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Abstract 
The last three decades have witnessed development of optimization under 
fuzziness and randomness also called Fuzzy Stochastic Optimization. The 
main objective of this new field is the need for basing many human decisions 
on information which is both fuzzily imprecise and probabilistically uncer-
tain. Consistency indexes providing a union nexus between possibilities and 
probabilities of uncertain events exist in the literature. Nevertheless, there are 
no reliable transformations between them. This calls for new paradigms for 
coping with mathematical models involving both fuzziness and randomness. 
Fuzzy Stochastic Optimization (FSO) is an attempt to fulfill this need. In this 
paper, we present a panoramic view of Fuzzy Stochastic Optimization em-
phasizing the methodological aspects. The merits of existing methods are also 
briefly discussed along with some related theoretical aspects. 
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1. Introduction 

Mathematical programming is a very useful tool in the hands of a decision mak-
er. As a matter of fact, many decision problems including allocation of re-
sources, transportation, affectation, production, etc. may be cost into an optimi-
zation framework. An interested reader may consult the paper by Dan [1], where 
a complex deterministic optimization problem is discussed. According to Za-
deh’s incompatibility principle [2], when the complexity of a system increases, 
our aptitude to make precise statements on it decreases up to a threshold from 
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which precision and significance become mutually exclusive characteristics. In 
this connection, the noted philosopher Nietzche was quoted as saying: “No one 
is gifted with immaculate perception”. The Physics Nobel Laureate Feynman 
shared this view when he pointed out: “When dealing with a mathematical mod-
el, special attention should be paid to imprecision in data”. False certainty is bad 
science and it could be dangerous if it stunts articulation of critical choices. 
Fuzzy Optimization and Stochastic Programming [3] [4] provide a corpus of 
scientific knowledge that allows incorporating respectively fuzziness and ran-
domness in an optimization context. Nevertheless the two kinds of imprecision 
may occur simultaneously in some optimization problems, hence, the interest of 
discussing ways for combining the two kinds of uncertainty in a mathematical 
programming framework. For some examples of problems involving both fuzzy 
quantities and random data, we invite the reader to consult [5] [6] [7]. The 
above mentioned approaches of getting rid of fuzziness and randomness at once 
in an optimization problem constitute the subject matter of this paper. First and 
foremost, we present existing mathematical formalisms for combining fuzziness 
and randomness (Section 2). Second, we discuss how these formalisms are used, 
with good reasons to deal with hybrid situations involving fuzziness and ran-
domness in an optimization setting (Section 3). Some applications of these ap-
proaches are discussed in Section 4. We end up, in Section 5, with some con-
cluding remarks along with some lines for further developments in this field. It 
is worth mentioning that instead of using a mere approximation approach for 
defuzifying data, one may use semi-infinite mathematical programming to have 
exact results. But this is a subject matter for another paper. 

2. Mathematical Formalisms for Combining  
Fuzziness and Randomness 

2.1. Probability of a Fuzzy Event 

According to Zadeh [8], a probability of a fuzzy event is the expected value of its 
membership function. So given a fuzzy event A on a probability space Ω , its 
probability is defined as follows: 

( ) ( ) ( )d .A AP A E x xµ µ
Ω

= = ∫  
For details on probability of a fuzzy event, the interested reader is invited to 

consult [9]. 

2.2. Probabilistic Set 

Given a set X and a probability space Ω , a probabilistic set A on X is a fuzzy set 
of X ×Ω , whose membership function: 

[ ]
( ) ( )
: 0,1

, ,
A

A

X

x x

µ

ω µ ω

×Ω→

  
is measurable. 

Intersections and unions of fuzzy probability sets are defined using T-norms 
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or Conorms respectively. We refer the reader for properties of probabilistic sets 
to Hirota [10]. It is worth mentioning that probabilistic sets are appropriate 
tools for modelizing decisions in a fuzzy random environment. 

3. Uncertain Probabilities 

To put things in context, consider a continuous random variable X with density 
function ( ),f x θ , where θ  is a parameter describing the density function. If 
θ  can be generated as a fuzzy number θ , then X has density ( ),f x θ  and the 
probability of the event: “ X is between c and d” is a fuzzy set whose α -cuts are 
defined as follows: 

( ) ( ) ( ){ }, d | ; , d 1 .
d

c
P c X d f x x f x x

α αθ θ θ θ
∞

−∞
 ≤ ≤ = ∈ =  ∫ ∫

 
The first two moments of X are defined, through their α -cuts as follows. 

( ) ( ) ( ){ }, d | ; , d 1 ,Xm xf x x f x xα αθ θ θ θ θ
∞ ∞

−∞ −∞
= ∈ =∫ ∫



 

( ) ( ) ( )( ) ( ) ( ) ( ){
( ) }

22 , d | ; ;

, d 1 .

X X X Xx m f x x m m

f x x

α α ασ θ θ θ θ θ θ θ

θ

∞

−∞

∞

−∞

= − ∈ ∈

=

∫

∫



 

 

Random variables , 1, 2, ,iX i n=   with fuzzy parameters and having joint 
density function ( )1, , ,nf x x θ  and marginal density function ( ),i if x θ  are 
said to be independent if, for ( ]0,1α ∈  and for all αθ θ∈  , 

( ) ( )1
1

, , , , .
n

n i i
i

f x x f xθ θ
=

=∏
                   (1) 

For readers interested in more details on uncertain probabilities, we recom-
mend the authoritative scientific papers by Buckley and Eslami [11] [12]. 

3.1. Fuzzy Random Variable 

A fuzzy random variable (frv) on a probability space ( ), ,F PΩ  is a fuzzy-valued 
function: 

( )0:X F
X

α

ωω
Ω→ 
  

such that for every Borel set A of   and for every ( ]0,1α ∈ , ( ) ( )
1

X A Fα −
∈ . 

Here ( )0F   and X α  stand for the set of fuzzy numbers and the set-valued 
function: 

( )

( ){ }
: 2

|

X
X x X x

α

α
ω ωω α

Ω→

= ∈ ≥



  

respectively. 
Zadeh’s decomposition principle extends quite naturally to frvs. Moreover 

( ]( )0,1X α α ∈  are random intervals and frvs possesses the Radon-Nikodym 
property. A considerable body of literature has grown out of the concept of frv, 
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in a wide range of fields (e.g. [13] [14]). 

3.2. Random Fuzzy Variable 

A random fuzzy variable is a map from a possibilistic set to a probabilistic one, 
verifying some measurability conditions [15]. An interested reader may consult 
[16] for details on random fuzzy variables. 

3.3. Other Approaches 

Other approaches to blending epistemic and aleatory forms of uncertainty in-
clude imprecise probabilities in the style of Peter Walley [17] and p-boxes de-
fined by Ferson [18]. These approaches may be used to enrich models and me-
thods for Fuzzy Stochastic Optimization. 

4. Fuzzy Stochastic Optimization Models 
4.1. Preamble 

Fuzzy Stochastic Optimization (FSO) models are numerous and varied (e.g. 
[19]). They aim at stretching applicability of Optimization models to situations 
where both fuzziness and randomness are in the state of affairs. The back bone 
of FSO models is “the whole man doctrine” that urges us to bring everything we 
have to bear in our subject. Thwarting, suppressing or down playing uncertainty 
or imprecision in a mathematical model offers no other chance to that model 
but to churn out meaningless outcomes. This is in tune with the well-known 
Computer science rule: “Garbage in, Garbage out”. 

4.2. Types of FSO Models 

In this paper, we consider 5 categories of FSO models. This classification is far 
form being exhaustive. It just reflects the main models encountered in the lite-
rature. The classification has been done according to the following criteria: the 
way fuzziness and randomness enter into the problem, the mathematical for-
malism used to account of involved hybrid uncertainty (see above), the structure 
of the optimization problem, the number of objective functions, the number of 
stages and the numbers of levels. The first class (C1) contains mathematical pro-
gramming problems under fuzziness and randomness. Models on this class have 
one objective function and a limited number of constraints. Moreover the deci-
sion is taken here and now. For examples of models in category C1, we refer the 
reader to papers [20] [21]. If we consider temporal and level dimensions, then 
we get: fuzzy stochastic version of Dynamic programming (category C2) and 
multilevel optimization under randomness and fuzziness (category C3). 

Examples of models in Categories C2 and C3 may be found in references [22]. 
Another class of Fuzzy stochastic optimization models that came to the fore 
during the 1990s is the Fuzzy stochastic robust category (C4). Here, instead of 
specifying feasibility of an action by a set of inequalities, like in conventional op-
timization, the feasible region is defined via random set containments. All the 
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above mentioned classes assure that the optimization problem has one objective 
function. If one considers several conflictual objective functions, one falls on the 
realm of fuzzy stochastic versions of multi objective programming problems (C5). 

It is also worth mentioning that problems in classes 1 4, ,C C  may be ex-
tended to the multi objective case, leading to 1 4, ,l lC C  (l denoting the number 
of objectives considered). The reader is referred to [23] for an example of fuzzy 
stochastic multi objective model. 

4.3. Characteristics of FSO Models 

FSO models have the following common features: 
1) Fuzziness and randomness are, in some way, involved in these models. 
2) There is no agreed definition of optimum. 
3) There are different perspectives about the problem situation. 
4) The fuzzy stochastic optimization problem should be approximated by a 

deterministic one. 
5) The closedness of the appropriate deterministic problem to the original one 

as well as the tractability of the former is desirable traits. 

5. Fuzzy Stochastic Optimization Methods 
5.1. First Generation of FSO Methods 

Early attempts to solve decision problems involving fuzziness and randomness 
dated back to the 1980’s [24] [25]. The notion of probabilistic set coupled to 
Bellman-Zadeh’s confluence principle, served as the backdrop to these ap-
proaches. This line of research has been quickly extended to optimization prob-
lems with discrete random variables and vague relationships [26]. The above 
mentioned developments on FSO were followed by systematic comparisons be-
tween Stochastic Programming and Fuzzy Optimization [27]. These comparative 
studies displayed many similarities and differences that have been put in good 
use to deal with some complex stochastic programs through simple and relevant 
fuzzy optimization techniques [28]. By the same token, a method for incorpo-
rating random variables with flexible distributions in a mathematical program 
was obtained [29]. Research efforts have also been triggered for treating, in a 
synergetic way, fuzzy and stochastic constraints in a same Optimization problem 
[30]. Without a shadow of doubt, the concept of fuzzy random variable [31] has 
served as a catalyst that boosted FSO development. This hybrid tool provided a 
gold mine of opportunities for coping with situations where fuzziness and ran-
domness co-occur in an optimization setting [32]. In the next section, we briefly 
survey solution procedures for Fuzzy Stochastic Optimization models men-
tioned in section 3. 

5.2. Solution Procedures for FSO Models 
5.2.1. General Procedure for Solving a FSO Model 
As suitable models are central to conceptual formulation of FSO problems, so 
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suitable mathematical methods are central to their quantitative treatment. The 
presence of both possibilistic and probabilistic information within an Optimiza-
tion framework is a harbinger of computational nightmares if one were to ap-
proach the problem without any simplifications. The game is to come up with 
approximations which tradeoff faithful representation of reality for computa-
tional tractability. Although the trajectory of FSO follows a situation-specific 
approach that do not lead to a generalization, we introduce below a general 
scheme from which most of existing FSO methods boil down. This algorithmic 
framework unifies a variety of seemingly different methods that have been de-
rived from disparate approaches. 

Before proceeding further, we need the following notations: 
DO : Transformation that converts the original problem into a form suitable 

for treatment. 
  If the problem at hand is ready for treatment, then DO = I (identity 

transformation). 
DF : Deffuzification. 
  That is a process that associates to a given fuzzy system a deterministic 

counterpart. 
DR : Derandomization. 
  That is a procedure that immunizes from randomness. 
DFR : Transformation that deals simultaneously with fuzziness and 

randomness. 
DL(P) : stands for the problem resulting in applying DL to P, where L may be 

O, F, R or FR. 
We are now in a position to depict a general scheme for solving a FSO prob-

lem. 
Step 0: make a choice of DO, DF, DR, DFR. 
Step 1: Apply 0T DO=  to the original problem (P) to obtain ( )0T P . 
Step 2: Choose { }1 , ,T DF DR DFR∈  and apply 1T  to ( )0T P  to obtain 

( )( )1 0T T P . 
Step 3: Choose 2T  as follows: 

- If 1T DFR=  then 2T I= . 
- Otherwise take { }2 1,T DF DR T∈ − . 
- Apply 2T  to ( )( )1 0T T P  to get ( )( )( )2 1 0T T T P . 

Step 4: Solve the resulting deterministic problem ( )( )( )2 1 0T T T P . 
The choice in Step 0 can be fulfilled in many ways not all of them being 

equally satisfactory. This choice poses a double challenge. First, the transforma-
tions retained should not lead to a bad caricature of the reality. Secondly, they 
should be such that the resulting deterministic program could be computationally 
tractable. A FSO method becomes attractive if these two challenges are successfully 
overcome. Table 1 gives a sample of DF and DR transformations used in the lite-
rature for the case of linear constraints and are used respectively for fuzzy and 
random data. Moreover, cα  stands for the α  cut of the fuzzy set c . 
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Table 1. Deterministic counterparts of imprecise constraints. 

Type of 
constraints 

Transformation Deterministic counter part 

ax b≤   1DF  ( ) ( ]{ }1 | ; 0,1DF ax b x a x bα α α≤ = ≤ ∀ ∈ 

 

 

ax b≤   2DF  ( ) ( ]{ }2 | ; 0,1 ; 1, ,
i i iDF ax b x a x b i pα α α≤ = ≤ ∈ = 

 


 

ax b≤   3DF  ( ) ( ){ }3 |DF ax b x T ax b β≤ = ≤ ≥ 

 

 
where { },T Poss Nec∈  and β  is a prescribed 

threshold. 
Poss and Nec stand for possibility and necessity 
respectively. 

ax b≤   4DF  ( ) ( ) ( ){ }4 | andDF ax b x Poss ax b Nec ax bα δ≤ = ≤ ≥ ≤ ≥  

  

 
α  and δ  stand for prescribed thresholds. 

ax b≤  1DR  ( ) ( ) ( ){ }1 |DR ax b x Ea x E b≤ = ≤  

where E stands for the expectation operator. 

ax b≤  2DR  ( ) ( ){ }2 |DR ax b x Prob ax b β≤ = ≤ ≥
 

where Prob is the probability measure and β  a fixed 
threshold. 

 
For the sake of space, we briefly discuss in the section below, section (5.2.2). 

Only some approaches for models of different categories. 

5.2.2. Solving Approaches for Models in the Category C1 
(a) Flexible programming with random data 
Consider the following fuzzy stochastic model: 

( )
( )

( )1

min ,
, ; 1, ,i i i

n

f x r
M g x s b i m

x X




≤ =
 ∈ ⊂











 

where , ir s   are random variables on ( ), ,F PΩ ; ( ), 1, ,if g i m=   are func-
tions of n ×Ω . “ min ” and “ ≤ ” indicate that the minimization and the in-
equality are not strict imperatives. 

There are two main approaches for solving Problem (M1) in the literature. The 
symmetrical approach boils down from the general scheme depicted in section 
(5.2.1) by using the following transformations. 

( ) ( )0 1 1T M M ′=  where ( )1M ′  is the following problem. Find x X∈  such 
that: 

( ), ; 0,1, , .i i ig x s b i m≤ =

  
Here 0 0,g f s r= =  and 0b  plays the role of a fixed benchmark for the val-

ue of the objective function. 
( ) ( )1 1 1T M M′ ′′= , where ( )1M ′′  is as follows. Find 
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( )( )arg max ,Dx X
x sµ

∈  
where 

( ) ( )0, ,m
D i i ix s x sµ µ== ∧  

and “ ∧ ” stands for an operator used to translate the semantic meaning of the 
“and” connective. 

It is worth noticing that ( )0,1, ,i i mµ =   are memberships functions of 
probabilistic sets representing the constraints: 

( ), ; 0,1, , .i i ig x s b i m≤ =

  
( ) ( )1 1 1T M M′′ ′′′=  where ( )1M ′′′  is obtained from ( )1M ′′  by immunizing from 

randomness through the expectation operator. That is ( )1M ′′′  is the following 
deterministic optimization problem. 

( )( )max , .Dx X
E x sµ

∈  
Solving this optimization problem yields a satisfying solution of Problem 

(M1). The term symmetrical refers to the fact that the objective function and the 
constraints are considered as equivalent concepts. 

To solve problem ( )1M ′′′ , we need an analytical expression of the distribution 
of ( ),D x sµ  denoted by ( ),

D
F x sµ . The following result, the proof of which 

may be found in [33], is helpful in this regard. 
Theorem 1 
(1) If ( ) ( )

0,1, ,
, min ,D ii m

x xµ ω µ ω
=

=


 then 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 1

, , , ,
0

, , ,

2
, , ,

,

, ,

1 , , .

D i j k

i j k

m

m

x x x x
i j k

x x x
i j k

m
x x x

F z F z F z z

F z z z

F z z

µ ω µ ω µ ω µ ω

µ ω µ ω µ ω

µ ω µ ω µ ω

= <

< <

−

= −

+ +

+ −

∑ ∑

∑







 
(2) If ( ) ( ) ( ) ( )( ), min , 1 min 1, ,D i iii

x x xµ ω γ µ ω γ µ ω= + − ∑ , where γ  stands 
for a coefficient of compensation ranging between 0 and 1, then 

( ) ( ) ( ) ( )( )1
1 2, ,

D xF z L g s g sµ ω
−= ⋅

 
where 

( ) ( ) ( )1 min ,0
e d ,

i i

s Z

xg s F z zγ
µ ω

 
− ∞  = ∫  

( ) ( )( ) ( )1
2 min 1, ,0

e d
ii

s z

xg s F z zγ
µ ω

 
− ∞ − 

∑= ∫  
and 1L−  stands for the inverse of the Laplace transform. 

For a perspective on the asymmetrical approaches for solving Problem (M1). 
We refer the reader to [34]. Asymmetrical approaches have the advantage of 
confining the objective function to its classical role of ranking alternatives and 
the constraints to their role of delineating the feasible set. Ongoing research in-
cludes the use of other more effective paradigms, like the chance constrained or 

https://doi.org/10.4236/ajor.2021.116018


Y. T. Mangongo et al. 
 

 

DOI: 10.4236/ajor.2021.116018 291 American Journal of Operations Research 
 

the multistage ones instead of merely sticking on the expectation operator to 
immunize from randomness. Another issue researchers are busy considering is 
the trade-offs between the two classes of approaches. Results along this line 
would make it possible to decide which approach is most suitable under given 
circumstances. 

(b) Mathematical programming with fuzzy random coefficients 
Advances on elucidating properties of fuzzy random variables have triggered 

considerable work on how to deal with mathematical programs with fuzzy ran-
dom (fr) or random fuzzy (rf) coefficients. It is worth mentioning that the gen-
eral scheme described in section (5.2.1) applies here as well. Typical, but by no 
means unique, transformations are used. To provide a taste of what is done on 
optimization with fuzzy random data, we consider the following Program (M2). 
We deliberately restrict ourselves to the linear case so that basic ideas are illu-
strated in a relatively simple context. For non linear programs, we refer the 
reader to [34] [35]. 

Consider the following fuzzy stochastic program: 

( )2

max

; 1, ,
0

ij j i

j

cx

M a x b i m
x




≤ =
 ≥

∑ 




 
Let 

( ) ( ) ( )( ) ( ) ( ) ( )( ), , , ,H A b H A bα α α α α αω ω ω ω ω ω+= =

 
and 

( ) ( ) ( )( ), ,H A bαα αω ω ω− =
 

where 

( ) ( ) ( ), ,A A Aαα αω ω ω

 
stand for matrices 

( ) ( ) ( ), , ,
, ,ij ij iji j i j i j

a a aωα ωα ωα

 
respectively and ija ωα  denotes the α -level set of ija ω , while ,ij ija aωα ωα  stand 
for the upper and lower endpoints of ija ωα  respectively. Similarly, ( ) ( ),b bα αω ω  
and ( )bα ω  stands for vectors: 

1 1 1

, ,

m mm

b b b

b bb

ωα ωα ωα

ωα ωαωα

     
     
     

        



  



 
respectively. Moreover W denotes the optimum of Problem ( 2M ) and Wα

∗  
stands for the optimum value of ( )2M α∗ , where { },∗∈ − +  and ( )2M α −  and 

( )2M α +  are the following programs respectively: 

( ) ( ) ( )2

max

0

cx
M A x b

x

α
α αω ω−


 ≤
 ≥
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( ) ( ) ( )2

max

0

cx

M A x b
x

α
α αω ω+




≤
 ≥



 
r

igα  is the penalty for unit of discrepancy between ij ra ωα∑  and i rb ωα . β  
stands for a prescribed threshold fixed by the Decision Maker. 

H
f

α
∗  denotes the 

density function of { }( ),Hα
∗ ∗∈ − +  and ( )

i
Vα

∗  is the ith decision region of 

( ) { }( )2 ,M α∗ ∗∈ − + . 
All transformations used in this table are well explained in Table 2 except 

DR3, DR4 and DR5 that are respectively the two stages, the random simplex and 
the distribution paradigms applied to a stochastic program. For solving resulting 
deterministic problems, one use techniques from simple ones like the simple 
method [40] to sophisticated ones like hybrid intelligent algorithms [41] via me-
taheuristics, like Genetic algorithms [42] and Tabu search [43]. A quick look at 
Table 2 may convey the wrong impression that methods listed on that table do 
not offer much scope for theoretical results. Upon closer examination one may 
realize that these approaches are not pedestrian or brute force methods. They 
rely on deep theoretical insights. We mention below some of them. 

It is well known that constraints on probability induce non convexities which 
preclude application of powerful convex optimization techniques. So the viability 
of approach 1 in Table 2 depends on whether it is possible to convert constraints  

 
Table 2. Some instances of approaches for solving (2). 

Transformation 
Resulting deterministic problem ( P′ ) Approach references 

1T  2T  

2DF  2DR  max cx  

1
,n

ij r j i rj
Prob a x bωα ωα β

=
 ≤ ≥ ∑

 
1, , ; 1, , ; 0,jr p i m x= = ≥ 

 
1, ,j n=   

1 [36] 

4DF  5DR  Find the fuzzy probability 
distribution of W and its 
expectation given respectively by: 

( ) ( ] ( ) ( )0,1
,W H HF x F x F x

α αα
α

+ −∈
 =  





 
( ) ( ] ( ) ( )0,1

,WE x E H E Hα αα
α − +

∈
 =  



  

2 [37] 

2DF  3DR  ( )( )1 1
max p m r r

i ir i
cx E g yα α ω

= =
 −  ∑ ∑

 
( ) 1

nr
i ij r j i rj

y a x bα
ωα ωαω

=
= +∑  

3 [38] 

4DF  4DR  Use the random simplex method to 
find xα  solution of max cx  

( ) ( ) ( );a x b a x bα αα ω α ω ω≤ ≤
 

( ]0,1α ∈  and construct ( ]0,1
x xαα

α∗

∈
=


 

4 [39] 
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on probability on a feasible convex set. Moreover, approach 2 relies on the fol-
lowing result. 

Theorem 2. Consider the Problem (P) and all related notation below. 

( ) 1

max ,

, 1, , ,

0, 1, , ,

n
ij j ij

j

cx

P a x b i m

x j n
=

∗ ∗


 ≤ =


≥ =

∑ 



 
where , nc x∈  and ∗  means that ija  and ib  are either fuzzy quantities or 
random variables, “∗ ” takes “+” if the data is random and it takes “−” if the data 
is fuzzy; then the distribution of Hα

∗  and its expectation are respectively: 

( ) ( ) ( ) ( ){ } ( )
| and

1
d

i

R

H HH H V W x
i

F x f s s
α αα α αω ω∗ ∗∗ ∗ ∗ ∗∈ <

=

= ∑ ∫
 

( ) ( ) ( )
1

d .
i

R

HV
i

E H W f s s
αα

α α ∗∗
∗ ∗

=

= ∑ ∫
 

For the proof of this result, we invite the reader to consult [33]. We must also 
stress the fact that several methods have been developed over the past few dec-
ades due to the efforts of many researches, e.g. [44] [45]. Surveying all these de-
velopments is however beyond the scope of this paper. 

Important part of research in this realm includes the generalization of existing 
ideas by using other transformations and the driving up to the performance 
analysis in the side of effectiveness rather than sticking on computational effi-
ciency. Something that should also be pursued with focused attention is the 
search for solutions of fuzzy stochastic nature, in a way to reflect the fuzzy ran-
dom structure of the problem. 

The case where one has both fuzzy and random data in a same optimization 
problem, can be converted into the case one has fuzzy random data, by consi-
dering involved fuzzy and random quantities as degenerate fuzzy random va-
riables (e.g. [46]). Another notion that has energized FSO development is that of 
random fuzzy variable [47]. This notion that has been moulded by Liu [48], ge-
neralizes quite naturally the notion of random variable. A fascinating approach 
based on this notion and fuzzy random simulation that integrates neural net-
work and genetic algorithm has been pushed forward in [49], to solve a mathe-
matical program with random fuzzy parameters. 

In addition to shedding light on analysis of Optimization problems under hy-
brid uncertainty, the proposed algorithm may be the only one resort for solving 
optimization problems under randomness and fuzziness, where random fuzzy 
variable is the only one format available for data. It is our belief that exploring 
the duality between a mathematical program with fuzzy random data and its 
counterpart with related random fuzzy parameters, will help fostering a more deep 
understanding of characteristics of Fuzzy Stochastic Optimization problems. 

(c) Mathematical program with random variables having fuzzy parameters 
We now move to solution procedures for optimization problems, where 

another specific tool, namely uncertain probability, is used for modeling hybrid 
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imprecision in the data of the problem. The mathematical program on which 
ideas will be illustrated is as follows. 

( )
{ }

3

min
; 1, ,

| 0
i i

n

cx
A x b i mM
x X x x

∗ ∗


 ≤ =
 ∈ = ∈ ≥





 
where “∗ ” means the daturn is random with some fuzzy parameters. This model 
has many applications in situations where experts who provide data of the opti-
mization problem feel more comfortable in coupling their vague perception with 
hard statistical data. To this end, they may prefer to represent these data in the 
form of random variables with vague parameters. As an example, consider a 
portfolio selection problem where, due to stock expects’ judgments and inves-
tors’ different opinions, the security returns are modeled as random variables 
with fuzzy parameters. Model (M3) has not received much attention in the lite-
rature. The art here is to find an approximation scheme simple enough to be 
computable, but not so simple that useful detail is lost. This is done in [50] by 
making use of the fuzzy version of the well known chance constrained pro-
gramming approach. Uncertain probabilities of constraints are enforced to be 
larger than a specified level fixed by the Decision maker. 

This means one has to consider the following problem. 

( )3 1

min

; 1, ,n
j ij i i

cx

M P a x b i m

x X

δ∗ ∗
=


  ′ ≤ ≥ =  

∈

∑ 



 
where P  stands for uncertain probability and , 1, ,i i mδ =

  are fuzzy thre-
sholds fixed by the Decision maker. The question that immediately arises is that 
of converting Problem ( )3M ′  into a standard mathematical program. 

Fascinating results in connection with this issue have been obtained in the li-
terature. For the sake of space, we only give below one of these results. To this 
end, we need the following lemma. 

Lemma 1. Assume ( )1, ,ija j n∗ =   and ; 1, ,ib i m∗ =   are independent and 
normally distributed random variables with fuzzy parameters. Put 

( ) ( )
1

n

i ij j i
j

x a x bξ ∗ ∗ ∗

=

= −∑
 

Then ( )i xξ ∗  is also normally distributed with fuzzy mean ( )
i

m xξ  and 
fuzzy variance ( )2

i
xξσ . 

Let now the fuzzy numbers ; 1, ,i i mδ =

  be threshold fixed by the Decision 
maker. As ( ) ( )2,

i i
m x xξ ξσ   and iδ  are fuzzy numbers, their α -cuts are inter-

vals denoted respectively as follows. 

( ) ( ) ( ),
i i i

L Um x m x m xα α α
ξ ξ ξ =  

 
( ) ( ) ( )2 2 2,

i i i

L Ux x xα α
ξ ξ ξσ σ σ =  

 
, .L U

i i
α αδ δ δ =  
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Theorem 3. Under assumption of Lemma (1), Problem ( )3M ′  is equivalent 
to the following mathematical program: 

( )
( )
( )
( ]

3 2

min

; 1, ,

; 0,1

i

i

U
U

iU

cx

m x
M i m

x

x X

α
ξ α
α

ξ

φ δ
σ

α




 −
′′ ≥ =     

 ∈ ∈



 
where φ  stands for the density function of the standard normal distribution. 

It is worth noting that Problem ( )3M ′′  has infinitely many constraints and it 
can be handled by semi-infinite mathematical programming techniques [49]. 
The prevailing research directions in this setting include analysis of non linear 
variants of Problem (M3) along with methods for solving them and considera-
tion of other distribution than the normal one. Another worthy avenue for re-
search in this framework, is to carry out case studies in a way to validate existing 
approaches. 

5.2.3. A method for Solving a Model in the Category C4 
One key ingredient for dealing with models in the category C4 is the lattice iso-
morphism between the set of fuzzy random sets and the family of their α -level 
sets [51]. It makes a lot of sense to take a defuzification approach, the transfor-
mation that immunizes the original robust fuzzy stochastic program from fuzzi-
ness by making use of the above mentioned isomorphism and by exploring the 
fact that α -level sets of a fuzzy random set are random intervals. A suitable 
derandomization procedure would then be a stochastic programming technique 
like 1 2,DR DR  or 3DR  (see Table 1). 

Here is an example of a fuzzy stochastic robust programming model. 

( ) 1 1 2 2

1 2

max

0, 0, , 0
R n n

n

cx
P A x A x A x B

x x x


 + + + ⊆
 ≥ ≥ ≥



  

where , nc x∈  and ,iA B  are fuzzy sets of n . Components of A  denoted 
by ija  are fuzzy numbers, while components of B denoted by ib  are convex 
fuzzy sets of   having random characteristics. More precisely, we assume like 
in [51] that the endpoints of an α -level of ib  are random variables with 
known probability distributions. It is well known that Problem ( RP ) is equiva-
lent to the following optimization problem: 

( ) ( ]1 1

1 2

max
, 0,1

0, 0, , 0
nR n

n

cx
P A x A x B

x x x
α α α α


′ + + ⊆ ∀ ∈
 ≥ ≥ ≥



  

To tackle randomness surrounding B , we resort to chance constrained pro-
gramming approach. This approach requires that the constraints need to be sa-
tisfied with some higher probability. For instance, for a stochastic constraint: 

( ) ( )D x eω ω≤  
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One may require that 

( ) ( ){ }| 1Pr D x e lω ω ω ≤ ≤ −                    (2) 

where l is a fixed level of probability. Constraint (2) can be merely written: 

( ) ( )( )lD x eω ω≤  
where ( )( ) ( )l Le F l Fω −= ⋅  being the cumulative distribution of e. For details on 
Chance Constrained programming, we refer the reader to [52]. It is also well known 
that α -levels of ija  and ib  are real intervals. We denote them by , ijija a αα    
and , iib bαα    respectively. Making use of the operations on the set of real 
bounded intervals and resorting at the chance constrained programming tech-
nique to deal with randomness, the Problem ( )RP′  becomes: 

( )
( ) ( ]
( ) ( ]

1

1

max

; 1, , ; 0,1

; 1, , ; 0,1

0; 1, ,

j

j

n l
jij i

R n l
ij j i

j
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a x b i m
P

a x b i m

x j n

α α

α α

α

α

=

=




≥ = ∈′′ 
≤ = ∈


≥ =

∑
∑







 
This resulting program is a semi-infinite optimization problem and complex 

optimization techniques are required to solve it. Nevertheless, if the image of 
the membership function of ib  denoted by (

bi
Imµ ) is finite for every i, say 

{ }1 , ,
bi

i kiImµ α α= 
 then (see [53]), Problem ( )RP′′  becomes merely: 

( )
( )

( )

1

1

max

; 1, , ; 1, ,

; 1, , ; 1, ,

0; 1, ,

s si i

s si i

n l
j i iij i
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j j j i ii

j
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a x b i m s k
P

a x b i m s k

x j n

α α

α α

=

=




≥ = =′′′ 
≤ = =


≥ =

∑
∑

 

 



 

Problem ( )RP′′′  is a standard linear program, that can be solved by existing 
linear programming software. 

5.2.4. A method for Solving a Model in the Category C2 
To illustrate how a Fuzzy Stochastic dynamic model can be solved, we briefly 
discuss a multistage decision process, involving randomness and fuzziness. The 
state space of the process at hand is 

{ }1 1, , , , , .k k nX x x x x+=    

We assume that the termination set, denoted by T, consists of states 1, ,k nx x+   
and we put T X T= . We also assume that the constraints of the process are de-
fined through state-dependent fuzzy sets ( )kC x  over the control space U. The 
membership function of ( )kC x  is denoted by ( )|C t txµ µ . The conditional 
probabilities of a state transition under a control tµ  are given as follows. 

( )
1

1 1

1

1 if
| , 0 if

0 if ,

t t

t t t t t

t t t

x x T
p x x x x T

x T x x
µ

+

+ +

+

= ∈
= = ∈
 ∈ ≠  
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Suppose now that the sequent inputs 0 1, , , ,tu u µ   are determined by a 
stationary policy function :T UΠ → . For a policy Π , in a given state ix T∈ , 
the decision ( )D xtΠ  with respect to Π  is the confluence of the constraint in 
the transition from tx  to 1tx + , ( )iC xΠ  and the next decision ( )1tD xΠ +  with 
respect to Π . If 1tx T+ ∈ , we set ( ) ( )1 1t tD x G xΠ + +=  for any Π . 

Given tx  the state 1tx +  is a random variable characterized by the condi-
tional probability function ( )1 | ,t t tp x x u+ . Thus 

( ) ( ) ( )1t t tD x C x ED xΠ Π Π +=   
or 

( ) ( )( ) ( )1| | |D t C t t D tu x u x x Eu x +Π = Π Π

 
where 

( ) ( )( ) ( )

( )( ) ( )
1

1

1 1 1

1 1

| | , |

| ,
t

t

D t t t t D t
x T

t t t G t
x T

Eu x p x x x u x

p x x x u x
+

+

+ + +
∈

+ +
∈

Π = Π ⋅ Π

+ Π ⋅

∑

∑
 

and hence, 

( ) ( )( ) ( )( ) ( )

( )( ) ( )

1

1

1 1

1 1

| | , |

| , .

t

t

D t C t t t t D t
x T

t t t G t
x T

u x u x p x x x u x

p x x x u x

+

+

+ +
∈

+ +
∈


Π = Π ∧ Π ⋅ Π




+ Π ⋅ 


∑

∑
     (3) 

Given a policy ( ) ( )( )1 , , kx xΠ = Π Π  we consider the following vectors: 

( ) ( )( ) ( )( )( ) ( )1 1| , , constraint vectorC C C k ku u x x u x xΠ = Π Π

 
( ) ( ) ( )( ) ( )1 | , , | control vectorD D D ku u x u xΠ = Π Π

 
( ) ( )( ) ( )1 , , goal vectorG G k G nu u x u x+= 

 
Let’ also introduced the following transition matrices: 

( ) ( )( ) , 1, ,ijT i
P p j kΠ = Π = 

 

( ) ( )( ) 1, ,

1, ,

i k
T ij j k n

P p
=

= +
Π = Π



  
with these notations, the system of equations in (3) can be put in a more com-
pact form. 

( ) ( ) ( ) ( ) ( )D C D T GTu u P u P u uΠ = Π ∧ Π ⋅ Π + ⋅              (4) 

Π  is said to be proper, if there is a natural number K such that 
1,1K

Tp K k< ≤ ≤  where k is the number of states in T . The set of proper poli-
cies is denoted by pΠ . pΠ  is a finite set. So we may write { }1, , r

pΠ = Π Π , 
where r is finite. An optimal policy denoted by optΠ  is the one that maximizes 

( )Du Π . It is shown that under mild assumptions, the termination set T is 
reachable from any initial state in T . Moreover, an optimal policy opt

pΠ ∈Π  
can be obtained from the solution of the following fixed point problem: 
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( ) [ ]{ }1
rV C A bν ν ν νω ω== ∨ ∧ +  

where , ,A bν νω  and cν  stand for ( ) ( ) ( ), ,D TTu P Pν νΠ Π Π . Gu  and 

( )Cu νΠ  respectively. 
The literature on multiperiod programming under fuzziness and randomness 

is rather limited. This could be due to the lack of tractable methodologies. The 
optimality principle, so profusely used in deterministic dynamic programming, 
does not lend itself better in a fuzzy stochastic environment. Nevertheless at-
tempt to integrate fuzziness and randomness in a dynamic programming 
framework is found in [54]. In that paper, authors described an approach for 
solving a dynamic programming involving stochastic state transition, fuzzy con-
straints, fuzzy goal and an implicitely defined termination time. This approach 
relies heavily on the Bellman-Zadeh’s confluence principle [37] [55]. Some in-
teresting results on the robustness of solutions obtained by this way are also out-
lined. Another approach which deserves more emphasis has been presented by 
Ganji et al. [56]. Here the picture is made even more complicated by the pres-
ence of different decision-making mind-sets. More recently, a new approach 
named stochastic fuzzy neural network [57] has been introduced. It aims at 
overcoming some of the limitations of the traditional methods like the difficul-
ties related to the curse of dimensionality due to the increase in the number of 
decision and state variables. This approach consists of training stochastically a 
neuro fuzzy system, in a way to represent the system operational strategy. 

The prevailing research direction in the Fuzzy Stochastic dynamic program-
ming framework is the improvement of this Neural network approach in a way 
to address drawbacks of existing models like the impossibility of considering 
simultaneously related fuzzy and stochastic characteristics. 

5.2.5. Algorithms for Dealing with Models in Category C3 
Hierarchical decision making process is extremely practical to such decentra-
lized systems as agriculture, government policy, economic systems, finance, etc. 
For more realism on their multilevel decision models, researches have investi-
gated ways for incorporating fuzziness into these settings. Related solution con-
cepts like Stackelberg strategy have been elaborated and interesting results have 
been obtained. Powerful algorithms for singling out desired solutions have also 
been pushed forward. These approaches are at the root of extensions to Fuzzy 
stochastic multilevel methodologies. In a method that integrate fuzzy random 
simulation, neural network training and Genetic algorithm has been developed 
to find a satisfying solution of a fuzzy random multilevel program. Another in-
teresting approach for the two-level case is found. Here essential ingredients 
used are fuzzy random versions of the Nash and the Stackelberg-Nash equilibria. 
The former is used for the lower level problem, while the latter is used for the 
overall problem. These approaches give rise to a number of challenging issues 
including effectiveness and convergence of proposed methods. Currently re-
searchers are busy pondering these thorny issues. 
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In a way to illustrate how a multilevel optimization problem under random-
ness and fuzziness can be solved, we briefly discuss below an approach proposed 
by Sakawa, Nishizaki and Katagiri [58] for a two-level linear programming 
problem. 

To illustrate how algorithms for dealing with Fuzzy stochastic multilevel pro-
grams work, consider the following optimization problem: 

( )
( )
( )

11 1 12 2 1

21 1 22 2 2

Minimize for

Minimize for

subject to : ; 0,

ML

C x C x DM

P C x C x DM

Ax b x

 +

 +

 ≤ ≥

 

 

 
where iDM  stands for Decision maker i, , 1, 2; 1,2ljC l j= =  are fuzzy random 
variables defined on a probability space ( ), , PΩ   and whose realized values 

( ) , 1, 2; 1, 2ljC l jω = =  are fuzzy numbers with membership functions of the 
form: 

( ) ( )

( ) ( )
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δ

  −
≤     = 

 −
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where L and R are respectively non decreasing and non increasing functions of 
  such that ( ) ( )0 0 1L R= =  and ( ) ( ),lj ljd ω β ω  and ( )ljδ ω  are respec-
tively the center value, the left spread value and the right spread value of 

( )ljC ω . Using Zadeh extension principle; we have that: 

( ) ( )

( ) ( )
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if
lj
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β
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ν ω
ν ω

δ

 − 
≤  

  = 
−  > 

 



 
where ( ) ( ) ( )( )1 2,l l ld d dω ω ω= , ( )1 2,l l lβ β β=  and ( )1 2, ; 1, 2l l l lδ δ δ= = . 
Suppose that the decision makers are happy in minimizing their objective func-
tions under the condition that all coefficients ( ) , 1, 2; 1, 2ljC l jω = =  belongs to 
α -level sets of corresponding fuzzy random variables, for a fixed α . Then 
Problem ( MLP ) reads: 

( ) { }

1 1

2 2

2

1 1 2 2

Minimize for

Minimize for

subject to : | ; 0

, ; 1, 2.

ML

j j j j

C x DM
C x DM

P x X x Ax b x

C C C C jα α



′  ∈ = ∈ ≤ ≥


∈ ∈ =



  

 
To handle imprecision inherent to objective functions, we consider fuzzy 

goals, say the objective value should be substantially less than some given value. 
These goals are elicited by 1DM  and 2DM . Assume the membership functions 
of these goals are 1µ  and 2µ  for objective 1 and objective 2 respectively. It is 
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worth mentioning that ( )( ) , 1, 2l lC x lµ ω =  vary randomly. A deterministic 
counterpart of Problem ( MLP′ ) may be obtained by adopting the following 
strategy, closely related to chance constrained programming. The strategy is to 
require that the probability that the degrees of satisfaction of fuzzy goals 

( )( ) , 1, 2l lC x lµ ω =  be greater to some optimal values ( 1 2max ,maxh h ) be not 
less than some fixed permissible levels ( 1 2,θ θ ). With these requirements, Prob-
lem ( MLP′ ) can be written: 

( )
( )( ){ }

( )( ){ }

1 1

2 2

1 1 1 1

2 2 2 2

Maximize for
Maximize for

subject to : |

|

; ; 1, 2; 1,2.

ML

l
lj lj

h DM
h DM

P C x h
P

P C x h

x X C C l jα

ω µ ω θ

ω µ ω θ




  ≥ ≥ ′′  
  ≥ ≥   
 ∈ ∈ = =







 
where , 1, 2lh l =  are target values and , 1, 2l lθ =  are permissible probability 
levels, specified by the decision makers. Before discussing how to find a satisfy-
ing solution of the original multilevel program using the auxiliary problem 
( MLP′′ ), we need the following notations. We assume that the random parameter 
associated to the fuzzy random variable lC  is denoted by ld  and is expressed 
as 1 2

l l l ld d t d= + , where lt  is a random variable with probability distribution 

lT . Moreover, we denote by F ∗  the pseudo inverse of a real-valued function F 
of  . That is for θ ∈ , ( ) ( ){ }inf |F r F rθ θ∗ = ∈ ≥ . It is shown that 
Problem ( MLP′′ ) is equivalent to the following program: 

( )
( )( )
( )( )

1 1 1

2 2 2

Maximize for

Maximize for

subject to

F

F
ML

Z x DM

P Z x DM

x X

α

α

µ

µ



′′′ 


∈  
where ( ) ( ) ( )( )2 1F

l l l l l lZ x T d d L xα θ α β∗ ∗= + − . To find a satisfying solution of 
Problem ( MLP′′′ ), we first solve the following problem: 

( ) ( )( ) ( )( ){ }1 1 2 2Maximize min ,

subject to

F F
iv

ML

Z x Z x
P

x X
α αµ µ


∈  

It is an easy matter to see that the above program is equivalent to: 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )

2 1
1 1 1 1 1

2 1
2 2 2 2 2

Maximize

subject to
v

ML

v

T d d L x v
P

T d d L x v

x X

θ α β µ

θ α β µ

∗ ∗ ∗

∗ ∗ ∗




+ − ≤


+ − ≤


∈  
Let x∗  the solution of Problem ( v

MLP ), if the decision maker 1 is satisfied 
with the membership function values ( )( ) , 1, 2F

l lZ x lαµ ∗ = , then x is regarded as 
a satisfactory solution of Problem ( MLP ). Otherwise, the decision maker 1 speci-
fies a minimal satisfactory level ( ]0,1δ ∈  and one solves the mathematical 
program: 
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( ) ( )( )
( ) ( )( ) ( )

2 1
2 2 2 2 2

2 1
1 1 1 1 1 1

Minimize

subject to

T d d L x

T d d L x

x X

θ α β

θ α β µ δ

∗ ∗

∗ ∗ ∗

+ −

+ − ≤

∈  
A part from this level-set based fractile approach for a multilevel optimiza-

tion problem under fuzziness and randomness, there is also a possibility-based 
probability approach. 

5.2.6. Methods for Solving Models in the Category C5 
Significant progress has been made on ways for dealing with situations in which 
randomness and fuzziness are inextricably involved in a multi objective pro-
gramming framework. These advances have generated more interest for this 
class of optimization problems. In a theoretical ground several concepts of ge-
neralized Pareto optimality have been introduced and properly characterized 
(see [59] [60]). As far as algorithms are concerned, powerful methods based on 
tools ranging from simple optimization algorithms to sophisticated ones (like 
hybrid intelligent algorithm [29]) via meetaheuristics [61] have been devised. 
The most common methods include: 
• methods for generating Pareto optimal solutions, 
• interactive methods, 
• goal programming methods. 

As an example of a method for solving a fuzzy stochastic multi objective pro-
gram. Consider the following multi objective programming problem: 

( ) ( )
{ }

1Minimize , ,

subject to | , 0

h
PO n

C x C x
P

x X x Ax b x





∈ = ∈ ≤ ≥

 




 

where x is an n-dimensional decision vector, A an m n×  matrix, b an 
m-dimensional vector and ( )1, ,l l lnC C C=  

  where , 1, ,ljC l k=


 and 

1, ,j n=   are discrete fuzzy random variables. That is value of ljC  are trian-
gular fuzzy numbers ljsjC , depending on a scenario { }1, ,l ls S∈   which oc-
curs with probability lslp . The membership function of ljsjC  is: 

( )
max 1 ,0 if

max 1 ,0 if
ljsl

jsl
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   = 
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where , ,ljsl lj ljd β δ  are respectively the center value, the left spread value and the 
right spread value of ( )ljC ω . Following this pattern, we can define the mem-
bership function of the fuzzy random variable ljC  as: 

( ) ( )
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Making use of the extension principle, we have: 
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and 
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Assume that the decision maker has a fuzzy goal for each of the objective 

function, say “the objective value should be substantially less or equal than some 
given value”. Denote the membership of this fuzzy goal by Gµ 

. Piecewise linear 
functions are generally used. Now the degree of possibility that the objective 
function lC x  attains the fuzzy goal lG  is given by: 
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One may use the expectation operator to convert the original problem into 

deterministic terms. In this case, one maximizes the expected degree of possibil-
ity that each of the original functions involving fuzzy random coefficients attains 
the fuzzy goals. In this case, the resulting deterministic problem is: 
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It is proved that Problem ( MOP′ ) is equivalent to the following multi objective 
program: 
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A Pareto optimal solution of Problem ( MOP′′ ) may be obtained by using 

well-known results of deterministic multi objective programming. 

6. Fuzzy Stochastic Optimization Applications 

Fuzzy stochastic optimization is currently applied in a wide variety of domains 
spanning engineering Economy, Finance, Ecology, Energy, etc. The relevance of 
FSO was recognized once it became clear that it can be used as a unifying 
framework for handling situations where fuzziness and randomness co-occur in 
an optimization setting. 

To assert that it is more useful to conceive imprecision in an optimization set-
ting as a variegated whole is not to minimize important research works that have 
done in Fuzzy Optimization and Stochastic Programming. It is instead to assert 
that new perspectives for coping with complex real life problems may be gained 
by integration of both approaches than exclusion. It is virtually impossible to 
encompass the full spectrum of FSO applications within the scope of a paper. In 
Table 3, we list some examples of FSO applications in the above mentioned do-
mains. 

7. Concluding Remarks and Suggestions for Future Research 

Fuzzy stochastic system is a fascinating area that allows generating satisfying 
outputs from fuzzy random inputs subject to a given system restriction. Investi-
gating such systems represents an important research avenue in the discipline of 
mathematical modeling under uncertainty. Apart from being helpful in several 
applications, fuzzy stochastic systems can help shed some light on intricate  

 
Table 3. Some applications of FSO. 

Domain Example of applications 

Engineering Planning of solid waste management [62] 

Economy Marketing [63] 

Fiance Bank hedging decision problems [63] 

Ecology Environmental system planning [64] 

Energy Electric power planning [65] 

Water resources Reservoir strategies [66] 

Reliability Time-dependent reliability [67] 

Network Shortest path problem [68] 

Renewal processes Queuing applications [69] 
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theoretical issues like impacts of infinitesimal changes on inputs of a mathemat-
ical model under uncertainty. When systems under scrutiny boil down to ma-
thematical programs, we fall into the realm of fuzzy stochastic optimization, the 
subject matter of this paper. Fuzzy Stochastic Optimization has triggered, during 
the last two decades, an explosion of research worldwide both on theoretical is-
sues, algorithmic aspects and concrete applications. It is therefore worth-while 
to pause once a while and ask ourselves, what we have done, what is done cur-
rently and what are the perspectives in this field. This paper has been written in 
this spirit. Its coverage has been made with a broad target audience in view. 

We have highlighted the modeling power of FSO, its broad applicability as 
well as significant advances made in terms of both the quantity and the quality 
of results obtained. The variety of related subjects and the current profusion of 
scientific publications in the field, reflect its vitality and diversity. Some lines for 
further developments on this fascinating field are briefly outlined below: 

1) Despite the fact that most existing approaches for solving FSO problems 
bow to epistemologically based prescriptive procedures for dealing with prob-
lems involving uncertainty, the model validation has been treated mostly from 
the perspective of efficiency (doing things right). Efforts should be devoted to 
strike a good balance between efficiency and effectiveness of designed FSO me-
thods. Some indexes, including poss-prod and prod-poss that serve as windows 
through which one can appraise the desirability of a given action under consi-
dered transformations, have been introduced, but more is needed. 

2) Decision makers would perhaps be best served if from a deep comparative 
analysis of good FSO methods, user-friendly Decision Support Systems (DSSs) 
could be pushed forward. Such (DSSs) would be of great help advise Decision 
makers with the choice of the most suitable methods for their problems. 

3) In some sensitive cases, it would be preferable to have as a solution to a 
FSO problem, a fuzzy stochastic quantity in a way to reflect the vagueness and 
the randomness surrounding the problem. So an interesting direction for future 
research is that of defining and characterizing fuzzy random solutions for a 
Fuzzy Stochastic Optimization problem. Algorithms for singling out such solu-
tions should also be designed and implemented. 

4) Description of high quality case studies is also needed, in order to have 
more solid arguments in favour of the underniable importance of FSO methods. 

We very much hope to see FSO advances so far, so fast that its influence 
transforms both the theory and practice of mathematical programming under 
uncertainty. 
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