 \\
\frac{x^{2}-25}{24}, & 5<x \leq 7 \\
1, & 7<x \leq 9 \\
\frac{100-x^{2}}{19}, & 9<x<10 \\
0, & 10 \leq x
\end{array} \quad \mu_{\tilde{c}_{12}}= \begin{cases}0, & x \leq 2 \\
\frac{x-2}{5}, & 2<x \leq 7 \\
1, & 7<x \leq 12 ; \\
\frac{196-x^{2}}{52}, & 12<x<14 \\
0, & 14 \leq x\end{cases}\right.
$$

$$
\begin{aligned}
& \mu_{\tilde{c}_{21}}=\left\{\begin{array}{ll}
0, & x \leq 14 \\
\frac{x^{2}-196}{188}, & 14<x \leq 18 \\
1, & 18<x \leq 22 ; \\
\frac{576-x^{2}}{92}, & 22<x<24 \\
0, & 24 \leq x
\end{array} \quad \mu_{\tilde{c}_{22}}= \begin{cases}0, & x \leq 30 \\
\frac{x^{2}-900}{325}, & 30<x \leq 35 \\
1, & 35<x \leq 40 ; \\
\frac{2025-x^{2}}{425}, & 40<x<45 \\
0, & 45 \leq x\end{cases} \right. \\
& \mu_{\tilde{a}_{11}}=\left\{\begin{array}{ll}
0, & x \leq 0 \\
2 x, & 0<x \leq 0.5 \\
1, & 0.5<x \leq 2 \\
\frac{25-5 x}{15}, & 2<x<5 \\
0, & 5 \leq x
\end{array} ; \mu_{\tilde{a}_{12}}=\left\{\begin{array}{ll}
0, & x \leq 0 \\
5 x, & 0<x \leq 0.2 \\
1, & 0.2<x \leq 1 \\
\frac{9-3 x}{6}, & 1<x<3 \\
0, & 3 \leq x
\end{array} ;\right.\right. \\
& \mu_{\tilde{a}_{21}}=\left\{\begin{array}{ll}
0, & x \leq 0 \\
4 x, & 0<x \leq 0.25 \\
1, & 0.25<x \leq 5 \\
\frac{64-8 x}{24}, & 5<x<8 \\
0, & 8 \leq x
\end{array} ; \mu_{\tilde{a}_{22}}= \begin{cases}0, & x \leq 5 \\
\frac{2 x-10}{2}, & 5<x \leq 6 \\
1, & 6<x \leq 7 ; \\
\frac{64-8 x}{8}, & 7<x<8 \\
0, & 8 \leq x\end{cases} \right. \\
& \mu_{\tilde{b}_{1}}=\left\{\begin{array}{ll}
0, & x \leq 12 \\
\frac{x-12}{3}, & 12<x \leq 15 \\
1, & 15<x \leq 18 ; \\
\frac{42-2 x}{6}, & 18<x<21 \\
0, & 21 \leq x
\end{array} \quad \mu_{\tilde{b}_{2}}= \begin{cases}0, & x \leq 56 \\
\frac{2 x-112}{24}, & 56<x \leq 68 \\
\frac{258-3 x}{36}, & 74<x<86 \\
0, & 86 \leq x\end{cases} \right. \\
& \mu_{\tilde{c}_{23}}=\left\{\begin{array}{ll}
0, & x \leq 5 \\
x-5, & 5<x \leq 6 \\
-x+7, & 6<x<7 \\
0, & 7 \leq x
\end{array} .\right.
\end{aligned}
$$

The problem described above can be formulated as follow:

$$
\left\{\begin{array}{l}
\operatorname{Max} \tilde{f}(x) \equiv " \max "\left\{\begin{array}{l}
\tilde{f}_{1}(x)=\tilde{c}_{11} x_{1}+\tilde{c}_{12} x_{2} \\
\tilde{f}_{2}(x)=\tilde{c}_{21} x_{1}+\tilde{c}_{22} x_{2} \\
\tilde{f}_{3}(x)=6 x_{1}+\tilde{c}_{23} x_{2}
\end{array}\right. \tag{14}\\
\tilde{a}_{11} x_{1}+\tilde{a}_{12} x_{2} \leq \tilde{b}_{1} \\
\tilde{a}_{21} x_{1}+\tilde{a}_{22} x_{2} \leq \tilde{b}_{2} \\
x \geq 0
\end{array}\right.
$$

4.2. Resolution by Sakawa's Approach

4.2.1. Deterministic Equivalent Problem

By defining the level set α for $\alpha=0.8$, we obtain the following deterministic
problem:

$$
\left\{\begin{array}{l}
\operatorname{Max} f(x)=" \max "\left\{\begin{array}{l}
f_{1}(x)=9.2 x_{1}+12.43 x_{2} \\
f_{2}(x)=22.4 x_{1}+41.1 x_{2} \\
f_{3}(x)=6 x_{1}+6.2 x_{2}
\end{array}\right. \tag{15}\\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
x \geq 0
\end{array}\right.
$$

By minimizing each criteria separately and maximizing them on the same way, we obtain than:

$$
\begin{gathered}
0 \leq f_{1}(x) \leq 131.9 \\
0 \leq f_{2}(x) \leq 436.12 \\
0 \leq f_{3}(x) \leq 68.71
\end{gathered}
$$

4.2.2. Definition of Criteria's Memberships Functions

We should first investigate for the less interesting values and the more interesting values for each criteria. So for this, we need to define the deterministic problems as below respectively for $\alpha=0$ and $\alpha=1$:

$$
\left\{\begin{array}{l}
\operatorname{Max} f(x) \equiv " \max ^{\prime}\left\{\begin{array}{l}
f_{1}(x)=10 x_{1}+14 x_{2} \\
f_{2}(x)=24 x_{1}+45 x_{2} \\
f_{3}(x)=6 x_{1}+7 x_{2}
\end{array}\right. \tag{16}\\
5 x_{1}+1.3 x_{2} \leq 21 \\
8 x_{1}+8 x_{2} \leq 86 \\
x \geq 0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\operatorname{Max} f(x) \equiv " \max ^{\prime}\left\{\begin{array}{l}
f_{1}(x)=9 x_{1}+12 x_{2} \\
f_{2}(x)=22 x_{1}+40 x_{2} \\
f_{3}(x)=6 x_{1}+6 x_{2}
\end{array}\right. \tag{17}\\
2 x_{1}+1 x_{2} \leq 18 \\
5 x_{1}+7 x_{2} \leq 74 \\
x \geq 0
\end{array}\right.
$$

Hence by solving these problems, we found: $f_{10}=98, f_{20}=341$ and $f_{30}=49$ which are the less interesting values of criterion. And $f_{11}=129.33$, $f_{21}=422.86$ and $f_{31}=73.33$ which are the more interesting value of criterion.

Now we define the membership functions as follow:

$$
\begin{gathered}
\mu_{1}(x)=\frac{129.33-9.2 x_{1}-12.43 x_{2}}{129.33-98}=4.13-0.2936 x_{1}-0.3967 x_{2} \\
\mu_{2}(x)=\frac{422.86-22.4 x_{1}-41.1 x_{2}}{422.86-314}=3.8844-0.2058 x_{1}-0.377 x_{2} \\
\mu_{3}(x)=\frac{73.33-6 x_{1}-6.2 x_{2}}{73.33-49}=3.014-0.2466 x_{1}-0.2548 x_{2}
\end{gathered}
$$

4.2.3. Definition of Decision Making Functions $D M_{i}$

For each criteria, we have these decision making functions:

$$
\begin{gathered}
D M_{1}(x)= \begin{cases}0, & \text { if } 4.13-0.2936 x_{1}-0.3967 x_{2} \leq 0 \\
4.13-0.2936 x_{1}-0.3967 x_{2}, & \text { if } 0<4.13-0.2936 x_{1}-0.3967 x_{2}<1 \\
1, & \text { if } 4.13-0.2936 x_{1}-0.3967 x_{2} \geq 1\end{cases} \\
D M_{2}(x)= \begin{cases}0, & \text { if } 3.8844-0.2058 x_{1}-0.377 x_{2} \leq 0 \\
3.8844-0.2058 x_{1}-0.377 x_{2}, & \text { if } 0<3.8844-0.2058 x_{1}-0.377 x_{2}<1 \\
1, & \text { if } 3.8844-0.2058 x_{1}-0.377 x_{2} \geq 1\end{cases} \\
D M_{3}(x)= \begin{cases}0, & \text { if } 3.014-0.2466 x_{1}-0.2548 x_{2} \leq 0 \\
3.014-0.2466 x_{1}-0.2548 x_{2}, & \text { if } 0<3.014-0.2466 x_{1}-0.2548 x_{2}<1 \\
1, & \text { if } 3.014-0.2466 x_{1}-0.2548 x_{2} \geq 1\end{cases}
\end{gathered}
$$

4.2.4. Maximisation of Functions $D M_{i}$

We solve the problem below:

$$
\left\{\begin{array}{l}
" \max " \mu_{D}\left(\mu_{1}, \mu_{2}, \mu_{3}\right) \tag{18}\\
0<\mu_{1}<1 \\
0<\mu_{2}<1 \\
0<\mu_{3}<1 \\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
x_{1}, x_{2} \geq 0
\end{array} .\right.
$$

By the use of aggregation function $\min \left(\mu_{1}, \mu_{2}, \mu_{3}\right)$, the Problem (18) becomes:

$$
\left\{\begin{array}{l}
" \max " \min \left(\mu_{1}, \mu_{2}, \mu_{3}\right) \tag{19}\\
0<\mu_{1}<1 \\
0<\mu_{2}<1 \\
0<\mu_{3}<1 \\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
x_{1}, x_{2} \geq 0
\end{array} .\right.
$$

Applying the techniques for solving the max-min problem, the Problem (19) can be transformed into:

$$
\left\{\begin{array}{l}
\max \lambda \tag{20}\\
\lambda \leq \mu_{1} \\
\lambda \leq \mu_{2} \\
\lambda \leq \mu_{3} \\
0<\mu_{1}<1 \\
0<\mu_{2}<1 \\
0<\mu_{3}<1 \\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
0 \leq \lambda \leq 1 \\
x_{1}, x_{2} \geq 0
\end{array}\right.
$$

Replacing each criteria by the Sakawa's membership functions, we have the following Problem:

$$
\left\{\begin{array}{l}
\max \lambda \tag{21}\\
\lambda \leq 4.13-0.2936 x_{1}-0.3967 x_{2} \\
\lambda \leq 3.8844-0.2058 x_{1}-0.377 x_{2} \\
\lambda \leq 3.014-0.2466 x_{1}-0.2548 x_{2} \\
0<4.13-0.2936 x_{1}-0.3967 x_{2}<1 \\
0<3.8844-0.2058 x_{1}-0.377 x_{2}<1 \\
0<3.014-0.2466 x_{1}-0.2548 x_{2}<1 \\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
0 \leq \lambda \leq 1 \\
x_{1}, x_{2} \geq 0
\end{array}\right.
$$

After solving the Problem (21), we get the following solution:

$$
\lambda=\frac{5165551}{536870} ; x_{1}=\frac{28063}{39281} \approx 0.7144 \text { and } x_{2}=\frac{569735}{77396} \approx 7.3613
$$

In this case, the compromise solution is $\left(x_{1}, x_{2}\right)=(0.7144 ; 7.3613)$ with

$$
f_{1} \approx 98.0734 ; f_{2} \approx 318.552 \text { and } f_{3} \approx 49.9265
$$

In the case where the solution does not meet the investor's interest, we should change the membership functions otherwise the founded solution is the compromise solution of Problem (14).

4.3. Resolution by Reardon's Approach

4.3.1. Deterministic Equivalent Problem

For $\alpha=0.8$; the deterministic equivalent problem of Problem (14) is given below:

$$
\left\{\begin{array}{l}
\operatorname{Max} f(x) \equiv " \max ^{\prime}\left\{\begin{array}{l}
f_{1}(x)=9.2 x_{1}+12.43 x_{2} \\
f_{2}(x)=22.4 x_{1}+41.1 x_{2} \\
f_{3}(x)=6 x_{1}+6.2 x_{2}
\end{array}\right. \tag{22}\\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
x \geq 0
\end{array}\right.
$$

We set that the fuzzy scale factors max and min are given respectively by: $S_{\max }=0.8$ and $S_{\text {min }}=0.5$. The minimal and maximal values of criterion are given by:

$$
\begin{gathered}
f_{1 \min }=0, f_{1 \max }=131.9 \\
f_{2 \min }=0, f_{2 \max }=436.12 \\
f_{3 \min }=0, f_{3 \max }=68.71
\end{gathered}
$$

After that, we define the experimental values of each criteria:

$$
O_{1}=131.9 ; O_{2}=436.12 \text { and } O_{3}=68.71
$$

We define also the margin errors for each experimental value of criterion:

$$
E_{1}=2 ; E_{2}=5 ; E_{3}=5 .
$$

4.3.2. Definition of Reardon's Membership Functions

By defining these, we want that:
$f_{1}(x) \leq(131.9-2) ; f_{2}(x) \leq(436.12-5)$ and $(68.71-5) \leq f_{3}(x) \leq(68.71+5)$.
We have then

$$
f_{1}(x) \leq 129.9 ; f_{2}(x) \leq 431.12 \text { and } 63.71 \leq f_{3}(x) \leq 73.71
$$

We have now the following Reardon's membership functions:

- $f^{\prime}\left(f_{1}\right)=\frac{0.8}{-129.9}\left(9.2 x_{1}+12.43 x_{2}-129.9\right)=-0.057 x_{1}-0.0771 x_{2}+0.8$;
- $f^{\prime}\left(f_{2}\right)=\frac{0.8}{-431.12}\left(22.4 x_{1}+41.1 x_{2}-431.12\right)=-0.0416 x_{1}-0.0781 x_{2}+0.8$;
- $f^{\prime}\left(f_{3}\right)=0$.

Hence, the mean of these Reardon's membership functions is given by:

$$
F=\frac{1}{3} \sum_{i=1}^{3} f^{\prime}\left(f_{i}\right)=-0.0329 x_{1}-0.05173 x_{2}+0.5333
$$

4.3.3. Minimization of F

The minimization problem of F is given by:

$$
\left\{\begin{array}{l}
\min \beta \tag{23}\\
\beta+0.0329 x_{1}+0.05173 x_{2}=0.5333 \\
0.057 x_{1}+0.0771 x_{2} \leq 0.8 \\
0.057 x_{1}+0.0771 x_{2} \geq-0.2 \\
0.0416 x_{1}+0.0781 x_{2} \leq 0.8 \\
0.0416 x_{1}+0.0781 x_{2} \geq 0.8 \\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
9.2 x_{1}+12.43 x_{2} \leq 129.9 \\
22.4 x_{1}+41.1 x_{2} \leq 431.12 \\
6 x_{1}+6.2 x_{2} \geq 63.71 \\
6 x_{1}+6.2 x_{2} \leq 73.71 \\
x_{1}, x_{2}, \beta \geq 0
\end{array}\right.
$$

After solving the above problem, we get the solution below:

$$
x_{1}=\frac{114273}{176630} \approx 0.647 ; x_{2}=\frac{9583540}{968247} \approx 9.898
$$

with

$$
f_{1} \approx 128.98 ; f_{2} \approx 421.3006 ; f_{3} \approx 65.25
$$

Thus the founded solution is the compromise solution of Problem (14).

4.4. Resolution by the New Approach Based on Errors Functions

4.4.1. Deterministic Equivalent Problem

For this approach, we will solve the problem with two different degrees of possi-
bilities, $\alpha=0.8$ and $\alpha=1$.

- For $\alpha=0.8$, we have this below deterministic equivalent problem:

$$
\left\{\begin{array}{l}
\operatorname{Max} f(x) \equiv " \max ^{\prime}\left\{\begin{array}{l}
f_{1}(x)=9.2 x_{1}+12.43 x_{2} \\
f_{2}(x)=22.4 x_{1}+41.1 x_{2} \\
f_{3}(x)=6 x_{1}+6.2 x_{2}
\end{array}\right. \tag{24}\\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
x \geq 0
\end{array}\right.
$$

- For $\alpha=1$, we have this below deterministic equivalent problem:

$$
\left\{\begin{array}{l}
\operatorname{Max} f(x) \equiv " \max ^{\prime}\left\{\begin{array}{l}
f_{1}(x)=9 x_{1}+12 x_{2} \\
f_{2}(x)=22 x_{1}+40 x_{2} \\
f_{3}(x)=6 x_{1}+6 x_{2}
\end{array}\right. \tag{25}\\
2 x_{1}+1 x_{2} \leq 18 \\
5 x_{1}+7 x_{2} \leq 74 \\
x \geq 0
\end{array}\right.
$$

4.4.2. Determination of f_{r}^{α}

- For $\alpha=0.8$, we solve the problems below:

$$
\left\{\begin{array}{l}
\max f_{r}(x) \\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
x \geq 0
\end{array} \quad r=\{1,2,3\}\right.
$$

After solving these problems, we obtain:
$f_{1}^{0.8}=\frac{237413}{1800} \approx 131.9, \quad f_{2}^{0.8}=\frac{26167}{60} \approx 436.12$ and $f_{3}^{0.8}=\frac{46721}{680} \approx 68.71$.
With $\left(0, \frac{191}{18}\right)$ solution of problem for $r=1$ and $r=2$, and $\left(\frac{337}{136}, \frac{1181}{136}\right)$ solution of problem for $r=3$.

- For $\alpha=1$, we solve the problems below:

$$
\left\{\begin{array}{l}
\max f_{r}(x) \\
2 x_{1}+1 x_{2} \leq 18 \\
5 x_{1}+7 x_{2} \leq 74 \\
x \geq 0
\end{array} \quad r=\{1,2,3\}\right.
$$

After solving these problems, we obtain:

$$
\begin{gathered}
f_{1}^{1}=\frac{388}{3} \approx 129.33, f_{2}^{1}=\frac{2960}{7} \approx 422.86 \text { and } \\
f_{3}^{1}=\frac{220}{3} \approx 73.33
\end{gathered}
$$

With $\left(\frac{52}{9}, \frac{58}{9}\right)$ solution of problem for $r=1$ and $r=3$, and $\left(0, \frac{74}{7}\right)$ solu-
tion of problem for $r=2$.

4.4.3. Definition of Errors Functions $u_{r}(x)$ and Minimisation of Their Sum

We do this for two different values of α. In these two cases, we assume that $\varepsilon=1$.

- For $\alpha=0.8$, we have:

$$
\begin{aligned}
u_{1}(x) & =\frac{131.9-9.2 x_{1}-12.43 x_{2}+E_{1}}{132.9} \\
& =0.9925-0.0692 x_{1}-0.0935 x_{2}+0.0075 E_{1} \\
u_{2}(x) & =\frac{436.12-22.4 x_{1}-41.1 x_{2}+E_{2}}{437.12} \\
& =0.9977-0.0512 x_{1}-0.0940 x_{2}+0.0023 E_{2} \\
u_{3}(x) & =\frac{68.71-6 x_{1}-6.2 x_{2}+E_{3}}{69.71} \\
& =0.9857-0.0861 x_{1}-0.0889 x_{2}+0.0143 E_{3}
\end{aligned} .
$$

The sum gives:

$$
\sum_{r=1}^{3} u_{r}(x)=2.9759-0.2065 x_{1}-0.2764 x_{2}+0.0075 E_{1}+0.0023 E_{2}+0.0143 E_{3} .
$$

Hence, we have this problem which minimize the sum of $u_{r}(x)$:

$$
\left\{\begin{array}{l}
\text { "min" } \beta \tag{26}\\
\beta+0.2065 x_{1}+0.2764 x_{2}-0.0075 E_{1}-0.0023 E_{2}-0.0143 E_{3}=2.9759 \\
0.9925-0.0692 x_{1}-0.0935 x_{2}+0.0075 E_{1} \geq 0 \\
0.9925-0.0692 x_{1}-0.0935 x_{2}+0.0075 E_{1} \leq 1 \\
0.9977-0.0512 x_{1}-0.0940 x_{2}+0.0023 E_{2} \geq 0 \\
0.9977-0.0512 x_{1}-0.0940 x_{2}+0.0023 E_{2} \leq 1 \\
0.9857-0.0861 x_{1}-0.0889 x_{2}+0.0143 E_{2} \geq 0 \\
0.9857-0.0861 x_{1}-0.0889 x_{2}+0.0143 E_{2} \leq 1 \\
9.2 x_{1}+12.43 x_{2}+E_{1} \geq 131.9 \\
9.2 x_{1}+12.43 x_{2}-E_{1} \leq 131.9 \\
22.4 x_{1}+41.1 x_{2}+E_{2} \geq 436.12 \\
22.4 x_{1}+41.1 x_{2}-E_{2} \leq 436.12 \\
6 x_{1}+6.2 x_{2}+E_{3} \geq 68.71 \\
6 x_{1}+6.2 x_{2}-E_{3} \leq 68.71 \\
2.6 x_{1}+1.4 x_{2} \leq 18.6 \\
5.6 x_{1}+7.2 x_{2} \leq 76.4 \\
x_{1}, x_{2} \geq 0
\end{array}\right.
$$

After solving this problem, we obtain the following solution:

$$
\left(\beta, x_{1}, x_{2}, E_{1}, E_{2}, E_{3}\right)=\left(\frac{455239}{5368700} ; 0 ; \frac{71020}{6693} ; \frac{67133}{13985800} ; \frac{1}{391} ; \frac{2629}{900}\right)
$$

Thus the compromise solution of the Problem (14) is given by:
$\left(x_{1}, x_{2}\right)=\left(0 ; \frac{71020}{6693}\right)$ with

$$
f_{1} \approx 131.896 ; f_{2} \approx 436.11 ; f_{3} \approx 65.79
$$

- For $\alpha=1$, we have:

$$
\begin{aligned}
u_{1}(x) & =\frac{129.33-9 x_{1}-12 x_{2}+E_{1}}{130.33} \\
& =0.9923-0.0691 x_{1}-0.0921 x_{2}+0.0077 E_{1} \\
u_{2}(x) & =\frac{422.86-22 x_{1}-40 x_{2}+E_{2}}{423.86} \\
& =0.9976-0.0519 x_{1}-0.0944 x_{2}+0.0024 E_{2} \\
u_{3}(x) & =\frac{73.33-6 x_{1}-6 x_{2}+E_{3}}{74.33} \\
& =0.9866-0.0807 x_{1}-0.0807 x_{2}+0.0135 E_{3}
\end{aligned}
$$

The sum gives:
$\sum_{r=1}^{3} u_{r}(x)=2.9765-0.2017 x_{1}-0.2672 x_{2}+0.0077 E_{1}+0.0024 E_{2}+0.0135 E_{3}$.
Hence, we have this Problem which minimize the sum of $u_{r}(x)$:

$$
\left\{\begin{array}{l}
\text { "min" } \beta \tag{27}\\
\beta+0.2017 x_{1}+0.2672 x_{2}-0.0077 E_{1}-0.0024 E_{2}-0.0135 E_{3}=2.9765 \\
0.9923-0.0691 x_{1}-0.0921 x_{2}+0.0077 E_{1} \geq 0 \\
0.9923-0.0691 x_{1}-0.0921 x_{2}+0.0077 E_{1} \leq 1 \\
0.9976-0.0519 x_{1}-0.0944 x_{2}+0.0024 E_{2} \geq 0 \\
0.9976-0.0519 x_{1}-0.0944 x_{2}+0.0024 E_{2} \leq 1 \\
0.9866-0.0807 x_{1}-0.0807 x_{2}+0.0135 E_{2} \geq 0 \\
0.9866-0.0807 x_{1}-0.0807 x_{2}+0.0135 E_{2} \leq 1 \\
9 x_{1}+12 x_{2}+E_{1} \geq 129.33 \\
9 x_{1}+12 x_{2}-E_{1} \leq 129.33 \\
22 x_{1}+40 x_{2}+E_{2} \geq 422.86 \\
22 x_{1}+40 x_{2}-E_{2} \leq 422.86 \\
6 x_{1}+6 x_{2}+E_{3} \geq 73.33 \\
6 x_{1}+6 x_{2}-E_{3} \leq 73.33 \\
2 x_{1}+x_{2} \leq 18 \\
5 x_{1}+7 x_{2} \leq 74 \\
x_{1}, x_{2} \geq 0
\end{array}\right.
$$

After solving this problem, we obtain the following solution:

$$
\begin{aligned}
& \left(\beta, x_{1}, x_{2}, E_{1}, E_{2}, E_{3}\right) \\
& =\left(\frac{194607}{1073740} ; \frac{2115190}{370977} ; \frac{1871510}{287977} ; \frac{60881}{2079710} ; \frac{8495170}{228277} ; \frac{368073}{2899100}\right)
\end{aligned}
$$

Hence the compromise solution of Problem (14) is given by:

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=\left(\frac{2115190}{370977} ; \frac{1871510}{287977}\right) \text { with } \\
& \qquad f_{1} \approx 129.318 ; f_{2} \approx 385.44 ; f_{3} \approx 73.212 .
\end{aligned}
$$

By this numerical example, we see clearly that the Reardon's approach is easily applied and provides an optimal solution by comparing with Sakawa's approach.

The Reardon's approach is less complex than Sakawa approach of the limited number of steps for reaching the solution. The common point is that all solutions provide by these two approaches depend on the level α chosen by the investor.

We can see clearly also that the solution obtained by the new approach is more effective (improved) than the solution obtained by Reardon approach without invoking the one obtained by Sakawa approach. As Sakawa and Reardon approaches, the solution of this new approach depends also on the choice of a level α by the investor. In addition, this new approach is less complex than others.

5. Concluding Remarks

In this article, we analyzed Sakawa and Reardon approaches in order to solve a fuzzy multi criterion linear problem. This analysis leads us to a new approach more effective in terms of solutions obtained compared with Sakawa and Reardon approaches.

Indeed, in the Sakawa and Reardon approaches, one defines the membership functions for each criterion. Sakawa's approach wants that the defined membership functions being maximal inversely to the Reardon's approach. But, in the new approach we define systematically the error functions in which their sum should be minimized on the sequel of the method for finding the desired compromise solution. And we see that the solution obtained by this new approach improves the one obtained by the Sakawa and Reardon approaches.

As Sakawa and Reardon approach, this new approach takes into account of fuzzy data in the formulation of the problem inside of constraints and criterion. The algorithm of this new approach is summarized in three important steps: first of all, we transform the fuzzy problem into its deterministic equivalent using level set α of a fuzzy number. Secondly, after maximization of each criterion separately, we compute the error functions on each criterion. Finally, we minimize the sum of error functions for obtaining the compromise solution.

The Sakawa approach gives a no satisfactory solution (less effective) compared with solutions from others approaches studied in this paper. The new approach gives the best solution (more effective) than the solutions from the previous one. The new approach becomes more complex when we have many criterion (at least 4).

Acknowledgements

The authors gratefully thank the anonymous reviewers for the pertinent comments provided to improve the quality of this paper and the handling editor for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Mangongo, Y.T., Deffo, C.T., Fono, L.A., Bukweli, J.D.K. and Kampempe, J.D.B. (2018) Portfolio Selection with Fuzzy Return without Target Values. International Journal of Scientific Engineering and Research, 6, 18-29.
[2] Mangongo, Y.T., Kampempe, J.D.B. and Luhandjula, M.K. (2021) A Kaleodoscopic View of Fuzzy Stochastic Optimization. American Journal of Operations Research, 11, 283-308. https://doi.org/10.4236/ajor.2021.116018
[3] Zadeh, L. (1965) Fuzzy Sets. University of California, Berkeley.
[4] Luhandjula, M.K. (1989) Fuzzy Optimization: An Appraisal. Fuzzy Sets and Systems, 30, 257-282. https://doi.org/10.1016/0165-0114(89)90019-5
[5] Mangongo, Y.T. and Kampempe, J.D.B. (2021) Some Approaches for Fuzzy Multiobjective Programming Problems. Journal of Advances in Applied Mathematics, 6, 15.
[6] Reardon, B.J. (1997) Fuzzy Logic versus Niched Pareto Multiobjective Genetic Algorithm Optimization: Part I: Schaffer's Problem. National Laboratory, Los Alamos.
[7] Rommelfanger, H. (1994) Some Problems of Fuzzy Optimization with T-norm based Extended Addition. In: Delgado, M., Kacprzyk, J., Verdegay, J.-L. and Vila, M.A., Eds., Fuzzy Optimization: Recent Advances, Physica, Heidelberg, 158-168.
[8] Sakawa, M. and Yano, H. (1988) An Interactive Fuzzy Satisfying Method for Multiobjective Linear Fractional Programming Problems. Fuzzy Sets and Systems, 28, 129-144. https://doi.org/10.1016/0165-0114(88)90195-9
[9] Tanaka, H., Ichihashi, H. and Asai, K. (1985) Fuzzy Decisions in Linear Programming with Trapezoidal Fuzzy Parameters. In: Kacprzyk, J. and Yager, R. Eds., Management Decision Support Systems Using Fuzzy Sets and Possibility Theory, Springer, Heidelberg, 146-159.
[10] Dubois, D. and Prade, H. (1988) Possibility Theory: An Approach to Computerized Processing of Uncertainty. Springer, New York.
[11] Dubois, D. and Prade, H. (1980) Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York.
[12] Kampempe, J.D.B. (2013) Sur la prise en compte de l'imprécision en programmation mathématique multiobjectif. Ph.D. Thesis, Université de Kinshasa, Kinshasa.

