
American Journal of Operations Research, 2022, 12, 179-193
https://www.scirp.org/journal/ajor

ISSN Online: 2160-8849
ISSN Print: 2160-8830

DOI: 10.4236/ajor.2022.125010 Sep. 15, 2022 179 American Journal of Operations Research

A Heuristic Search Approach to
Multidimensional Scaling

Patrick R. McMullen

School of Business, Wake Forest University, Winston-Salem, USA

Abstract
This research effort presents an approach to accomplish Multidimensional
Scaling (MDS) via the heuristic approach of Simulated Annealing. Multidi-
mensional scaling is an approach used to convert matrix-based similarity (or
dissimilarity data) into spatial form, usually via two or three dimensions.
Performing MDS has several important applications—Geographic Informa-
tion Systems, DNA Sequencing, and Marketing Research are just a few. Tra-
ditionally, classical MDS decomposes the similarity or dissimilarity matrix
into its eigensystem and uses the eigensystem to calculate spatial coordinates.
Here, a heuristic search-based approach is used to find coordinates from a
dissimilarity matrix that minimizes a cost function. The proposed methodol-
ogy is used over a variety of problems. Experimentation shows that the pre-
sented methodology consistently outperforms solutions obtained via the clas-
sical MDS approach, and this approach can be used for other important ap-
plications.

Keywords
Optimization, Search, Heuristic

1. Introduction

It is often important to visualize data when the data is presented in a primitive
form. The visual perspective enables more of an intuitive understanding of the
data and interrelationships between data points. Consider several viral DNA se-
quences to be compared—it would be helpful to see the degree of similarity (or
difference) between them all. Of course, some statistics might be available to as-
sist, but placing them into some spatial arrangement (to enable visualization)
would be most helpful. To do this, however, some effort is required.

Consider another example where we are given a matrix of mileages between

How to cite this paper: McMullen, P.R.
(2022) A Heuristic Search Approach to
Multidimensional Scaling. American Jour-
nal of Operations Research, 12, 179-193.
https://doi.org/10.4236/ajor.2022.125010

Received: August 17, 2022
Accepted: September 12, 2022
Published: September 15, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2022.125010
https://www.scirp.org/
https://doi.org/10.4236/ajor.2022.125010
http://creativecommons.org/licenses/by/4.0/

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 180 American Journal of Operations Research

cities. This data might make more sense if it were converted into the form of a
two-dimensional map, so that we could visualize the distances between all cities.
Again, this would also take some work.

These example scenarios are good candidates for the use of Multidimensional
Scaling. Multidimensional Scaling (MDS hereafter) is a technique used to con-
vert similarity (or dissimilarity) data into spatial form, so that the data set can be
visualized [1]. Visualizing data simplifies understanding. The mathematics re-
quired to perform multidimensional scaling are somewhat intense, as Eigen de-
composition of the given matrix is required. Additionally, results in terms of
accuracy can be sub-optimal. As such, other alternatives are worth exploring.

One such general alternative is a search heuristic. A search heuristic usually
starts with a feasible, randomly-generated solution with the intent of eventually
finding an optimal (or near-optimal) solution to an optimization problem. The
optimality of a solution is determined via an objective function measure. During
the search process, feasible solutions are modified to a minor degree with hopes
of improvement ultimately approaching global optimality. While this search process
is ongoing, newly obtained solutions replace incumbent solutions. Sometimes,
these incumbent solutions are replaced by relatively inferior newly obtained so-
lutions. This might seem odd, but research has shown, that when properly im-
plemented, search heuristics that occasionally replace incumbent solutions with
relatively inferior solutions can help avoid being trapped at local optima [2].
Tabu Search [3] [4], Simulated Annealing [5] and Genetic Algorithms [6] are
three types of search heuristics that fit the description above. When properly
constructed and implemented, search heuristics can provide near-optimal results
with less computational effort than other solution approaches.

For this research effort, a Simulated Annealing approach is used to address an
MDS problem with a distance matrix as input that outputs a set of Cartesian
Coordinates. Specifically, the following sections: describe classical multidimen-
sional scaling; describe a simulated annealing based alternative to the MDS
problem, outline an experiment for implementation of the proposed methodol-
ogy; detail experimental results; and draw conclusions.

2. Classical Approach to Multidimensional Scaling

Classical Multidimensional Scaling is a technique used to convert similarity (or
dissimilarity) data into m-dimensions. This conversion is done so that a spatial
representation of the data can be pursued. The given data is typically provided in
n x n matrix form. Each element in the matrix is some pairwise measure of the
similarity or dissimilarity between data points. The conversion of the data from
matrix to spatial form is done for a variety of reasons: market segmentation,
graphing, matching, sequencing, etc. Any attempt to visualize observations when
given similarity data can be thought of as an application of MDS.

In classical MDS, an n × n dissimilarity matrix is provided, which is referred
to as D. This matrix contains elements dij, which shows the Euclidean distance

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 181 American Journal of Operations Research

between points i and j. For further analysis, the matrix D2 is constructed, which
is the square of the values of dij. Centering matrix C is then used, which is I −
((1/n)(Jn)), where I is the identity matrix (values of “1” on the main diagonal, “0”
elsewhere), and Jn is a matrix of “1”. These elements form the double-centering
matrix B. This double-centered matrix is constructed so that the means of all
row and column vectors are zero [7]. This matrix is as follows:

() 21 2= −B CD C (1)

The B matrix is then decomposed into its eigensystem. Specifically, the m-largest
eigenvalues and eigenvectors are captured. A spatial representation of the data is
provided by the n by m matrix X, which is determined as follows:

1 2=X EΛ , (2)

where E is an n × m matrix of the m-largest eigenvectors, and Λ1/2 is the corres-
ponding m × m matrix of the square-root of the m-largest eigenvalues on the
main diagonal, with values of “0” elsewhere [8] [9].

This eigenpair approach exploits the dissimilarity matrix D to obtain spatial
coordinates (X).

() ()
2

2 21
1 1 2 22 1

i
i

n
j i j i ji jZ d x x x x−

= =

 = − − + −

∑ ∑ (3)

In Equation (3) above, the xij values are simply values of the X matrix. The
above equation assumes that a 2-dimensional spatial solution is desired. The
value Z can be thought of as an objective function value. While this equation
might appear intimidating, it is not—the objective is simply to find a solution
(values of xij) resulting in an aggregate minimized distance equal to the given
distance matrix. When the xij values result in distances that equal the dij dis-
tances, the objective function value has been minimized to a value of “0”.

Classical MDS decomposes an n × n matrix and outputs an n × 2 (or n × 3).
This means that n − 2 eigenpairs are lost for a two-dimensional spatial solution,
or n − 3 eigenpairs are lost for a three-dimensional spatial solution. These “lost”
eigenpairs limit our ability to explain the variation in the distance data, as each
eigenpair assists in explaining the variation in the distance data. This, of course,
is unfortunate. Additionally, decomposing a matrix into its eigenpairs is com-
putationally expensive. As such, a viable alternative is worth exploration.

3. Heuristic Approach to Multidimensional Scaling

Regardless of the approach used to perform MDS, the objective is the same—
minimization of the objective function shown in Equation (3). In order to present
the methodology used to solve this problem, the following parameters are de-
fined in Table 1.

As stated before, Simulated Annealing is the chosen search heuristic to ad-
dress the MDS problem at hand. Simulated Annealing gets its name from “an-
nealing,” which is the heating of a solid (usually a metal) to a high temperature
and then the slow, subsequent cooling of the solid. During the cooling process,

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 182 American Journal of Operations Research

Table 1. Search parameters.

Sym Description Sym Description

Iter number of iterations xab bth coord. value for point a (current sol.)

Sim number of simulations (xab)t bth coord. value for point a (test sol.)

T current temperature (xab)b bth coord. value for point a (best sol.)

T1 initial temperature dij Euclidean distance from points i to j

TF final temperature ci Cost vector of test solution (n × 1)

CR cooling rate q target data point for modification

n number of data points Z objective function value of current solution

m number of dimensions Zt objective function value of test solution

kB Boltzman constant Zb objective function value of best solution

the particles arrange themselves from a chaotic state into an ordered state. This
cooling process is intended to enhance some physical property of the solid. With
“simulated” annealing, the objective function is analogous to the desired physi-
cal property of the solid—we start with a randomly-generated solution (analog-
ous to a solid at a high temperature) and modify the solution until a desired
condition is obtained. Early in the search, there is more liberality in replacing the
incumbent solution as compared to later in the search—this is analogous to the
“chaotic” state early in the annealing process compared to the more “ordered”
state later in the annealing process.

The following subsections detail the Simulated Annealing heuristic search
process used to find a solution to the problem at hand.

Step 1: Initialization
An initial solution is constructed by assigning random values to the xab values.

Specifically, this is done as follows:

()250 U 0,500 , ,abx a b= − + ∀ (4)

where U(0, 500) is a uniformly-distributed random variable on the (0, 500) in-
terval. It should be noted that our solution boundary is confined to the (0, 500)
interval for both the horizontal and vertical axes. The “test” solution and “best”
solution values are set equal to this initial solution. Specifically, this is as fol-
lows:

() , ,ab abt
x x a b= ∀ (5)

() , ,ab abb
x x a b= ∀ (6)

The initial solution is also used to determine the objective function value, Z. This
is done as follows:

() ()
2

2 21
1 1 2 22 1

i
i

n
j i j i ji jZ d x x x x−

= =

 = − − + −

∑ ∑ (7)

The objective function values for the “test” and “best” solutions are assigned this

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 183 American Journal of Operations Research

same value as follows:

tZ Z= (8)

bZ Z= (9)

Step 2: Modification
In order to improve the current solution such that it results in an optimal (or

at least “near optimal”) condition, it must be “modified”. Specifically, the “test”
solution must be modified as the first step toward improving the current solu-
tion. This modification is done to one of the n data points. The modification is a
“minor” modification—large modifications are avoided such that a controlled
improvement process is followed.

First, the cost vector is obtained via the following:

() ()
2

2 2

1 1 2 21 ,
t t t ti i j j

n
j i ijc d x x x x i

=

 = − − + − ∀

∑ (10)

The cost vector shows the amount of “error” each of the n locations contributes
to the objective function value. Higher cost values contribute more to sub-optimality.
Each potential target data point (q) for the modification has the following prob-
ability of being selected:

() 1i ii
nP q c c
=

= ∑ (11)

Monte-Carlo simulation is used to select the target value q. Cities with higher
cost vectors are more likely to be selected as targets for modification, the actual
modification of the selected data point (q) is as follows:

() () ()()1 1 25 1 U 0,1q qt t
x x T= + ∗ ∗ − (12)

() () ()()2 2 25 1 U 0,1q qt t
x x T= + ∗ ∗ − (13)

As stated, this modification is done for all m dimensions of the targeted data
point (m = 2 is used here). The current temperature value (T) is used in this
calculation so that the aggressiveness of each modification decreases proportion-
ally to the value of T.

Step 3: Objective Function
The modified test solution is then used to determine the objective function

value (Zt) as shown below:

() ()
2

2 21
1 1 2 22 1

i
t ij i j i ji

n
jZ d x x x x−

= =

 = − − + −

∑ ∑ (14)

Step 4: Solution Comparison
Test 1:
If the objective function value associated with the test solution is less than the

objective function associated with the current solution, the test solution replaces
the current solution. Specifically, the following applies:

()ij ij t
x x= (15)

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 184 American Journal of Operations Research

tZ Z= (16)

Otherwise, the difference between the current solution and test solution is de-
termined:

()tE Z Z Zδ = − (17)

This difference is shown in relative form, with the value being represented by δE.
This value is always positive, since Zt > Z. This value is used to determine
whether-or-not the inferior test solution should replace the current solution, via
a probabilistic condition. Specifically, the value PA represents the probability of
replacing the current solution with the test solution. This probability is as fol-
lows:

()expA BP E k Tδ= (18)

The value kB is referred to as the Boltzman Constant [10], and is user-determined
such that a certain degree of relative inferiority (δE) results in the test solution
having a specific probability of replacing the current solution.

A uniformly-distributed random number on the U(0, 1) interval is then gen-
erated. If this random number is less than PA, the test solution replaces the cur-
rent solution, in accordance with Equations (12) and (13).

Test 2:
If the objective function value associated with the test solution is less than the

objective function associated with the best solution, the test solution replaces the
best solution.

() ()ij ijb t
x x= (19)

b tZ Z= (20)

Otherwise, no action is taken.
Step 5: Incrementation
Steps 2, 3 and 4 are repeated Iter times. The value of T is then updated as fol-

lows:

T T CR= ∗ (21)

This continues while T > 1. When T ≤ 1, the simulation has concluded. When
the simulation has concluded, the current solution is replaced by the best solu-
tion, and the value of T is set to T1. Mathematically, this is done as follows:

()ij ij b
x x= (22)

bZ Z= (23)

1T T= (24)

This is repeated Sim times, and the best solution found is reported.
To gain a better understanding of the presented methodology, it is presented

in pseudocode via Figure 1.
As a point of clarification, it should be noted that repeated simulations in an

effort to obtain an optimal solution may present some confusing terminology.
As such, Figure 2 below shows the hierarchy of terms used here.

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 185 American Journal of Operations Research

Figure 1. Search heuristic in pseudocode.

Figure 2. Hierarchy of simulation elements.

A simulation is a subset of a specific solution. Specifically, there are Sim si-

mulations performed for each solution. This is one of the defenses against being
“trapped” at local optima. At the conclusion of each simulation (Sim) during the
search process, the “current” solution is replaced by the “best” solution. This
provides the next simulation (Sim) with the best possible starting point in the
attempt to find the optimal solution. If this were not done, the search process is
likely trapped at a sub-optimal solution. A single instance of executing the pre-
sented methodology is classified as a “solution”. A “simulation” in this context is
only a subset of the solution process.

4. Experimentation

An experiment is designed to evaluate the effectiveness of the presented metho-
dology. A distance matrix was obtained for 36 metropolitan areas in the conti-
nental United States. These are “air-distances”. These values were obtained via
the website https://www.airmilescalculator.com/. These distances can be thought
of as “links” in the parlance of networks. The number of links in a network of n
locations is n(n − 1)/2. These links can also be thought of as pairwise distances.

4.1. Implementation

The methodology presented is coded via the NetLogo software package

https://doi.org/10.4236/ajor.2022.125010
https://www.airmilescalculator.com/

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 186 American Journal of Operations Research

(https://ccl.northwestern.edu). NetLogo is a Java-based programming environ-
ment, particularly suited to enable agent-based simulation [11] [12]. Agent-based
simulation is desired here, as the n cities can be thought of as agents.

The distance matrix is used to address problems ranging from four cities (n =
4) to 36 cities (n = 36). All values of n between 4 and 36 are used for assessment.
As such, 33 (1 + 36 − 4) unique problems are addressed. Each problem is solved
five times so that reliable estimates of performance are available. An example
solution is detailed in Figure 3.

Figure 3 shows a solution for a problem with n = 26 cities. The “best” solution
found for this example has an objective function value of Zb = 24.13. This value
quantifies the square root of the sum of squared differences between the actual
(given) distance matrix and the distance matrix associated with the “best” solu-
tion ((xab)b). In this case, there is a total difference of 24.13 US miles between the
two matrices. A value of Zb = 0 is considered optimal—which would imply no
difference between the actual distance matrix and the distance matrix associated
with (xab)b.

Note from Figure 3 the solution resembles the map of the continental United
States if the image is rotated about 45 degrees in the counter-clockwise direction.
The search is not concerned with the proper “orientation” of the solution—it is
only concerned with the proper location of the cities with respect to the other ci-
ties.

Figure 3. Example problem solution.

https://doi.org/10.4236/ajor.2022.125010
https://ccl.northwestern.edu/

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 187 American Journal of Operations Research

4.2. Computational Experience

The program was run on a Windows machine, with an Intel Core 8565U pro-
cessor, at 4.6 GHz. The user-chosen parameters were chosen via trial and error,
so that the “best” solutions could be found repeatedly. This is detailed in Table
2.

For all solutions, a cooling rate (CR) of 0.99 was used, along with 75 iterations
per temperature level (Iter). The starting temperature (T1) was 25 and the final
temperature (TF) was 17.5. The kB value was set such that a solution with 1% rel-
ative inferiority would replace the incumbent solution with a 10% probability.

4.3. Stagnation

During the development of the search process, it was noticed that the solution
was getting trapped at local optima, despite efforts to prevent this. This local op-
tima trapping phenomenon is referred to as “stagnation” hereafter. Specifically,
improvement was impeded by cities being out of place. That is, cities located in
places where minor modifications are not aggressive enough to improve the ob-
jective function value, resulting in solutions becoming stagnant. There are two
types of stagnation requiring treatment—single city stagnation and two-city stag-
nation.

4.3.1. One-City Stagnation
Figure 4 shows another solution for n = 26 cities.

Proper bearings might be realized if the solution is rotated about 150 degrees
in the counter-clockwise direction. An unfortunate development then becomes
apparent. Miami, Florida (MIA) is “out of place”. MIA should be closer to the
other Florida locations of Tampa and Orlando (TAM and ORL). Other cities
seem relatively properly placed. Unfortunately, the modification process de-
scribed above will not correct the problem, as this modification process can only
accomplish minor modifications—as such, MIA will not be moved anywhere
that is helpful. Instead, the MIA location must be moved in a more aggressive
fashion. The general procedure for this lies with the cost vector (c). The maximum
value in the cost vector displays the most “offensive” city in terms of contribution

Table 2. Simulation settings.

Problem Size (n) Simulations

4 - 8 12

9 - 15 25

16 - 24 50

25 - 29 150

30 - 32 200

33 - 35 250

36 300

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 188 American Journal of Operations Research

Figure 4. Example of one-city stagnation.

to the objective function value. The city associated with the highest value of the
cost vector is then selected as the target. This target city is referred to as “q”. The
modification to city q is as follows:

() () ()()1 1 500 1 U 0,1q qt t
x x= + ∗ − (25)

() () ()()2 2 500 1 U 0,1q qt t
x x= + ∗ − (26)

This modification is similar to the one done in normal circumstances detailed
above with two key differences. The modification to combat the stagnation is not
sensitive to the value of T. Additionally, the modification here is much more ag-
gressive than the modification performed under normal circumstances, so that
the “offending” city can be moved further that normal.

4.3.2. Two-City Stagnation
Figure 5 shows yet another solution. If the image is rotated about 45 degrees in
the counter-clockwise direction, proper perspective might be realized.

This solution, at first, might appear to be “reasonable”. Upon further inspec-
tion, however, one might notice a “disconnect” between the eastern cities and
western cities. Specifically, the western cities seem to be inverted when com-
pared to the eastern cities. Seattle and Portland (SEA and POR) are shown very
much out of place. Unfortunately, this condition cannot be remedied via the sin-
gle-city stagnation just described. The two “offensive cities” are properly oriented
with respect to each other and other nearby cities. This prevents us from moving,
for example, SEA to its proper general location because the result would still re-
sult in a suboptimal condition—a large distance between SEA and POR would
be harmful. Moving both offending cities simultaneously by the same amount is

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 189 American Journal of Operations Research

Figure 5. Example of two-city stagnation.

found to alleviate the problem. This two-city movement is done by re-examining
the cost vector c.

Specifically, the following value Y is calculated:

()max i jY c c= + (27)

The row and column resulting in the maximum value Y are the two cities con-
tributing most to sub-optimality. Here “r” is used as row index “i” and “s” is
used as column index “j”. These two targets are moved in an aggressive fashion.
The following shows the movement process. The dx and dy terms will show ho-
rizontal and vertical movements, respectively.

()()500 1 U 0,1dx = ∗ − (28)

()()500 1 U 0,1dy = ∗ − (29)

The following movements are then made for cities r and s.

() ()1 1r rt tx x dx= + (30)

() ()2 2r rt tx x dy= + (31)

() ()1 1s st t
x x dx= + (32)

() ()2 2s st t
x x dy= + (33)

Cities r and s are moved the exact same amount and in the same direction. The
distance between them will not change. It is desired that their simultaneous
movement will at some point induce a condition that ends stagnation and move

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 190 American Journal of Operations Research

towards an optimal solution.
It should be noted that the search heuristic performed modification to address

both forms of stagnation on a periodic basis during the search.

4.4. Convergence

With stagnation addressed, attention is turned to how well the solutions ap-
proach their desired objective function values. It is, of course, desired that the
objective function value finds its minimum as efficiently as possible. Figure 6
below shows three types of convergence noticed during the development process.
The horizontal axis represents time (the “age” of the search), while the vertical
axis shows the “best” objective function value found at the associated time. For
example, at the start of the search, the objective function value is high (undesira-
ble) because of randomly-generated initial solution is not motivated in terms of
the objective function value. Improvement then commences because the search
process is motivated to find minimal values of the objective function value.

The blue line in Figure 6 shows the first type of convergence, which is classi-
fied here as “quick convergence”. This is where the objective function achieves a
near-optimal value without incident. The orange line shows what is classified as
“stagnation remedied”. This is where during the search process, stagnation oc-
curs, but is remedied via the approaches described above, and a near-optimal
condition is eventually obtained. Note the “rapid improvement” for the orange
line when stagnation is remedied. The grey line is classified as “stagnation not
remedied”. This is where stagnation occurs, and is not remedied. Fortunately,
this research effort only experienced “stagnation not remedied” during the de-
velopmental phase—once this condition was observed during development, the
search heuristic was modified such that stagnation was always remedied. The
results section further details this.

Figure 6. Convergence types.

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 191 American Journal of Operations Research

5. Experimental Results

Table 3 below shows the results for each value of n. For each value of n, a solu-
tion was obtained (5) times. The mean objective function value is reported along
with its standard deviation. The ratio of standard deviation to mean is less than
1% for each value of n. As such, the small variation in the mean provides a large
degree of confidence in the estimates. Also reported is the objective function
value when the classical MDS approach (“Eigen”) is used.

As one can see, the search approach provides vastly superior results as com-
pared to the classical approach (“Eigen”). Figure 7 details these findings.

Figure 7. Number of cities (n) and objective function.

Table 3. Results of search heuristic.

n Mean Std Dev Eigen n Mean Std Dev Eigen

4 0.60 0.03 2.81 21 21.11 0.09 78.49

5 1.40 0.07 5.46 22 21.78 0.10 79.15

6 3.99 0.03 16.59 23 22.70 0.11 83.17

7 5.43 0.03 21.29 24 23.42 0.10 84.26

8 6.35 0.07 24.67 25 23.71 0.04 89.93

9 8.29 0.07 32.70 26 24.05 0.05 90.91

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 192 American Journal of Operations Research

Continued

10 9.28 0.06 37.74 27 24.52 0.14 92.21

11 9.89 0.03 42.03 28 24.88 0.16 94.15

12 12.18 0.08 55.17 29 25.68 0.25 97.70

13 13.15 0.08 57.70 30 27.26 0.06 103.29

14 13.36 0.12 60.32 31 28.04 0.19 107.08

15 15.15 0.09 66.63 32 28.60 0.20 106.93

16 15.97 0.18 69.54 33 28.73 0.11 105.73

17 16.66 0.05 71.10 34 30.27 0.09 111.02

18 17.42 0.08 75.96 35 32.11 0.07 119.55

19 19.11 0.08 78.25 36 34.72 0.15 130.00

20 20.31 0.11 83.18

The blue line shows the mean objective function value associated with the

presented search approach, as a function of the number of cities (n). The orange
line shows the objective function value via the classical MDS approach as a func-
tion of n.

6. Concluding Comments

A search heuristic has been presented to convert a distance matrix into spatial
coordinates. Some potential pitfalls encountered such as “stagnation” were en-
countered and remedied. The final results show objective function values that
are near-optimal. Additionally, these results are superior to those obtained via
classical MDS. Classical MDS is unable to compete with the direct search heuris-
tic presented here.

As stated earlier, MDS can be used for a variety of applications. It so happens
the application used here was to convert distance data into spatial coordinates.
The intent of this research is not to just find spatial coordinates, but to illustrate
an approach to obtain a good-quality solution to an MDS problem. If one just
wanted spatial coordinates for locations, they could simply look them up on the
internet. The example here is considered reasonable because the end-user should
have a pre-conceived belief as to where the locations should be assisting with
understanding the search process. This search process could be used for most
any situation where it is desired to convert similarity (or dissimilarity data) into
spatial data.

There are, of course, opportunities for research beyond this effort. More loca-
tions would be an interesting pursuit, as would consideration of multiple geo-
graphic regions (i.e., continents). Of course, the search parameters could also be
further explored. Other possible follow-up efforts could be related to other ap-
plications of MDS, such as consumer segmentation, information storage, and
DNA sequence comparison.

https://doi.org/10.4236/ajor.2022.125010

P. R. McMullen

DOI: 10.4236/ajor.2022.125010 193 American Journal of Operations Research

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Mboko Ibara, S. and Ossouna, D. (2021) Determinants of Multidimensional Poverty

among the Under-Five: Illustration Based on Data from the Congo Multiple Indi-
cator Cluster Survey. Theoretical Economics Letters, 11, 363-380.
https://doi.org/10.4236/tel.2021.112024

[2] Bianchi, L., Dorigo, M., Gambardella, L.M. and Gutjahr, W.J. (2009) A Survey on
Metaheuristics for Stochastic Combinatorial Optimization. Natural Computing, 8,
239-287. https://doi.org/10.1007/s11047-008-9098-4

[3] Glover, F. (1989) Tabu Search—Part 1. ORSA Journal on Computing, 1, 190-206.
https://doi.org/10.1287/ijoc.1.3.190

[4] Glover, F. (1990) Tabu Search—Part 2. ORSA Journal on Computing, 2, 4-32.
https://doi.org/10.1287/ijoc.2.1.4

[5] Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P. (1983) Optimization by Simulated
Annealing. Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671

[6] Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine
Learning. Kluwer Academic Publishers.

[7] Marden, J.I. (1995) Analyzing and Modeling Rank Data. Chapman & Hall, New York.

[8] Kruskal, J.B. (1964) Multidimensional Scaling by Optimizing Goodness of Fit to a
Nonmetric Hypothesis. Psychometrika, 29, 1-27.
https://doi.org/10.1007/BF02289565

[9] Johnson, R.A. and Wichern, D.W. (2018) Applied Multivariate Statistical Analysis.
6th Edition, Pearson.

[10] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E.
(1953) Equation of State Calculations by Fast Computing Machines. The Journal of
Chemical Physics, 21, 1087. https://doi.org/10.1063/1.1699114

[11] Wilensky, U. and Rand, W. (2015) An Introduction to Agent-Based Modeling:
Modeling Natural, Social and Engineered Complex Systems with NetLogo, MIT
Press.

[12] McMullen, P. (2020) An Agent-Based Approach to the Newsvendor Problem with
Price-Dependent Demand. American Journal of Operations Research, 10, 101-110.
https://doi.org/10.4236/ajor.2020.104006

https://doi.org/10.4236/ajor.2022.125010
https://doi.org/10.4236/tel.2021.112024
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/BF02289565
https://doi.org/10.1063/1.1699114
https://doi.org/10.4236/ajor.2020.104006

	A Heuristic Search Approach to Multidimensional Scaling
	Abstract
	Keywords
	1. Introduction
	2. Classical Approach to Multidimensional Scaling
	3. Heuristic Approach to Multidimensional Scaling
	4. Experimentation
	4.1. Implementation
	4.2. Computational Experience
	4.3. Stagnation
	4.3.1. One-City Stagnation
	4.3.2. Two-City Stagnation

	4.4. Convergence

	5. Experimental Results
	6. Concluding Comments
	Conflicts of Interest
	References

