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Abstract 
This research effort presents an approach to accomplish Multidimensional 
Scaling (MDS) via the heuristic approach of Simulated Annealing. Multidi-
mensional scaling is an approach used to convert matrix-based similarity (or 
dissimilarity data) into spatial form, usually via two or three dimensions. 
Performing MDS has several important applications—Geographic Informa-
tion Systems, DNA Sequencing, and Marketing Research are just a few. Tra-
ditionally, classical MDS decomposes the similarity or dissimilarity matrix 
into its eigensystem and uses the eigensystem to calculate spatial coordinates. 
Here, a heuristic search-based approach is used to find coordinates from a 
dissimilarity matrix that minimizes a cost function. The proposed methodol-
ogy is used over a variety of problems. Experimentation shows that the pre-
sented methodology consistently outperforms solutions obtained via the clas-
sical MDS approach, and this approach can be used for other important ap-
plications. 
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1. Introduction 

It is often important to visualize data when the data is presented in a primitive 
form. The visual perspective enables more of an intuitive understanding of the 
data and interrelationships between data points. Consider several viral DNA se-
quences to be compared—it would be helpful to see the degree of similarity (or 
difference) between them all. Of course, some statistics might be available to as-
sist, but placing them into some spatial arrangement (to enable visualization) 
would be most helpful. To do this, however, some effort is required. 

Consider another example where we are given a matrix of mileages between 
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cities. This data might make more sense if it were converted into the form of a 
two-dimensional map, so that we could visualize the distances between all cities. 
Again, this would also take some work.  

These example scenarios are good candidates for the use of Multidimensional 
Scaling. Multidimensional Scaling (MDS hereafter) is a technique used to con-
vert similarity (or dissimilarity) data into spatial form, so that the data set can be 
visualized [1]. Visualizing data simplifies understanding. The mathematics re-
quired to perform multidimensional scaling are somewhat intense, as Eigen de-
composition of the given matrix is required. Additionally, results in terms of 
accuracy can be sub-optimal. As such, other alternatives are worth exploring. 

One such general alternative is a search heuristic. A search heuristic usually 
starts with a feasible, randomly-generated solution with the intent of eventually 
finding an optimal (or near-optimal) solution to an optimization problem. The 
optimality of a solution is determined via an objective function measure. During 
the search process, feasible solutions are modified to a minor degree with hopes 
of improvement ultimately approaching global optimality. While this search process 
is ongoing, newly obtained solutions replace incumbent solutions. Sometimes, 
these incumbent solutions are replaced by relatively inferior newly obtained so-
lutions. This might seem odd, but research has shown, that when properly im-
plemented, search heuristics that occasionally replace incumbent solutions with 
relatively inferior solutions can help avoid being trapped at local optima [2]. 
Tabu Search [3] [4], Simulated Annealing [5] and Genetic Algorithms [6] are 
three types of search heuristics that fit the description above. When properly 
constructed and implemented, search heuristics can provide near-optimal results 
with less computational effort than other solution approaches. 

For this research effort, a Simulated Annealing approach is used to address an 
MDS problem with a distance matrix as input that outputs a set of Cartesian 
Coordinates. Specifically, the following sections: describe classical multidimen-
sional scaling; describe a simulated annealing based alternative to the MDS 
problem, outline an experiment for implementation of the proposed methodol-
ogy; detail experimental results; and draw conclusions. 

2. Classical Approach to Multidimensional Scaling 

Classical Multidimensional Scaling is a technique used to convert similarity (or 
dissimilarity) data into m-dimensions. This conversion is done so that a spatial 
representation of the data can be pursued. The given data is typically provided in 
n x n matrix form. Each element in the matrix is some pairwise measure of the 
similarity or dissimilarity between data points. The conversion of the data from 
matrix to spatial form is done for a variety of reasons: market segmentation, 
graphing, matching, sequencing, etc. Any attempt to visualize observations when 
given similarity data can be thought of as an application of MDS. 

In classical MDS, an n × n dissimilarity matrix is provided, which is referred 
to as D. This matrix contains elements dij, which shows the Euclidean distance 
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between points i and j. For further analysis, the matrix D2 is constructed, which 
is the square of the values of dij. Centering matrix C is then used, which is I − 
((1/n)(Jn)), where I is the identity matrix (values of “1” on the main diagonal, “0” 
elsewhere), and Jn is a matrix of “1”. These elements form the double-centering 
matrix B. This double-centered matrix is constructed so that the means of all 
row and column vectors are zero [7]. This matrix is as follows: 

( ) 21 2= −B CD C                           (1) 

The B matrix is then decomposed into its eigensystem. Specifically, the m-largest 
eigenvalues and eigenvectors are captured. A spatial representation of the data is 
provided by the n by m matrix X, which is determined as follows: 

1 2=X EΛ ,                            (2) 

where E is an n × m matrix of the m-largest eigenvectors, and Λ1/2 is the corres-
ponding m × m matrix of the square-root of the m-largest eigenvalues on the 
main diagonal, with values of “0” elsewhere [8] [9]. 

This eigenpair approach exploits the dissimilarity matrix D to obtain spatial 
coordinates (X). 

( ) ( )
2

2 21
1 1 2 22 1

i
i

n
j i j i ji jZ d x x x x−

= =

 = − − + − 
 

∑ ∑             (3) 

In Equation (3) above, the xij values are simply values of the X matrix. The 
above equation assumes that a 2-dimensional spatial solution is desired. The 
value Z can be thought of as an objective function value. While this equation 
might appear intimidating, it is not—the objective is simply to find a solution 
(values of xij) resulting in an aggregate minimized distance equal to the given 
distance matrix. When the xij values result in distances that equal the dij dis-
tances, the objective function value has been minimized to a value of “0”. 

Classical MDS decomposes an n × n matrix and outputs an n × 2 (or n × 3). 
This means that n − 2 eigenpairs are lost for a two-dimensional spatial solution, 
or n − 3 eigenpairs are lost for a three-dimensional spatial solution. These “lost” 
eigenpairs limit our ability to explain the variation in the distance data, as each 
eigenpair assists in explaining the variation in the distance data. This, of course, 
is unfortunate. Additionally, decomposing a matrix into its eigenpairs is com-
putationally expensive. As such, a viable alternative is worth exploration. 

3. Heuristic Approach to Multidimensional Scaling 

Regardless of the approach used to perform MDS, the objective is the same— 
minimization of the objective function shown in Equation (3). In order to present 
the methodology used to solve this problem, the following parameters are de-
fined in Table 1. 

As stated before, Simulated Annealing is the chosen search heuristic to ad-
dress the MDS problem at hand. Simulated Annealing gets its name from “an-
nealing,” which is the heating of a solid (usually a metal) to a high temperature 
and then the slow, subsequent cooling of the solid. During the cooling process, 
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Table 1. Search parameters. 

Sym Description Sym Description 

Iter number of iterations xab bth coord. value for point a (current sol.) 

Sim number of simulations (xab)t bth coord. value for point a (test sol.) 

T current temperature (xab)b bth coord. value for point a (best sol.) 

T1 initial temperature dij Euclidean distance from points i to j 

TF final temperature ci Cost vector of test solution (n × 1) 

CR cooling rate q target data point for modification 

n number of data points Z objective function value of current solution 

m number of dimensions Zt objective function value of test solution 

kB Boltzman constant Zb objective function value of best solution 

 
the particles arrange themselves from a chaotic state into an ordered state. This 
cooling process is intended to enhance some physical property of the solid. With 
“simulated” annealing, the objective function is analogous to the desired physi-
cal property of the solid—we start with a randomly-generated solution (analog-
ous to a solid at a high temperature) and modify the solution until a desired 
condition is obtained. Early in the search, there is more liberality in replacing the 
incumbent solution as compared to later in the search—this is analogous to the 
“chaotic” state early in the annealing process compared to the more “ordered” 
state later in the annealing process. 

The following subsections detail the Simulated Annealing heuristic search 
process used to find a solution to the problem at hand. 

Step 1: Initialization 
An initial solution is constructed by assigning random values to the xab values. 

Specifically, this is done as follows: 

( )250 U 0,500 , ,abx a b= − + ∀                     (4) 

where U(0, 500) is a uniformly-distributed random variable on the (0, 500) in-
terval. It should be noted that our solution boundary is confined to the (0, 500) 
interval for both the horizontal and vertical axes. The “test” solution and “best” 
solution values are set equal to this initial solution. Specifically, this is as fol-
lows: 

( ) , ,ab abt
x x a b= ∀                         (5) 

( ) , ,ab abb
x x a b= ∀                         (6) 

The initial solution is also used to determine the objective function value, Z. This 
is done as follows: 

( ) ( )
2

2 21
1 1 2 22 1

i
i

n
j i j i ji jZ d x x x x−

= =

 = − − + − 
 

∑ ∑           (7) 

The objective function values for the “test” and “best” solutions are assigned this 
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same value as follows: 

tZ Z=                            (8) 

bZ Z=                            (9) 

Step 2: Modification 
In order to improve the current solution such that it results in an optimal (or 

at least “near optimal”) condition, it must be “modified”. Specifically, the “test” 
solution must be modified as the first step toward improving the current solu-
tion. This modification is done to one of the n data points. The modification is a 
“minor” modification—large modifications are avoided such that a controlled 
improvement process is followed. 

First, the cost vector is obtained via the following:  

( ) ( )
2

2 2

1 1 2 21 ,
t t t ti i j j

n
j i ijc d x x x x i

=

 = − − + − ∀ 
 

∑        (10) 

The cost vector shows the amount of “error” each of the n locations contributes 
to the objective function value. Higher cost values contribute more to sub-optimality. 
Each potential target data point (q) for the modification has the following prob-
ability of being selected: 

( ) 1i ii
nP q c c
=

= ∑                        (11) 

Monte-Carlo simulation is used to select the target value q. Cities with higher 
cost vectors are more likely to be selected as targets for modification, the actual 
modification of the selected data point (q) is as follows: 

( ) ( ) ( )( )1 1 25 1 U 0,1q qt t
x x T= + ∗ ∗ −               (12) 

( ) ( ) ( )( )2 2 25 1 U 0,1q qt t
x x T= + ∗ ∗ −               (13) 

As stated, this modification is done for all m dimensions of the targeted data 
point (m = 2 is used here). The current temperature value (T) is used in this 
calculation so that the aggressiveness of each modification decreases proportion-
ally to the value of T. 

Step 3: Objective Function 
The modified test solution is then used to determine the objective function 

value (Zt) as shown below: 

( ) ( )
2

2 21
1 1 2 22 1

i
t ij i j i ji

n
jZ d x x x x−

= =

 = − − + − 
 

∑ ∑        (14) 

Step 4: Solution Comparison 
Test 1: 
If the objective function value associated with the test solution is less than the 

objective function associated with the current solution, the test solution replaces 
the current solution. Specifically, the following applies: 

( )ij ij t
x x=                          (15) 
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tZ Z=                            (16) 

Otherwise, the difference between the current solution and test solution is de-
termined: 

( )tE Z Z Zδ = −                        (17) 

This difference is shown in relative form, with the value being represented by δE. 
This value is always positive, since Zt > Z. This value is used to determine 
whether-or-not the inferior test solution should replace the current solution, via 
a probabilistic condition. Specifically, the value PA represents the probability of 
replacing the current solution with the test solution. This probability is as fol-
lows: 

( )expA BP E k Tδ=                      (18) 

The value kB is referred to as the Boltzman Constant [10], and is user-determined 
such that a certain degree of relative inferiority (δE) results in the test solution 
having a specific probability of replacing the current solution. 

A uniformly-distributed random number on the U(0, 1) interval is then gen-
erated. If this random number is less than PA, the test solution replaces the cur-
rent solution, in accordance with Equations (12) and (13). 

Test 2: 
If the objective function value associated with the test solution is less than the 

objective function associated with the best solution, the test solution replaces the 
best solution.  

( ) ( )ij ijb t
x x=                         (19) 

b tZ Z=                           (20) 

Otherwise, no action is taken. 
Step 5: Incrementation 
Steps 2, 3 and 4 are repeated Iter times. The value of T is then updated as fol-

lows: 

T T CR= ∗                         (21) 

This continues while T > 1. When T ≤ 1, the simulation has concluded. When 
the simulation has concluded, the current solution is replaced by the best solu-
tion, and the value of T is set to T1. Mathematically, this is done as follows: 

( )ij ij b
x x=                        (22) 

bZ Z=                          (23) 

1T T=                          (24) 

This is repeated Sim times, and the best solution found is reported. 
To gain a better understanding of the presented methodology, it is presented 

in pseudocode via Figure 1. 
As a point of clarification, it should be noted that repeated simulations in an 

effort to obtain an optimal solution may present some confusing terminology. 
As such, Figure 2 below shows the hierarchy of terms used here. 
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Figure 1. Search heuristic in pseudocode. 

 

 
Figure 2. Hierarchy of simulation elements. 

 
A simulation is a subset of a specific solution. Specifically, there are Sim si-

mulations performed for each solution. This is one of the defenses against being 
“trapped” at local optima. At the conclusion of each simulation (Sim) during the 
search process, the “current” solution is replaced by the “best” solution. This 
provides the next simulation (Sim) with the best possible starting point in the 
attempt to find the optimal solution. If this were not done, the search process is 
likely trapped at a sub-optimal solution. A single instance of executing the pre-
sented methodology is classified as a “solution”. A “simulation” in this context is 
only a subset of the solution process. 

4. Experimentation 

An experiment is designed to evaluate the effectiveness of the presented metho-
dology. A distance matrix was obtained for 36 metropolitan areas in the conti-
nental United States. These are “air-distances”. These values were obtained via 
the website https://www.airmilescalculator.com/. These distances can be thought 
of as “links” in the parlance of networks. The number of links in a network of n 
locations is n(n − 1)/2. These links can also be thought of as pairwise distances.  

4.1. Implementation 

The methodology presented is coded via the NetLogo software package  
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(https://ccl.northwestern.edu). NetLogo is a Java-based programming environ-
ment, particularly suited to enable agent-based simulation [11] [12]. Agent-based 
simulation is desired here, as the n cities can be thought of as agents. 

The distance matrix is used to address problems ranging from four cities (n = 
4) to 36 cities (n = 36). All values of n between 4 and 36 are used for assessment. 
As such, 33 (1 + 36 − 4) unique problems are addressed. Each problem is solved 
five times so that reliable estimates of performance are available. An example 
solution is detailed in Figure 3. 

Figure 3 shows a solution for a problem with n = 26 cities. The “best” solution 
found for this example has an objective function value of Zb = 24.13. This value 
quantifies the square root of the sum of squared differences between the actual 
(given) distance matrix and the distance matrix associated with the “best” solu-
tion ((xab)b). In this case, there is a total difference of 24.13 US miles between the 
two matrices. A value of Zb = 0 is considered optimal—which would imply no 
difference between the actual distance matrix and the distance matrix associated 
with (xab)b. 

Note from Figure 3 the solution resembles the map of the continental United 
States if the image is rotated about 45 degrees in the counter-clockwise direction. 
The search is not concerned with the proper “orientation” of the solution—it is 
only concerned with the proper location of the cities with respect to the other ci-
ties.  

 

 
Figure 3. Example problem solution. 
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4.2. Computational Experience 

The program was run on a Windows machine, with an Intel Core 8565U pro-
cessor, at 4.6 GHz. The user-chosen parameters were chosen via trial and error, 
so that the “best” solutions could be found repeatedly. This is detailed in Table 
2. 

For all solutions, a cooling rate (CR) of 0.99 was used, along with 75 iterations 
per temperature level (Iter). The starting temperature (T1) was 25 and the final 
temperature (TF) was 17.5. The kB value was set such that a solution with 1% rel-
ative inferiority would replace the incumbent solution with a 10% probability. 

4.3. Stagnation 

During the development of the search process, it was noticed that the solution 
was getting trapped at local optima, despite efforts to prevent this. This local op-
tima trapping phenomenon is referred to as “stagnation” hereafter. Specifically, 
improvement was impeded by cities being out of place. That is, cities located in 
places where minor modifications are not aggressive enough to improve the ob-
jective function value, resulting in solutions becoming stagnant. There are two 
types of stagnation requiring treatment—single city stagnation and two-city stag-
nation. 

4.3.1. One-City Stagnation 
Figure 4 shows another solution for n = 26 cities.  

Proper bearings might be realized if the solution is rotated about 150 degrees 
in the counter-clockwise direction. An unfortunate development then becomes 
apparent. Miami, Florida (MIA) is “out of place”. MIA should be closer to the 
other Florida locations of Tampa and Orlando (TAM and ORL). Other cities 
seem relatively properly placed. Unfortunately, the modification process de-
scribed above will not correct the problem, as this modification process can only 
accomplish minor modifications—as such, MIA will not be moved anywhere 
that is helpful. Instead, the MIA location must be moved in a more aggressive 
fashion. The general procedure for this lies with the cost vector (c). The maximum 
value in the cost vector displays the most “offensive” city in terms of contribution  
 
Table 2. Simulation settings. 

Problem Size (n) Simulations 

4 - 8 12 

9 - 15 25 

16 - 24 50 

25 - 29 150 

30 - 32 200 

33 - 35 250 

36 300 
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Figure 4. Example of one-city stagnation. 
 
to the objective function value. The city associated with the highest value of the 
cost vector is then selected as the target. This target city is referred to as “q”. The 
modification to city q is as follows: 

( ) ( ) ( )( )1 1 500 1 U 0,1q qt t
x x= + ∗ −               (25) 

( ) ( ) ( )( )2 2 500 1 U 0,1q qt t
x x= + ∗ −               (26) 

This modification is similar to the one done in normal circumstances detailed 
above with two key differences. The modification to combat the stagnation is not 
sensitive to the value of T. Additionally, the modification here is much more ag-
gressive than the modification performed under normal circumstances, so that 
the “offending” city can be moved further that normal. 

4.3.2. Two-City Stagnation 
Figure 5 shows yet another solution. If the image is rotated about 45 degrees in 
the counter-clockwise direction, proper perspective might be realized. 

This solution, at first, might appear to be “reasonable”. Upon further inspec-
tion, however, one might notice a “disconnect” between the eastern cities and 
western cities. Specifically, the western cities seem to be inverted when com-
pared to the eastern cities. Seattle and Portland (SEA and POR) are shown very 
much out of place. Unfortunately, this condition cannot be remedied via the sin-
gle-city stagnation just described. The two “offensive cities” are properly oriented 
with respect to each other and other nearby cities. This prevents us from moving, 
for example, SEA to its proper general location because the result would still re-
sult in a suboptimal condition—a large distance between SEA and POR would 
be harmful. Moving both offending cities simultaneously by the same amount is  
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Figure 5. Example of two-city stagnation. 
 
found to alleviate the problem. This two-city movement is done by re-examining 
the cost vector c. 

Specifically, the following value Y is calculated: 

( )max i jY c c= +                        (27) 

The row and column resulting in the maximum value Y are the two cities con-
tributing most to sub-optimality. Here “r” is used as row index “i” and “s” is 
used as column index “j”. These two targets are moved in an aggressive fashion. 
The following shows the movement process. The dx and dy terms will show ho-
rizontal and vertical movements, respectively. 

( )( )500 1 U 0,1dx = ∗ −                    (28) 

( )( )500 1 U 0,1dy = ∗ −                    (29) 

The following movements are then made for cities r and s. 

( ) ( )1 1r rt tx x dx= +                      (30) 

( ) ( )2 2r rt tx x dy= +                      (31) 

( ) ( )1 1s st t
x x dx= +                      (32) 

( ) ( )2 2s st t
x x dy= +                      (33) 

Cities r and s are moved the exact same amount and in the same direction. The 
distance between them will not change. It is desired that their simultaneous 
movement will at some point induce a condition that ends stagnation and move 

https://doi.org/10.4236/ajor.2022.125010


P. R. McMullen 
 

 

DOI: 10.4236/ajor.2022.125010 190 American Journal of Operations Research 
 

towards an optimal solution. 
It should be noted that the search heuristic performed modification to address 

both forms of stagnation on a periodic basis during the search. 

4.4. Convergence 

With stagnation addressed, attention is turned to how well the solutions ap-
proach their desired objective function values. It is, of course, desired that the 
objective function value finds its minimum as efficiently as possible. Figure 6 
below shows three types of convergence noticed during the development process. 
The horizontal axis represents time (the “age” of the search), while the vertical 
axis shows the “best” objective function value found at the associated time. For 
example, at the start of the search, the objective function value is high (undesira-
ble) because of randomly-generated initial solution is not motivated in terms of 
the objective function value. Improvement then commences because the search 
process is motivated to find minimal values of the objective function value. 

The blue line in Figure 6 shows the first type of convergence, which is classi-
fied here as “quick convergence”. This is where the objective function achieves a 
near-optimal value without incident. The orange line shows what is classified as 
“stagnation remedied”. This is where during the search process, stagnation oc-
curs, but is remedied via the approaches described above, and a near-optimal 
condition is eventually obtained. Note the “rapid improvement” for the orange 
line when stagnation is remedied. The grey line is classified as “stagnation not 
remedied”. This is where stagnation occurs, and is not remedied. Fortunately, 
this research effort only experienced “stagnation not remedied” during the de-
velopmental phase—once this condition was observed during development, the 
search heuristic was modified such that stagnation was always remedied. The 
results section further details this. 

 

 
Figure 6. Convergence types. 
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5. Experimental Results 

Table 3 below shows the results for each value of n. For each value of n, a solu-
tion was obtained (5) times. The mean objective function value is reported along 
with its standard deviation. The ratio of standard deviation to mean is less than 
1% for each value of n. As such, the small variation in the mean provides a large 
degree of confidence in the estimates. Also reported is the objective function 
value when the classical MDS approach (“Eigen”) is used. 

As one can see, the search approach provides vastly superior results as com-
pared to the classical approach (“Eigen”). Figure 7 details these findings. 

 

 
Figure 7. Number of cities (n) and objective function. 

 
Table 3. Results of search heuristic. 

n Mean Std Dev Eigen n Mean Std Dev Eigen 

4 0.60 0.03 2.81 21 21.11 0.09 78.49 

5 1.40 0.07 5.46 22 21.78 0.10 79.15 

6 3.99 0.03 16.59 23 22.70 0.11 83.17 

7 5.43 0.03 21.29 24 23.42 0.10 84.26 

8 6.35 0.07 24.67 25 23.71 0.04 89.93 

9 8.29 0.07 32.70 26 24.05 0.05 90.91 
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Continued 

10 9.28 0.06 37.74 27 24.52 0.14 92.21 

11 9.89 0.03 42.03 28 24.88 0.16 94.15 

12 12.18 0.08 55.17 29 25.68 0.25 97.70 

13 13.15 0.08 57.70 30 27.26 0.06 103.29 

14 13.36 0.12 60.32 31 28.04 0.19 107.08 

15 15.15 0.09 66.63 32 28.60 0.20 106.93 

16 15.97 0.18 69.54 33 28.73 0.11 105.73 

17 16.66 0.05 71.10 34 30.27 0.09 111.02 

18 17.42 0.08 75.96 35 32.11 0.07 119.55 

19 19.11 0.08 78.25 36 34.72 0.15 130.00 

20 20.31 0.11 83.18 
    

 
The blue line shows the mean objective function value associated with the 

presented search approach, as a function of the number of cities (n). The orange 
line shows the objective function value via the classical MDS approach as a func-
tion of n. 

6. Concluding Comments 

A search heuristic has been presented to convert a distance matrix into spatial 
coordinates. Some potential pitfalls encountered such as “stagnation” were en-
countered and remedied. The final results show objective function values that 
are near-optimal. Additionally, these results are superior to those obtained via 
classical MDS. Classical MDS is unable to compete with the direct search heuris-
tic presented here.  

As stated earlier, MDS can be used for a variety of applications. It so happens 
the application used here was to convert distance data into spatial coordinates. 
The intent of this research is not to just find spatial coordinates, but to illustrate 
an approach to obtain a good-quality solution to an MDS problem. If one just 
wanted spatial coordinates for locations, they could simply look them up on the 
internet. The example here is considered reasonable because the end-user should 
have a pre-conceived belief as to where the locations should be assisting with 
understanding the search process. This search process could be used for most 
any situation where it is desired to convert similarity (or dissimilarity data) into 
spatial data. 

There are, of course, opportunities for research beyond this effort. More loca-
tions would be an interesting pursuit, as would consideration of multiple geo-
graphic regions (i.e., continents). Of course, the search parameters could also be 
further explored. Other possible follow-up efforts could be related to other ap-
plications of MDS, such as consumer segmentation, information storage, and 
DNA sequence comparison. 
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