
American Journal of Operations Research, 2021, 11, 15-34
https://www.scirp.org/journal/ajor

ISSN Online: 2160-8849
ISSN Print: 2160-8830

DOI: 10.4236/ajor.2021.111002 Jan. 21, 2021 15 American Journal of Operations Research

Identical Machine Scheduling Problem with
Sequence-Dependent Setup Times: MILP
Formulations Computational Study

Farouk Yalaoui, Nhan Quy Nguyen

Chaire Connected Innovation, ICD-LOSI, Université de Technologie de Troyes, Troyes, France

Abstract
This work aims to give a systematic construction of the two families of
mixed-integer-linear-programming (MILP) formulations, which are graph-
based and sequence-based, of the well-known scheduling problem

| , |m j ij jP r s C∑ . Two upper bounds of job completion times are introduced.
A numerical test result analysis is conducted with a two-fold objective 1)
testing the performance of each solving methods, and 2) identifying and ana-
lyzing the tractability of an instance according to the instance structure in
terms of the number of machines, of the jobs setup time lengths and of the
jobs release date distribution over the scheduling horizon.

Keywords
Identical Machine Scheduling Problem, Release Date, Sequence Dependent
Setup Time

1. Introduction

Many machine scheduling problems practically require setup times prior to the
processing of jobs. It is common that the setup times of one job are dependent
on the last job that has been previously processed on the same machine. For in-
stance, in the package printing industry, the time taken to prepare the ink colors
for a task is dependent on the colors that have been used on the last printing task.
In this paper, we consider an identical parallel machine scheduling problem with
jobs’ sequence-dependent setup times and release dates. The problem’s objective
is to minimize the total completion time. This problem is denoted by the three
fields notation [1] as | , |m j ij jP r s C∑ .

Parallel machine scheduling with job setup times problem is widely studied in

How to cite this paper: Yalaoi, F. and
Nguyen, N.Q. (2021) Identical Machine Sch-
eduling Problem with Sequence-Dependent
Setup Times: MILP Formulations Compu-
tational Study. American Journal of Opera-
tions Research, 11, 15-34.
https://doi.org/10.4236/ajor.2021.111002

Received: September 8, 2020
Accepted: January 18, 2021
Published: January 21, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2021.111002
https://www.scirp.org/
https://doi.org/10.4236/ajor.2021.111002
http://creativecommons.org/licenses/by/4.0/

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 16 American Journal of Operations Research

the literature. Readers can refer to the survey of Allahverdi [2] for a broader
family of similar problems. For that reason, we limit our literature review to the
problem | , | .m j ijP r s with time criteria objectives. To the best of our knowledge,
the first study of this problem dates back to 1993 by Guinet [3]. Nessah et al. [4]
proved that the problem | , |m j ij jP r s C∑ is NP-Hard in the strong sense. They
solved the problem by an efficient Branch-and-Bound algorithm with a strong
dominance property. To solve the problem with the total weighted completion
time minimization objective, Fowler et al. [5] developed a hybridized genetic al-
gorithm with dispatching rules. To solve the problem with the makespan mini-
mization objective, Montoya-Torres et al. [6] established a randomized search
heuristic. Lin et al. [7] proposed a genetic algorithm to solve the minimization of
the maximum lateness. However, those mentioned works have not introduced
any mathematical formulation of the problem with the min-sum criterion.

As far as we know, Kurz and Askin [8] were the first to construct an integer
programming for the max| , |m j ijP r s C problem. However, their formulation,
which is graph-based, contains one non-linear constraint to ensure the comple-
tion times of two consecutive jobs. Anderson et al. [9] developed a net-
work-based mixed-integer-linear programming (MILP) to the earliness/tardiness
minimization problem. Nonetheless, the formulation included the big-M whose
value is known to be very impacting on the model solving time. One can find an
extensive analysis of the formulation of a similar scheduling problem on a single
machine environment in the paper of Nogueira et al. [10]. This work aimed to
structure many families of formulations of the single-machine environment. The
paper proposed new upper bounds for all formulations and compared their per-
formances by thorough numerical tests. According to our knowledge, a similar
analysis is still a void in the literature for identical parallel machine scheduling.

For this reason, we extend the works of Nessah et al. [4] and Nogueira et al.
[10] to analyze the performances of different exact approaches/MILP formula-
tions on the problem. The current paper is organized as follows:
● In Section 2, we introduce two MILP formulations: graph-based formulation

and sequence-based formulation. We establish tight upper bounds for the
completion times of jobs for each formulation.

● In Section 3, we apply the test protocol introduced by Nessah et al. [4] to 1)
quantify how three factors of the data structure (the arrival density, the setup
time relative length and the number of machines) would impact the tractabil-
ity of resolutions methods and 2) compare the performance of resolution
methods for each instance structure.

● In Section 4, we draw conclusions from the numerical tests and present four
perspectives of future researches.

2. Mathematical Formulation

We consider a problem where one has to schedule n jobs on m identical ma-
chines. m should be strictly inferior to n unless the problem becomes trivial.
Each job j has a release date jr when it is ready to process and a se-

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 17 American Journal of Operations Research

quence-dependent setup time ijs if it is preceded immediately by job i on the
same machine. We consider three following assumptions:
● The setting up of a job can be done before the release date of this job.
● The first job to be processed in each machine does not need to be setup be-

cause it is preceded by no other job.
● All the values of the setup time must satisfy the triangle inequality

ij ik kjs s s≤ + for all job i, j, k. This assumption is important to avoid the in-
sertion of a job k with 0kp = and ij ik kjs s s< + for some jobs i and j.

Sets and parameters
● 1, , n= : set of jobs.
● 1, , m= : set of machines.
● jr : release date of job j.
● jp : processing time of job j.
● ijs : Setup time if job j follows job i to be processed on the same machine.

2.1. A Graph-Based Formulation

We introduce a dummy job, Job 0, which has processing time equal to zero
(0 0p =) and it is available at the beginning of the scheduling horizon (0 0r =).
The setup times required all jobs preceding task 0 are also zero. To limit the
number of identical machines we must have a constraint that assures at most m
jobs can connect to job 0.

Set
● 0, , n′ = : set of jobs including imaginary job 0.

Decision variables
● jC : the completion time of job j.
● ijx : the sequence decision variable. 1ijx = if job j processes right after job i

on the same machine (denoted by i j→); otherwise 0ijx = .
Figure 1 illustrates a solution to an instance that has 10 jobs and 3 machines. The

graph on the above depicts the sequencing of jobs shown in the table shown on Fig-
ure 1.

Formulation GF

Minimize j
j

C
∈
∑

 (1)

subject to
 ,j j jC r p j≥ + ∀ ∈ (2)

 ()()1 , ,j i ij j ij i ij jC C s p x C s r i j≥ + + − − + − ∀ ∈ (3)

 0 j
j

x m
∈

≤∑

 (4)

 1,ij
i

x j
′∈

= ∀ ∈∑

 (5)

 1,ji
i

x j
∈

≤ ∀ ∈∑

 (6)

 0,jjx j= ∀ ∈ (7)

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 18 American Journal of Operations Research

Figure 1. An example of the graph-based formulation with 10 jobs and 3 machines.

 0, ,jC i j≥ ∀ ∈ (8)

 { }0,1 , ,ijx i j∈ ∀ ∈ (9)

with iC is an upper bound of the completion time of task i.
Constraint (2) makes sure that a job j must start after its release date (jr).

Constraint (3) ensures the equation j i ij jC C S p≥ + + to be valid only if job i
precede job j, i.e. 1ijx = . Otherwise, i i j j j j jC C p r p r C− + + ≤ + ≤ because

i iC C< . By constraint (4), at most m jobs can follow job 0 because of m availa-
ble machines. Constraint (5) ensures that each job, except job 0, can have only
one precedence. Constraint (6) limits each job, except job 0, to have at most one
follower. Constraint (7) forbids a job to follow itself.

We develop an upper bound for the completion time of job j for the identical
machine scheduling environment, based on the work of Nogueira et al. [10] for
the single machine environment.

Theorem 1. There is an optimal schedule such that the number of jobs sche-
duled on any machine is less than or equal to 1n m− + (Yalaoui and Chu [11]).

Proposition 2. () []{ },max , max nM
j j i i j i j jii mC r r pρ ρ∈ ≠ =
= + − +∑ is an up-

per bound of job j’s completion time jC according to theorem 1, where:

● j j jp sρ = +

.
● []jρ is the jth sorted element of ρ in a non-decreasing order.
● ,maxj k k j jks s∈ ≠=

 .
Proof. We consider firstly a schedule with one machine where each task has

the maximum setup time for any following job: ,maxj k k j jks s∈ ≠=
 .

Let j be the last job to be scheduled on this machine. Let us assume that job k
precedes job j. Hence, { } { }max , max ,j j k kj j j k k jC r C s p r C s p= + + ≤ + +

.

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 19 American Journal of Operations Research

Furthermore, , ,maxk k i i j i ii i jC s r ρ∈ ≠ ∈ ≠
+ ≤ +∑

 then

{ }, ,max ,maxj j i i j i i ji i jC r r pρ∈ ≠ ∈ ≠
≤ + +∑

.

We consider secondly a schedule with two machines, according to theorem 1,
there is at least one task, denoted l, to be scheduled on the second machine. The
improved job j’s completion time bound is then:

[]

, ,

1, ,

max , max

max , max

j j i i l ji i j i i j

j i i ji i j i i j

C r r p

r r p

ρ ρ

ρ ρ

∈ ≠ ∈ ≠

∈ ≠ ∈ ≠

≤ + − +

≤ + − +

∑

∑

 (10)

We consider a general case of m machine. By applying the same process, one
can have a strict bound of the completion time of job j:

 () []

1

,
, 1

max ,max
m

j j i i j i i ji
i i j i

C r r pρ ρ
−

∈ ≠
∈ ≠ =

≤ + − +

∑ ∑

 (11)

In addition, [] []
1

, 1
m n

i ji ii i j i i mρ ρ ρ ρ−

∈ ≠ = =
− = −∑ ∑ ∑

, we can rewrite the upper

bound as:

() [],max ,max
n

M
j j i i j i j j ji

i m
C r r p Cρ ρ∈ ≠

=

 ≤ + − + =

∑ (12)

2.2. Sequence-Based Formulations

The intuition behind the sequence formulation is to have a global job sequence
cut into job sequences of machines. First, we use the variables k

jν to make a
jobs sequence: if 1k

jν = then job j occupies the kth position on the scheduling
sequence, otherwise 0k

jν = . Second, we cut the sequence into parallel machines
by using variable θ . If 1kθ = then the job at the position k will start to process
on a new machine.

We take the same example introduced previously with 10 jobs and 3 machines
to illustrate the assignment of variables for the sequence-based formulation. The
value assigned to the variables θ is shown in Table 1.

The sequencing of jobs on machines is as follow:
● Machine 1: 5 4 7 9→ → → .
● Machine 2: 8 6→ .
● Machine 3: 2 1 10 3→ → → .

Auxiliary variable k
ijβ denotes the sequencing of two jobs i and j. If 1k

ijβ =
then job j follows job i and takes the kth position of the scheduling sequence. The
completion time of the job assigned to position k is denoted by ky .

Table 1. The value of variables ν and θ .

k 1 2 3 4 5 6 7 8 9 10

Job 5 4 7 9 8 6 2 1 10 3

kθ 1 0 0 0 1 0 1 0 0 0

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 20 American Journal of Operations Research

Formulation SF
Set

● { }1, , n= : jobs’ position.
Variables

● ky : the completion time of job at position k.
● k

jν : is equal to 1 if job j occupies position k.
● kθ : is equal to 1 if job at the position k will start to process on a new ma-

chine.
● k

ijβ : an auxiliary variable, is equal to 1 if job j follows job i at kth position.

Minimize k

k
y

∈
∑

 (13)

subject to

 1k
j

k
jν

∈

= ∀ ∈∑

 (14)

 1k
j

j
kν

∈

= ∀ ∈∑

 (15)

 ()k k
j j j

j
y r p kν

∈

≥ + ∀ ∈∑

 (16)

 ()11 2 , : ,k k k
ij i j i j i j kβ ν ν−≥ − − − ∀ ∈ ≠ ∀ ∈ (17)

()1 max
min

k k k k k
ij ij j j k

i j i
y y s p y s r kβ ν θ−

∈ ∈ ∈

≥ + + − + − ∀ ∈∑∑ ∑

 (18)

 k
k

mθ
∈

≤∑

 (19)

 0 10; 1y θ= = (20)

 { }0,1 ,k
j j kν ∈ ∀ ∈ ∈ (21)

 { }0,1 , ,k
ij i j kβ ∈ ∀ ∈ ∈ (22)

 0ky k≥ ∀ ∈ (23)

where ky is an upper bound of the completion time of the job that takes the kth
position, max

,maxi j ijs s∈= and min min j jr r∈= .
Constraints (14) and (15) limit one job at one position and vice-versa. Con-

straint (16) ensures a job j to start after its release date when it is assigned to kth
position. Constraint (17) triggers the variable k

ijβ to be greater or equal to 1 if
job i is in the position 1k − and job j is in the position k, otherwise k

ijβ is un-
constrained. Constraint (18) computes the completion time of the job taking the
kth slot. Constraint (19) limits the number of machines to m. The last constraints
initialize and bound the decision variables.

It is important to note that the integral constraint of variable k
ijβ can be re-

laxed, i.e. []0,1k
ijβ ∈ , without violating the integrality of the solution [10].

We introduce in the following proposition an upper bound for ky . This is an
adaptation from the completion time upper bound for a single machine sche-
duling, which is introduced by Nogueira et al. [10], to identical parallel machines
scheduling.

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 21 American Journal of Operations Research

Proposition 3. () { } []max 1,max nk
j j j jj n k my p r ρ∈ = − +

= + +∑ is a valid upper

bound of the completion time of job at the kth position, ky , for any schedule
with respect to theorem 1 where:
● max

j j jp sρ = + .
● []jρ is the jth sorted element of ρ in a non-decreasing order.
● ,maxj k k j jks s∈ ≠=

 .
Proof. Completion time of the job at the first position cannot exceed

()max j j jp r∈ + . The job in the second position cannot complete after

() []max j j j np r ρ∈ + + , and so on, until we reach the job at the ()th2n m− +
position. Completion time of this job is bounded the same way as the job at
()th1n m− + position. Because from the position 1 to ()th2n m− + there would
be at least one job { }1, , 2k n m∈ − + that has 1kθ = (by theorem 1). Since

()maxk k j j jp r p r∈+ ≤ + and []
n

k k jj mp s ρ
=

+ < ∑ then
2 2 1n m n m n my y y− + − + − +≤ = . In the same way, from the position 1 to ()n m τ− +

there would be at least 0τ > jobs 1 mk n τ≤ ≤ + that have 1kθ = .

Consequently, 1 2n m n m ny y y− + − += = = .

Table 2 resumes the number of constraints and variables of the two formula-
tions.

3. Numerical Tests

To conduct the numerical test, we use the same benchmark introduced by [4].
As an attempt to parameterize the instances, we use three factors: jobs’ arrival
density (JAD), jobs’ setup time relative length (SRL) and the number of ma-
chines (m).

The objective of the numerical tests is two-fold. First, we try to observe the
sensibility of each solving method to the corresponding data structure. Second,
we tend to examine the impacts of the data structure to the tractability of the
problem.

The following subsection will mention the random generators of the in-
stances.

3.1. Numerical Tests Protocol

The number of jobs generated is { }5,10,15,20,25,30n∈ and the number of
machines generated is { }2,3,5m∈ .

Job’s release date is generated randomly according to the uniform distribution

which takes the value between 0,50.5 n
m

α × ×
. Jobs arrival density is scaled by

Table 2. The number of constraints and variables.

Formulations GF SF

No. variables ()2O n ()3O n

No. Constraints ()2O n ()3O n

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 22 American Journal of Operations Research

the value of α which takes value from the set { }0.6,0.8,1.5,2.0,3.0 . When
0.6α = , jobs arrival would be densest and earliest. In the contrary, when
3.0α = , jobs arrival would distribute more evenly along the scheduling horizon.

The processing times of jobs are uniformly generated in []1,100 . The setup
time ijs is equal to { }min ,i ja p p× , with a randomly generated in
[] [] [] [] [] []{ }, 0.01,0.1 , 0.05,0.1 , 0.1,0.2 , 0.2,0.5 , 0.1,0.5A B ∈ . Table 3 resumes the
parameters of the test generation.

For each data structure { }, , ,n m Aα , we generate 10 instances, hence, each
problem size { },n m has 250 instances generated. The total number of instances
tested is 6000 instances.

We compare the CPLEX solving MILP formulations with an exact method:
the Branch-and-Bound algorithm developed by Nessah et al. [4].

The MILP formulations are solved by IBM ILOG CPLEX 12.8. The Branch-
and-Bound algorithm is coded in C++. The computer runs on Window 7 pro-
fessional 64bits (Dell Optiplex 9020, CPU Intel Core i5-4690 3.5GHz and
8192MB RAM). We report in this section the following KPIs (Key Performance
Indicators):
● Time (in second): solving time, which is limited to 3600 seconds.
● LPGap (in percentage): the LP relaxation gap. For the solution obtained by

solving MILP formulations, LPGap is the gap between the best objective of
the integral solution and LP relaxation one, i.e. when all the integrity con-
straint are removed. When Branch-and-Bound algorithm solves the instance,
LPGap is the gap between the best solution objective and the best lower
bound.

● MLBGap (the maximal lower bound, in percentage): the gap between the ob-
jective value found by each method to the best lower bound found by all the
method. The MLBGap value can be considered as the worst possible gap to
the optimal solution of each instance tested. This KPI is used to compare the
quality of the actual solution found by a method to others.

● Opt: percentage of instances solved to optimality.
Figure 2 illustrates how to calculate the LPGap and MLBGap.

Table 3. Random instances generation’s parameters.

Param. Description Generation

n Number of jobs { }5,10,15,20,25,30,35,40

m Number of machines { }2,3,5

α JAD scale parameter { }0.6,0.8,1.5,2.0,3.0

jr Release date 0,50.5 nU
m

α × ×

jp Processing time ()1,100U

[],A B Scale factor intervals [] [] [] [] []{ }0.01,0.1 , 0.05,0.1 , 0.1,0.2 , 0.2,0.5 , 0.1,0.5

a SRL scale parameter (),U A B

ijs Sequence dependent setup time { }min ,i ja p p×

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 23 American Journal of Operations Research

Figure 2. An example of MLBGap and LPGap.

3.2. Results Analysis
3.2.1. Computational Times (CPUTimes)

Impacting factor: Number of machines
Table 4 shows the results of average computational times of each method ac-

cording to the variation of machines numbers m. Adding the more machine
takes the Branch-and-Bound (BnB) largely more time to solve: when the number
of machines goes from 2 to 5 the average CPUTimes increase nearly seven times.
The solving time of the SF formulation increases also with the number of ma-
chines, but more slowly in comparison to the Branch-and-Bound algorithm. In
the contrary, adding more machines reduces the solving times of the graph-based
MILP by 32%.

Figure 3 plots the average CPUTimes of each value of m in function of n
numbers of jobs. The solving time three solving methods discriminate when the
number of jobs is greater than or equal to 15. While the CPUTimes of CPLEX
for GF formulation increase in a stable way, the solving time of the other two
methods increases in an exponential fashion.

Impacting factor: Jobs’ arrival density
From the data of Table 4, one can see the non-negligent impact of the distri-

bution of the release times of jobs to the solving times. For the two sparsest ar-
rival rate (3.0α = and 2.0α =), GF has outstanding solving time. Figure 4
plots the average CPUTimes of each scale factor α in function of n numbers of
jobs. Data from this figure show us that the solving time of GF formulation
seems to be independent of the problem size when the release dates are sparse.
On the contrary, GF formulation is very sensible to the dense release time when
the resolution time of CPLEX for this formulation worsens exponentially. BnB
algorithm is also sensitive to this factor: the computational times are reduced by
half when α goes from 0.6 to 3.0. The computational time increase with α
in []0.6,1.5 and decreases with α in []1.5,3.0 . The global trend for all solv-
ing methods is that it takes a shorter time to solve an instance with a sparse re-
lease date.

Impacting factor: Jobs’ setup times relative length
Table 4 presents the average computational times and the setup time scale

factor ranges. Globally, the solving time tends to increase when the relative
length of jobs’ setup time increase. The least sensitive method to this factor is GF

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 24 American Journal of Operations Research

Table 4. The average computational times (in second) of instances grouped by the num-
ber of machines m, the arrival density scale α and setup time scale a. The best value found
by a method is in bold.

Factor Value GF SF BnB

m 2 753.4 1056.2 208.4

 3 691.3 1208.9 756.1

 5 510.0 1246.1 1420.5

α 0.6 1804.9 998.4 989.8

 0.8 1372.3 1227.9 909.7

 1.5 67.8 1441.3 816.7

 2.0 12.5 1276.2 786.9

 3.0 0.3 908.3 472.1

a [0.01, 0.1] 612.7 911.9 540.1

 [0.05, 0.1] 657.7 966.3 619.2

 [0.1, 0.2] 634.2 1220.9 757.0

 [0.2, 0.5] 682.2 1383.6 1076.0

 [0.1, 0.5] 671.1 1369.3 982.8

Figure 3. The average value of CPUTime according to the number of machines m and number of jobs n.

Figure 4. The average value of CPUTime according to arrival density scale parameter α and number of jobs n.

MILP and the most sensitive method to this factor is BnB. Concerning the com-
putational time, the job setup times relative lengths are less impacting than the
other two factors. Figure 5 plots the average CPUTimes of each scale factor a in
function of n numbers of jobs.

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 25 American Journal of Operations Research

Figure 5. The average value of CPUTime according to setup time scale factor a and number of jobs n.

Table 5 shows the correlations between the computational times and the

number of machines, the release date density, and the setup time scale.

3.2.2. Linear Relaxation Gap (LPGaps)
Impacting factor: Number of machines
Table 6 show the result on the average LPGap of each method to different

numbers of machines. When the number of machines increases, the LPGap of
GF is reduced three times while the LPGap of SF and BnB increase slightly.

Figure 6 details the impact of the number of machines to the average LPGap
of each method in the function of n jobs. The LPGap curve of the Branch-and-
Bound increases in a very stable way when the number of jobs rises up when the
number of machines is small (2m =) the LPGap of the BnB algorithm nearly
zero regardless of the number of jobs.

Impacting factor: Jobs’ arrival density
Table 6 presents the average LPGaps of each solving methods in function of

the arrival density scale parameter α . One can observe an important impact of
α to the quality of the solution found all three methods, especially the solving
of formulation GF. The critical value of α is 1.5, the LPGaps deteriorates when

1.5α > .
Figure 7 adds a dimension which is the problem size, to the observation. The

quality of the solution found by CPLEX solving GF differs greatly since n reach-
es 15, while for the two other methods, the threshold of n which differs the solu-
tion quality is 25.

Impacting factor: Jobs’ setup relative length
Table 6 presents the average LPGap of each solving methods in function of

the jobs setup time scale parameter a. It seems that this parameter controls very
weakly the KPI LPGap of the three methods. One can notice only a very slight
increment of the LPGap in all methods to when the setup times increase.

In Figure 8, with more details on the instance size, one can observe a slight
impact of the setup time length to the solving of SF formulation when n reaches
25. For the two other methods, the impact of the setup times length to the
LPGap is not clear.

Altogether, Branch-and-Bound has tightest LPGap. The all-average gap is
equal to 0.6% and the standard deviation is 1.7%. GF has the largest LPGap

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 26 American Journal of Operations Research

Table 5. Correlation between the computational times and m, α and a.

Factor GF SF BnB

Number of machine (m) −1.00 0.86 0.99

Arrival density scale parameter (α) −0.84 −0.27 −0.97

Average setup times scale parameter (a) 0.82 0.95 1.00

Table 6. The LPGap (in percentage) corresponding to the impacting factors (number of
machines, arrival density scale and setup time scale) and their respective values.

Factor Value GF SF BnB

m 2 3.13% 0.56% 0.04%

 3 2.47% 0.71% 0.20%

 5 1.32% 1.20% 0.61%

α 0.6 7.96% 1.49% 0.64%

 0.8 3.55% 1.59% 0.56%

 1.5 0.02% 0.69% 0.12%

 2.0 0.01% 0.29% 0.07%

 3.0 0.00% 0.07% 0.01%

a [0.01, 0.1] 2.04% 0.39% 0.14%

 [0.05, 0.1] 2.19% 0.53% 0.20%

 [0.1, 0.2] 2.16% 0.88% 0.23%

 [0.2, 0.5] 2.67% 1.25% 0.47%

 [0.1, 0.5] 2.47% 1.07% 0.37%

Figure 6. The average value of LPGap according to number of machines m and number of jobs n.

Figure 7. The average value of LPGap according to arrival density scale parameter α and number of jobs n.

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 27 American Journal of Operations Research

Figure 8. The average value of LPGap according to setup time scale factor a and number of jobs n.

when the release dates are dense where { }0.6,0.8α ∈ while yielding excellent
results at other value of α . This fact underlines our previous observation about
the sensitivity of GF to the job availability distribution. Table 7 states the corre-
lation between the LPGap and the impacting factors.

3.2.3. Gap to the Best-Known Lower Bound
The quality of the solution found by each method/formulation can be evaluated
by the gap of the best-known lower bound (MLBGap) to the actual solution.
This gap can be considered as the maximum possible gap to the optimal solution.

Figures 9-11 shows the impact of the scale factors on three paradigms over
the MLBGap. When having the worst LPGap, GF has the best MLBGap in all in-
stance size and in any scale factors. Inversely, the Branch-and-Bound yields the
worst MLBGap while having the best LPGap. This observation underlines again
the fact that the lower-bound of the Branch-and-Bound calculated by the
mSPRT heuristic [4] is tight. Since the calculation of this lower bound is depen-
dent to the number of machines, the MLBGap is also impacted by the number of
machines. The empirical data shows that the release date density is very impact-
ing to the value of MLBGap. Scale factor α diversifies the performance of all pa-
radigms when 20n ≥ , especially the Branch-and-Bound.

The global results on MLBGap of the three methods according to the setup
times length scale factors are shown in Table 8. The correlation between the
MLBGap and the impacting factors is shown in Table 9.

3.2.4. Percentage of Instances Being Solved to Optimality
For this KPI, we tend to examine the tractability of an instance according to its
structure, i.e. quantify how easy an instance can be solved according to a specific
structure. First, we introduce the graphs of the evolution of the percentages of
the instances being solved to optimality in function of the problem size, and,
corresponding to the value of m, α and a. As for the other KPI which are pre-
viously introduced, those graphs give us an idea on how well each solving me-
thod cope with the instance in an specific structure. Second, we introduce an
cross-table analysis, with combined two factors. This analysis would help us to
have an insight on how easy an instance can be solved with a specific pair of
configurations.

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 28 American Journal of Operations Research

Table 7. Correlation between the gap to lower bound and m, α and a .

Factor GF SF BnB

Number of machine (m) −1.00 0.99 1.00

Arrival density scale parameter (α) −0.78 −0.95 −0.90

Average setup times scale parameter (a) 0.96 0.97 0.98

Table 8. The average MLBGap (in percentage) corresponding to the impacting factors
(number of machines, arrival density scale and setup time scale) and their respective val-
ues.

Factor Value GF SF BnB

m 2 0.11% 0.14% 0.23%

 3 0.33% 0.44% 0.95%

 5 0.39% 0.53% 1.49%

α 0.6 0.48% 0.48% 1.26%

 0.8 0.33% 0.44% 1.10%

 1.5 0.02% 0.12% 0.21%

 2.0 0.00% 0.06% 0.08%

 3.0 0.00% 0.01% 0.02%

a [0.01, 0.1] 0.05% 0.07% 0.28%

 [0.05, 0.1] 0.08% 0.11% 0.38%

 [0.1, 0.2] 0.15% 0.20% 0.49%

 [0.2, 0.5] 0.31% 0.40% 0.83%

 [0.1, 0.5] 0.24% 0.33% 0.69%

Table 9. Correlation between the MLBGap and the impacting factors.

Factor GF SF BnB

Number of machine (m) 0.87 0.89 0.96

Arrival density scale parameter (α) −0.84 −0.91 −0.88

Average setup times scale parameter (a) 0.99 1.00 0.99

Figure 9. The average value of MLBGap according to number of machines m and number of jobs n.

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 29 American Journal of Operations Research

Figure 10. The average value of MLBGap according to arrival density scale parameter α and number of jobs n.

Figure 11. The average value of MLBGap according to setup time scale factor a and number of jobs n.

Figures 12-14 show the percentages of instances that are solved optimally ac-

cording to each scale factor.
Cross-Table 10 presents the percentage of instances being solved to optimali-

ty corresponding to each pair of the release date density and the setup time
length scale. CPLEX solves the instance easily to optimal by GF formulation
when α is greater than or equal to 1.5, regardless of the value of setup-times. For
the Branch-and-Bound algorithm, both values of α and a harm the number of
instances being solved to optimality. The relation between the number of in-
stance solved and the structure α and a is more random when CPLEX solves in-
stances by SF formulation. When we combined all methods, the number of op-
timal solutions increase with α and decrease with a.

Cross-Table 11 presents the percentage of instances being solved to optimali-
ty corresponding to each pair of the setup time length scale and the number of
machines. From the data, we can remark a clear frontier between easy-to-solve
and hard-to-solve instances classified by the number of machine for the
Branch-and-Bound algorithm. Combining all methods, an instance is easier to
solve with less number of machines and smaller setup times.

Cross-Table 12 presents the percentage of instances being solved to optimali-
ty corresponding to each pair of the jobs release dates density and the number of
machines. From the data, one can observe that both the number of machines
and the distribution of jobs arrival date have the discriminating power to sepa-
rate easy-to-solve instance to hard-to-solve instances. However, since CPLEX
solves instances with evenly distributed arrival dates outstandingly good with GF,

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 30 American Journal of Operations Research

Figure 12. The percentage of instances solved to optimality according to number of machines m and number of jobs n.

Figure 13. The percentage of instances solved to optimality according to arrival density scale parameter α and number of jobs n.

Figure 14. The percentage of instances solved to optimality according to setup time scale factor a and number of jobs n.

Table 10. The percentage of instances solved to optimality according to [A, B] and α.

 α

 [A,B] 0.6 0.8 1.5 2.0 3.0

GF [0.01, 0.1] 52% 67% 100% 100% 100%

 [0.05, 0.1] 49% 65% 99% 100% 100%

 [0.1, 0.2] 53% 65% 98% 100% 100%

 [0.2, 0.5] 49% 65% 97% 99% 100%

 [0.1, 0.5] 53% 61% 99% 99% 100%

SF [0.01, 0.1] 88% 80% 69% 77% 80%

 [0.05, 0.1] 83% 80% 67% 73% 83%

 [0.1, 0.2] 77% 67% 64% 65% 81%

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 31 American Journal of Operations Research

Continued

 [0.2, 0.5] 66% 861% 59% 65% 78%

 [0.1, 0.5] 71% 63% 59% 61% 71%

BnB [0.01, 0.1] 87% 86% 87% 87% 87%

 [0.05, 0.1] 81% 83% 82% 85% 94%

 [0.1, 0.2] 76% 79% 81% 81% 89%

 [0.2, 0.5] 63% 68% 74% 75% 85%

 [0.1, 0.5] 71% 73% 74% 75% 83%

All [0.01, 0.1] 93% 93% 100% 100% 100%

 [0.05, 0.1] 88% 93% 99% 100% 100%

 [0.1, 0.2] 86% 86% 99% 100% 100%

 [0.2, 0.5] 77% 79% 98% 99% 100%

 [0.1, 0.5] 79% 83% 99% 100% 100%

Scale 0% 25% 50% 75% 100%

Table 11. The percentage of instances solved to optimality according to [A, B] and m.

 m

 [A, B] 2 3 5

GF [0.01, 0.1] 77% 77% 83%

 [0.05, 0.1] 76% 77% 83%

 [0.1, 0.2] 76% 79% 81%

 [0.2, 0.5] 76% 75% 82%

 [0.1, 0.5] 74% 76% 83%

SF [0.01, 0.1] 70% 66% 67%

 [0.05, 0.1] 68% 65% 63%

 [0.1, 0.2] 61% 58% 61%

 [0.2, 0.5] 59% 53% 54%

 [0.1, 0.5] 57% 54% 54%

BnB [0.01, 0.1] 96% 76% 66%

 [0.05, 0.1] 92% 77% 57%

 [0.1, 0.2] 88% 70% 57%

 [0.2, 0.5] 80% 61% 49%

 [0.1, 0.5] 86% 63% 49%

All [0.01, 0.1] 99% 91% 88%

 [0.05, 0.1] 98% 91% 86%

 [0.1, 0.2] 93% 89% 84%

 [0.2, 0.5] 88% 83% 82%

 [0.1, 0.5] 92% 84% 84%

Scale 20% 950% 100%

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 32 American Journal of Operations Research

Table 12. The percentage of instances solved to optimality according to α and m.

 m

 α 2 3 5

GF 0.6 36% 40% 52%

 0.8 48% 52% 61%

 1.5 94% 93% 99%

 2.0 100% 99% 100%

 3.0 100% 100% 100%

SF 0.6 73% 64% 57%

 0.8 64% 60% 52%

 1.5 57% 52% 50%

 2.0 60% 54% 58%

 3.0 61% 66% 82%

BnB 0.6 85% 69% 43%

 0.8 87% 73% 43%

 1.5 91% 70% 50%

 2.0 91% 66% 58%

 3.0 88% 69% 85%

All 0.6 87% 71% 61%

 0.8 87% 74% 64%

 1.5 96% 94% 99%

 2.0 100% 99% 100%

 3.0 100% 100% 100%

Scale 20% 50% 100%

the release date density has more discriminating power. When combined all
solving methods, more than 94% of the instances are solved to optimality with
sparse jobs availability (1.5α ≥). When α is less than 1.5, then, instances with
less number of machines are easier to be solved to optimality.

4. Conclusions and Perspective

First, we present in this paper two MILP formulations to solve the parallel ma-
chine scheduling with task release dates and sequence-dependent setup times to
minimize total completion time. We provide also two upper bounds for the job’s
completion times corresponding to each formulation.

Second, by a thorough analysis of the numerical tests, we observe a considera-
ble impact of the job arrival rate, and a non-negligible impact of the number of
machines to the quality of the solution found and the time-performance of the
solving algorithm. The cross-table analysis at the end of the numerical tests sec-
tion could establish a base for further classification methods.

https://doi.org/10.4236/ajor.2021.111002

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 33 American Journal of Operations Research

We developed four perspectives on future research of this problem. First, we
may notice the difference between the LPGap and the actual gap of each instance.
Thus, a better estimation of the lower bound can be very helpful to improve the
computational effort. Second, we tend to test the performances of GF, SF, and
Branch-and-Bound with other objective functions such as makespan minimiza-
tion and total weighted completion time minimization. Third, we notice that the
MILP formulation is very sensitive to the upper bound of the completion time so
a tighter upper bound could be helpful. Finally, one can observe that the per-
formance of the different methods is input data characteristics (jobs’ arrival den-
sity scale parameter and setup time scale factors) dependent. Further work is to
develop a new method corresponding to our previous conclusion.

Acknowledgements

This research is supported by Chaire Connected Innovation tenured by Prof.
Farouk Yalaoui.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Kan, A.R. (1979) Optimization and

Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of
Discrete Mathematics, 5, 287-326. https://doi.org/10.1016/S0167-5060(08)70356-X

[2] Allahverdi, A. (2015) The Third Comprehensive Survey on Scheduling Problems
with Setup Times/Costs. European Journal of Operational Research, 246, 345-378.
https://doi.org/10.1016/j.ejor.2015.04.004

[3] Guinet, A. (1993) Scheduling Sequence-Dependent Jobs on Identical Parallel Ma-
chines to Minimize Completion Time Criteria. The International Journal of Pro-
duction Research, 31, 1579-1594. https://doi.org/10.1080/00207549308956810

[4] Nessah, R., Chu, C. and Yalaoui, F. (2007) An Exact Method for
1| , | n

m ij iiP sds s C
=∑

Problem. Computers & Operations Research, 34, 2840-2848.
https://doi.org/10.1016/j.cor.2005.10.017

[5] Fowler, J.W., Horng, S.M. and Cochran, J.K. (2003) A Hybridized Genetic Algo-
rithm to Solve Parallel Machine Scheduling Problems with Sequence Dependent
Setups. International Journal of Industrial Engineering: Theory Applications and
Practice, 10, 232-243.

[6] Montoya-Torres, J.R., Soto-Ferrari, M., Gonzalez-Solano, F. and Alfonso-Lizarazo,
E.H. (2009) Machine Scheduling with Sequence-Dependent Setup Times Using a
Randomized Search Heuristic. 2009 International Conference on Computers & In-
dustrial Engineering, Troyes, 6-9 July 2009, 28-33.
https://doi.org/10.1109/ICCIE.2009.5223742

[7] Lin, S.-W., Lee, Z.-J., Ying, K.-C. and Lu, C.-C. (2011) Minimization of Maximum
Lateness on Parallel Machines with Sequence-Dependent Setup Times and Job Re-
lease Dates. Computers & Operations Research, 38, 809-815.
https://doi.org/10.1016/j.cor.2010.09.020

https://doi.org/10.4236/ajor.2021.111002
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.1080/00207549308956810
https://doi.org/10.1016/j.cor.2005.10.017
https://doi.org/10.1109/ICCIE.2009.5223742
https://doi.org/10.1016/j.cor.2010.09.020

F. Yalaoui, N. Q. Nguyen

DOI: 10.4236/ajor.2021.111002 34 American Journal of Operations Research

[8] Kurz, M. and Askin, R. (2001) Heuristic Scheduling of Parallel Machines with Se-
quence-Dependent Set-Up Times. International Journal of Production Research, 39,
3747-3769. https://doi.org/10.1080/00207540110064938

[9] Anderson, B.E., Blocher, J.D., Bretthauer, K.M. and Venkataramanan, M.A. (2013)
An Efficient Network-Based Formulation for Sequence Dependent Setup Schedul-
ing on Parallel Identical Machines. Mathematical and Computer Modelling, 57,
483-493. https://doi.org/10.1016/j.mcm.2012.06.029

[10] Nogueira, T.H., De Carvalho, C. and Ravetti, M.G. (2014) Analysis of Mixed Integer
Programming Formulations for Single Machine Scheduling Problems with Se-
quence Dependent Setup Times and Release Dates. Optimization Online, 39.

[11] Yalaoui, F. and Chu, C. (2002) Parallel Machine Scheduling to Minimize Total Tar-
diness. International Journal of Production Economics, 76, 265-279.
https://doi.org/10.1016/S0925-5273(01)00175-X

https://doi.org/10.4236/ajor.2021.111002
https://doi.org/10.1080/00207540110064938
https://doi.org/10.1016/j.mcm.2012.06.029
https://doi.org/10.1016/S0925-5273(01)00175-X

	Identical Machine Scheduling Problem with Sequence-Dependent Setup Times: MILP Formulations Computational Study
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Formulation
	2.1. A Graph-Based Formulation
	2.2. Sequence-Based Formulations

	3. Numerical Tests
	3.1. Numerical Tests Protocol
	3.2. Results Analysis
	3.2.1. Computational Times (CPUTimes)
	3.2.2. Linear Relaxation Gap (LPGaps)
	3.2.3. Gap to the Best-Known Lower Bound
	3.2.4. Percentage of Instances Being Solved to Optimality

	4. Conclusions and Perspective
	Acknowledgements
	Conflicts of Interest
	References

