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Abstract 
This paper proposes an integrated TVP-VAR model to investigate the volatil-
ity spillover mechanisms among different financial markets as well as their 
respective roles in the global volatility transmission system, including China’s 
carbon market, crude oil, new energy, new energy automobile, coal and nat-
ural gas markets, which is named energy market. Utilizing the time-varying 
volatility spillover indices (TVP-DY), we find that there are obvious dynamic 
spillover effects between China’s carbon and energy markets, and the sensi-
tivity of different regional carbon markets to different energy markets varies. 
In addition, China’s carbon market is mainly affected by price fluctuations in 
the traditional fossil energy market, but the new energy market can play an 
effective role in hedging risks. Moreover, China’s carbon market and energy 
market have a fragile Cycle Spillover Network style, thus it is necessary to 
demonstrate a complex risk spillover mechanism between them. 
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1. Introduction 

The issue of global climate change triggered by greenhouse gas emissions (mainly 
carbon dioxide) has become increasingly serious due to the rapid development 
of the global economy, threatening human survival and development (Han et al., 
2019; Martin et al., 2014). In order to effectively handle the problems of climate 
change problems, fulfill the Paris Agreement commitments, and further ensure 
the achievement of global carbon emission reduction targets, China proposed a 

How to cite this paper: Sun, X., Li, H. H., 
& Xu, L. T. (2022). The Time-Varying 
Spillover Effects between China’s Carbon 
Markets and Energy Market: Evidence 
Using the TVP-DY Index Model. American 
Journal of Industrial and Business Man-
agement, 12, 1105-1124. 
https://doi.org/10.4236/ajibm.2022.126059 
 
Received: May 26, 2022 
Accepted: June 21, 2022 
Published: June 24, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

  Open Access

https://www.scirp.org/journal/ajibm
https://doi.org/10.4236/ajibm.2022.126059
https://www.scirp.org/
https://doi.org/10.4236/ajibm.2022.126059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


X. Sun et al. 
 

 

DOI: 10.4236/ajibm.2022.126059 1106 American Journal of Industrial and Business Management 
 

framework for a carbon emissions trading market in 2011 and officially launched 
its first pilot carbon emissions trading permit in 2013. On 16 July 2021, China’s 
carbon emissions trading market was officially opened, but due to the complexi-
ty of the underlying, the time horizon, and the uncertainty of the outcome, the 
carbon market is far more volatile than the stock market and always carries sig-
nificant risks. With the further development of China’s carbon market, the link 
between the carbon and the energy markets will become increasingly strong, re-
sulting in price fluctuations in the energy market or carbon market caused by 
extreme events that could easily spread across the market. The introduction of 
the “carbon peaking and carbon neutrality” goals has also accelerated the devel-
opment of the new energy industry and the new energy vehicle market. The 14th 
Five-Year Plan for Energy Conservation and Emission Reduction clearly states 
that in 2060, the achievement of the carbon peak target means that new energy 
vehicles will make up more than 88% of sales, while the current sales of new 
energy vehicles account for less than 20%, which results in companies crossing 
the border to create new energy automobiles, leading to sharp price fluctuations 
in the new energy vehicle market, which can easily cause the spread of risk. A 
large number of studies have shown that there is a significant spillover effect 
between the carbon market and the traditional fossil energy market (Zhao et al., 
2021), but few studies have included the new energy market as part of the energy 
market (Pu & Zhao, 2020; Wang, Qiao, & Chen, 2021). The establishment of the 
carbon trading market in a market economy will influence the volatility of new 
energy company share prices through the carbon prices, further affecting the 
overall price volatility of the new energy market (Wang, Qiao, & Chen, 2021). 
Furthermore, the intensity of the spillover effect between the carbon and energy 
markets is unlikely to be constant, as investors’ subjective expectations and in-
vestment behavior change over time, resulting in distinct price fluctuations be-
tween markets, and therefore the intensity of the spillover effect should shift as 
well. As a result, a comprehensive review of the time-varying volatility spillover 
between China’s carbon and energy markets is critical for improving the forma-
tion of an intrinsic price mechanism between them, avoiding price volatility in 
the carbon market, and ensuring the smooth operation of China’s carbon trad-
ing system. 

2. Literature Review 

Currently, scholars both at home and abroad attach great importance to ecology 
and environmental issues (Su et al., 2021a, 2021b; Tao et al., 2021; Wang, Su, 
Lobonţ, & Umar, 2021) more specifically; considerable attention has also been 
devoted to the study of the dynamic spillover effect of the carbon emission per-
mit trading market. Many studies have studied the EU Emissions Trading 
Scheme (EU ETS), which is the most representative carbon trading market in the 
World. For example, Zhang and Sun (2016) used the DCC-TGARCH and 
BEKK-GARCH models to study the volatility effect between EU ETS and the 
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energy market, which demonstrates that the EU ETS has strong volatility spil-
lover effects with the coal and natural gas markets, but not with the crude oil 
market. Balcılar et al. (2016) used the MS-DCC-GARCH model for EU ETS and 
the energy market to demonstrate the extreme volatility and time-varying risk 
transmission from the energy market to the EU ETS. Hai & Yang (2014), on the 
other hand, calculated the dynamic conditional correlation coefficients between 
EU ETS and the energy market based on the DCC-GARCH model, finding that 
the carbon market is positively correlated with the volatility of coal, crude oil, 
and natural gas markets, and the impact of coal and natural gas prices on carbon 
prices is highly susceptible to macroeconomic fluctuations. With the gradual 
maturity of China’s carbon trading market, scholars have started to focus on the 
volatility spillover effects between China’s carbon market and the energy market. 
Lin & Chen (2019) constructed VAR-DCC-GARCH and VAR-BEKK-GARCH 
models to investigate the linkages and spillover effects between China’s pilot 
carbon emission trading markets and coal, and new energy markets, respectively, 
and found that there is no significant volatility spillover effect between the Bei-
jing carbon emission trading market and the coal market. Meanwhile, Liu, Liang, 
& Chen (2020) used the VAR and DCC-GARCH models to explore the risk of 
China’s carbon emission trading market; the study indicates that the spillover 
effect between China’s coking coal market and carbon market is the strongest 
among all energy markets. In addition, most of the literature on the spillover ef-
fect of the carbon market is based on one or more GARCH models, such as 
E-GARCH, MVGARCH, and STR-EGARCH (Basher & Sadorsky, 2016; Bou-
baker & Raza, 2017; Engle et al., 2013; Engle & Kroner, 1995; de Nicola et al., 
2016; Tsuji, 2018). 

While the above literature provides useful insights into the transmission me-
chanism of volatility between carbon and energy markets, it is based on several 
GARCH models that measure volatility spillovers between the two markets and 
focus on the significance of the correlation coefficients, ignoring the global, di-
rectional and time-varying nature of the spillovers. Diebold and Yilmaz (2009, 
2012, 2014) proposed static and dynamic spillover indices based on the generalized 
forecast error variance decomposition of vector autoregression (VAR) models to 
effectively overcome the above shortcomings. Zhao et al. (2021) used a time-varying 
DYCI obtained from a rolling-window to measure the spillover effects between 
China’s regional carbon market and energy market, which has a bidirectional 
spillover effect. Meanwhile, the study also found that there are differences in the 
time-varying net spillover effect between different pilot carbon emissions and 
energy markets. However, Korobilis & Yilmaz (2018) reported that the time- 
varying DYCI obtained from rolling-window is sensitive to the choice of the 
width of the window. Rolling estimation means that valuable information from 
the sample is discarded and it also results in “built-in-persistence” in the dynamic 
interpretation. Antonakakis et al. (2020) and Liu and Gong (2020) introduced 
the connectedness index (TVP-DY) from the TVP-VAR model and verified the 
accuracy of the time-varying parameter method by applying it to the US banking 
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system and comparing it with the rolling-window method. For example, Zhang 
et al. (2021) used it to analyze the time-varying synergy between the energy and 
stock markets before and after the outbreak of the novel coronavirus (COVID-19). 
On the other hand, Jiang et al. (2022) used the model to investigate volatility 
spillover mechanisms among Bitcoin and other financial markets. 

In conclusion, research on the spillover effects between carbon and energy 
markets has mostly focused on fossil fuels like coal, oil, and natural gas, the most 
notable ones are the absence of discussion of new energy and carbon market 
systems. The adoption of “carbon peaking and carbon neutrality” goals has 
aided the establishment of new energy markets, notably the new energy vehicle 
industry, which has played the most significant role. Is the carbon market in-
fluencing the new energy and new energy automotive markets, and if so, how 
will they interact? When examining the volatility spillover effects of carbon and 
energy markets, it is critical to incorporate new energy markets. Although the 
DY spillover index model under the rolling window approach effectively over-
comes the shortcomings of the GARCH model, which cannot specifically cha-
racterize the direction and time-varying nature of spillover, it is prone to overes-
timating the spillover effect from a methodological standpoint. Thus, this paper 
aims to characterize the time-varying bidirectional spillover patterns of China’s 
carbon emission trading and energy markets (the integration of traditional fossil 
energy markets and new energy markets) by utilizing the time-varying connec-
tedness approach based TVP-VAR model. Adapting the time-varying connectiv-
ity status of each carbon market and the energy market is benefit to confirm the 
price discovery mechanism and identify its dynamic changes, and to clarify the 
spillover tendency of each market in order to comprehend the dynamic interac-
tion of carbon emission trading markets in China.  

3. Methodology 
3.1. TVP-VAR Approach 

We refer to Antonakakis et al. (2020) work while employing the TVP-VAR model 
to measure the return connectedness amongst the target variables. This metho-

dology is built on Diebold and Yilmaz (2009, 2012, 2014), who initially proposed 
the framework for analyzing dynamic connectedness. The major advantage of 
the TVP-VAR approach to connectedness over the previous methods is that it 

no longer becomes a necessity to work with a certain window size, which on be-
ing subjectively selected, could lead to varying results. In addition, it would also 
be possible to use sample sizes that are relatively small because data points are 
not being lost due to the use of rolling windows. The framework of return con-
nectedness using the TVP-VAR is further explained as follows. The following 

equations describe a TVP-VAR model: 

( )0, 1, 1 , ~ 0, ,t t t t p t t p t t t t t ty B B y B y X N− − ′= + + + +µ = Θ +µ µ Σ�    (1) 

11, , , ,t t t pX y y− −′ ′ ′ =  �                          (2) 
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where is a 1n×  vector of observed dependent variables and 0, , , ,t p tB �  are n n×  
time-varying coefficients matrices rewritten as tΘ  matrix. tX  is the  

, 1n k k p× = +  matrix including intercepts and lags of the endogenous variables. 
The independent structural shock in the regression equation is by tµ  with 

1n×  dimension presumed to be normally distributed heteroskedastic distur-
bance term with zero mean and time-varying variance-covariance matrix tΣ . 
The relationships among China’s carbon market return and energy market re-
turn are modeled by tΣ , the variance-covariance matrix of disturbances which 
can be decomposed as, 

 ( )1 1 ,t t t tA H A− − ′Σ =                          (3) 

where tA  is a lower triangular matrix measures the simultaneous relationships 
among the variables. tH  is a matrix where stochastic volatilities are located on 
the diagonals. 
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Based on the following transition Equations (5)-(7) Primiceri (2005) and Na-
kajima (2011) time-varying parameters are assumed to change in represented 
state-space model, as follows: 

( )1 ~ 0, ,t t t tv v N Q−Θ = Θ +                   (5) 

 ( )1 ~ 0, ,t t t ta a N S−= + ζ ζ                    (6) 

 ( ), , 1 , ,ln ln ~ 0,1 .i t i t i i t i th h N−= + σ η η               (7) 

As indicated by Equations (5) and (6) time-varying parameters of tΘ  and 

ta  follow a random walk process, whereas Stochastic volatilities th  defined by 
Equation (7) follow independent geometric random walk. In addition, following 
Primiceri (2005) it is presumed that the coefficients of contemporaneous rela-
tions among variables evolve independently in each equation in order to simplify 
the inference and increase the efficiency of estimation. This suggests that the er-
ror terms of the measurement equation and the relation equations which are the 
parameters of tA  matrix are assumed to be independent. 

3.2. Volatility Spillovers 

Following the work of Koop et al. (1996) and Pesaran and Shin (1998), the next 
step is to calculate the scaled generalized forecast error variance decomposition 
(GFEVD), considering an H-step ahead forecast. Unlike the necessity of consi-
dering the ordering of variables as required in the error decomposition variance 
technique of Diebold and Yilmaz (2009), the GFEVD is entirely invariant to the 
same. In line with the approach of Diebold and Yılmaz (2014), to obtain the 
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GFEVD, the TVP-VAR is transformed to its corresponding vector moving av-
erage representation, TVP-VMA using the Wold theorem, by considering the 
following transformation: 

 
1 1

.
p

t it t i t jt t j
i j

y B y
∞

− −
= =

= +µ = Φ µ∑ ∑                      (8) 

( ),
g
ij t Hϕ , which represents the unscaled GFEVD, is normalized to the scaled 

version to ensure that the summation in each row is unity. We arrive at ( ),
g
ij t Hϕ  

which implies the pairwise directional connectedness from variable j to variable i, 
where it is measured as the influence that variable j has on variable i concerning 
its share in the error forecast variance. To compute the above terms, the follow-
ing is done: 
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where, the selection vector is given by ie  such that for the index i, its value is 1 
and 0 elsewhere. The connectedness measures are subsequently derived follow-
ing the work of Diebold and Yilmaz (2012, 2014), as follows, 
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Here, Equation (11) is a measure of total directional connectedness from va-
riable j TO all other variables in the network, while Equation (12) is a measure of 
total directional connectedness to variable j FROM all other variables in the 
network. Equation (13) is obtained as the difference between (11) and (12) and 
implies the net total direction of connectedness associated with the variable j. 
For instance, if 0jtNET > , this would mean that j is a net driver of the network 
as it is primarily involved in transmitting shocks. Equation (14) is an aggregate 
measure of the total connectedness amongst all the variables in the network and 
seeks to serve as a proxy to the overall interconnectedness and risk associated 
with the market. A higher tTSI  would imply that a shock in a particular varia-
ble greatly affects the networks, inadvertently making the risk related to the 
network high. On the other hand, a lower level tTSI  would imply lower asso-
ciated market risk as other variables in a network would not be as majorly im-
pacted by shocks in a given variable. 
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4. Empirical Study 

In an empirical study, variational mode decomposition is first introduced to 
generate a stationary volatility dataset for TVP-VAR regression. Volatility spil-
lover indicators, including overall spillovers, directional spillovers, and net spil-
lovers, are computed by the variance decomposition matrices after TVP-VAR 
regression. Section 4.1 describes the sample data and volatility measurement. Sec-
tion 4.2 presents the dynamic total connectedness between carbon and energy 
markets. Section 4.3 reports the dynamic directional connectedness of the car-
bon market and energy market. Net pairwise dynamic directional connectedness 
and directed weighted network analysis are discussed in Section 4.4 and Section 
4.5. Finally, the robustness testing analysis is reported in Section 4.6. 

4.1. Raw Data and Volatility Measurement 

Although the national carbon emissions trading market launched on July 16, 
2021, trading data is still few, thus this research will focus on pilot carbon trad-
ing market data. As of now, China has developed nine pilot carbon trading mar-
kets, each of which was formed at a different period and with varying amounts of 
market activity and liquidity. In comparison to pilot carbon markets in other lo-
cations, the Chongqing and Tianjin pilot carbon markets have low total carbon 
quota turnover and limited market liquidity, which is not typical. As non-pilot 
regions in China, the Fujian and Sichuan carbon markets were established late, 
making data consistency with other carbon markets difficult, while the quota 
products in the Shenzhen carbon market differ significantly from those in other 
carbon pilots, stipulating that the implementation period of carbon quotas is a 
natural year, with corresponding carbon quota products available for each year’s 
compliance period, and that the Shenzhen carbon market’s quota products differ 
significantly from those in other carbon. Finally, the carbon markets in Shanghai 
and Guangdong, which are more representative of the carbon market, were cho-
sen as the research objects of the carbon market, named SHEA and GDEA re-
spectively. And four energy sources, namely coal, crude oil, natural gas, and li-
quefied gas, which account for a relatively large proportion of China’s energy 
consumption structure, were chosen as the research objects of the carbon market, 
based on the consumption structure of China’s traditional and new energy mar-
kets and the availability of data. The data used in this study are obtained from 
Wind, and there are a total of 790 observations. Subsequently, the first-order lo-
garithmic difference of the closing data of each studied market is used to meas-
ure the price return, and we utilize the GARCH(1, 1) model to calculate the daily 
volatilities. Finally, each volatility spillover index will be obtained as follows: 

Step 1. Calculate the total volatility spillover index, denoted by ( ),
g

j t Hϕi� . 
Step 2. Calculate the directional volatility spillover received by each market j, 

donated by ( )jtFROM H  as well as the directional volatility spillover trans-
mitted by each market j, donated by ( )jtTO H . 

Step 3. Obtain the net volatility spillover from each market j, denoted  
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( )jtNET H , meanwhile we can also obtain the aggregate measure of the total 
connectedness tTSI . 

Figure 1 presents the integrated daily volatility data and Table 1 reports the 
descriptive statistics for the integrated daily volatility data, Jarque-Bear test (JB) 
and augmented Dickey-Fuller test (ADF) are also introduced. All the null hypo-
thesizes are rejected in the ADF test, which indicates that the volatility data of all 
studied markets are significantly stationary. The stationary time-series data will 
be utilized as volatility dataset in TVP-VAR regression. However, the results of 
skewness, kurtosis, and JB test illustrate that the volatility data are still leptokur-
tosis, which is commonly seen in carbon and energy markets for the so-called 
volatility aggregation phenomenon. As shown in Figure 1 and Table 1, natural 
gas market is the most volatile market among all the studied markets, especially 
in the period November 2017 to February 2018. The rising trends of volatility 
can also be found in other markets, such as the oil market which because of the  
 

 
Figure 1. Daily volatility data. Source: Plottted by R.  

 
Table 1. Descriptive statistics.  

Market Mean Std.Dev. Skewness Kurtosis JB Test ADF Test 

SHEA 0.049 0.023 0.557 −0.625 53.635*** −4.458*** 

GDEA 0.036 0.018 0.882 0.054 102.982*** −4.682** 

LOF 0.024 0.005 0.251 −0.473 15.482*** −4.003*** 

GCA 0.022 0.004 0.903 0.810 129.895*** −5.067*** 

COM 0.028 0.016 1.091 0.021 157.352** −2.702*** 

OIM 0.043 0.085 10.489 126.517 544162.447** −8.083*** 

TRQ 0.036 0.039 2.179 6.051 1841.650*** −5.104*** 

YHQ 0.023 0.007 2.165 5.380 1579.561** −7.768*** 

Note: ***, ** separately denotes the statistical significance level of 1% and 5%. And SHEA 
represents the Shanghai carbon market; GDEA represents the Guangdong carbon market; 
LOF represents the new energy market; GCA represents the new-energy-vehicle market; 
COM, OIM, TRQ and YHQ represent the coal, crude oil, natural gas and liquefied gas 
markets respectively. In addition, the number of observations is 790. 
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negative oil price event in 2021, during the period of carbon emission trading 
which price also extreme fluctuation, which indicates that carbon emission 
trading market may act as a volatility communicator.  

4.2. Dynamic Total Connectedness  

The dynamic change of the total volatility spillover level in China’s carbon and 
energy markets is shown in Figure 2. The entire spillover from the overall car-
bon and energy markets is vulnerable to the macroeconomic environment, as 
seen in Figure 1, with the total spillover index graph exhibiting three periods of 
dramatically increased volatility spillover. The first phase runs from Q3 2017 to 
Q2 2018 and is heavily impacted by the natural gas market. As the Chinese gov-
ernment has become more aware of the negative externality characteristics of 
burning large amounts of highly polluting fossil fuels such as coal, it has begun 
to give gas-based energy sources such as natural gas a high priority and has tak-
en a series of measures to accelerate the use of natural gas, resulting in a signifi-
cant increase in demand for low-polluting fossil energy sources such as gas, re-
sulting in a sharp increase in the price of natural gas. The overall spillover index 
has risen. The crude oil market affects the second period, from 2020 to 2021, 
where the surprise US attack on Baghdad in early 2020 caused a sharp increase 
in crude oil prices, and the outbreak of the New Crown epidemic and the “nega-
tive oil price” event caused sharp price fluctuations in the short term, causing a 
spike in the spillover effect. Early in 2022, the global epidemic subsides, eco-
nomic recovery accelerates, and China’s “carbon peaking and carbon neutrality 
goals” target is formally implemented, resulting in a surge in natural gas demand 
in the country. Sharp price fluctuations in the domestic natural gas market 
create the third phase of volatile spillover growth, further driving the carbon  
 

 
Figure 2. The total connectedness index of the carbon and energy market in China. The total 
connectedness index is calculated based on the estimation results from the TVP-VAR model. 
Source: Plotted by R.  
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market in 2022. The market and the energy markets have spillover effects. With 
their late emergence and relative lack of market information, new energy mar-
kets contribute relatively little to the total spillover intensity of the carbon and 
energy markets, so the next section of this paper will look at risk spillover and 
reception characteristics between markets, concerning individual markets. 

4.3. From and to Connectedness Indexes  

The total time-varying spillover index diagram only quantifies the magnitude of 
the overall volatility spillover effect between China’s carbon and energy markets, 
but it cannot characterize changes in the directional and net spillover effects 
between the carbon market and various energy markets. As a result, the dynamic 
directional spillover impact, net spillover effect, and net pairwise spillover effect 
between each energy market and the carbon market are further investigated in 
this work. 

The time-varying directional spillover effects between the carbon and energy 
markets are depicted in Figure 3. It’s clear that the carbon market’s volatility 
spillover effects from the energy market, as well as the degree of the carbon 
market’s spillover impacts on each energy market, are both time-varying. The 
directional spillover index also reveals bidirectional and asymmetric time-varying 
spillover effects between China’s carbon and energy markets.  

Figure 4 plots the time-varying net spillover index between the carbon and 
energy markets. The time-varying net spillover relationship between the carbon 
market and the energy market in China is not always maintained at a specific  
 

 
Figure 3. The dynamic directional connectedness of the studied market. The black line represents the “To Spillover” of carbon 
market volatility i to other energy markets, and the red line represents the “From Spillover” of the carbon market volatility i from 
other energy markets; the directions of the “To Spillover” and “From Spillover” are indicated by plus and minus signs, respective-
ly. Source: Plotted by R.  
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Figure 4. The dynamic net connectedness of carbon and energy market. Source: Plotted by R. 

 
steady-state, but can change over time to produce positive (the degree of spillov-
er from the carbon market to the volatility of the energy market is greater than 
the degree of spillover into the market) and negative (the degree of spillover 
from the carbon market to the volatility of the energy market is greater than the 
degree of spillover into the market) and negative (the degree of spillover (the 
degree of spillover from the carbon market to the volatility of the energy market 
is less than the degree of spillover into the market). The phenomena fluctuate 
between positive and negative (carbon market spillover to energy market volatil-
ity is larger than spillover), implying that there is not only a net spillover in one 
direction, but also a net spillover in both ways.  

According to the time-varying spillover indices between the carbon and ener-
gy markets, both markets exhibit both a positive and a negative tendency during 
the corresponding period when one is experiencing strong price volatility. Sus-
tained economic growth, sudden political events changes in external environ-
mental factors can cause an increase in market uncertainty, leading to persistent 
price volatility, and with the existence of synergies between the carbon and 
energy markets, the volatility risk arising from price volatility can be transmitted 
within and between markets, resulting in a significant increase in the time-varying 
spillover index in the corresponding period.  

Meanwhile, the results in Figure 3 show that the new energy market, Guang-
dong carbon trading market and liquefied natural gas market play the role of 
risk receivers in the overall carbon and energy market system, while the crude oil 
market, Shanghai carbon trading market, coal market and natural gas market 
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mainly act as risk transmitters. In the case of the coal market, for example, the 
strong increase in power coal prices due to the oversupply in the coal market in 
early 2021 makes the coal market a major risk spiller, which is reflected in the 
high peaks of the spillover curve in the spillover diagram. The unbalanced state 
of the market due to the imbalance between supply and demand is often the 
main cause of risk spillovers, and also reflects the need for the government to 
implement price control policies on the coal market in China. The new energy 
market, which has been stimulated by China’s “carbon peaking and carbon neu-
trality goals” target, also plays a major role as a risk transmitter in the system. As 
the new energy market is relatively new and lacks an effective regulatory me-
chanism, it is important to refer to the coal market, where the market is the main 
regulator, with government regulation, in order to maintain a balance between 
supply and demand in the new energy market, thereby stabilizing the economy 
and preventing risk. Further analysis from Figure 4 shows that, unlike the crude 
oil market as the main risk spillover expressed in previous studies, the propaga-
tion of risk from the crude oil market is highly directional and time-varying, but 
not persistent. Since the agreement between OPEC and non-OPEC producers to 
cut production in 2016, the crude oil market has been a major spillover of risk 
due to the prolonged and sustained turmoil, but when the ‘negative oil price’ 
event broke out, the crude oil market quickly spread the risk to other markets 
linked to it, but immediately thereafter returned to It is neither a spillover nor a 
recipient of risk. 

4.4. Net Pairwise Dynamic Directional Connectedness  

To better explain the volatility characteristics of the time-varying spillovers be-
tween the carbon market and the various energy markets, the paper also plots 
the net pairwise spillover index between the carbon and energy markets, as 
shown in Figure 5. The net spillover index plot further demonstrates that the 
Guangdong carbon market is the main risk taker and the Shanghai carbon mar-
ket and the traditional energy market are the main risk propagators. 

Further analysis of the inter-market directional premium index and net pair-
ing premium index plots reveals that energy markets also show some variability 
in the time-varying directional premium and net premium characteristics for 
different pilot carbon markets. From 2016 to early 2017 crude oil market shocks 
triggered by the OPEC production cut agreement had a greater impact on the 
Guangdong carbon market premium index, with the net premium index show-
ing positive values, while the Shanghai carbon market did. The net pairing pre-
mium index did not change significantly, for the Shanghai carbon market, its net 
pairing premium index changed significantly in a negative direction during the 
LPG price shock period and in a positive direction during the natural gas price 
shock period. The alternating effects of low-polluting fossil energy price shocks 
cause the net spillover index for the Shanghai carbon market to remain above 
and below the zero value. The main sources of risk for the new energy market, 
the new energy vehicle market, are likewise the crude oil market and the natural  
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Figure 5. The dynamic net pairwise connectedness of carbon and energy market. The results are based on the time-varying con-
nectedness approach based on the TVP-VAR model, and the solid line represents the changing trend of the net volatility spillover 
from one market to another. Source: Plotted by R. 

 
gas market. The volatility of crude oil prices, as a substitute for fuel vehicles, 
causes increased volatility spillover to the fuel vehicle market, which further 
causes increased volatility in the new energy vehicle market. 

However, according to the paired net spillover index chart of the carbon mar-
ket, traditional energy market, and new energy market in Figure 5, we find that 
between 2021 and 2022, against the backdrop of repeated new crown epidemics 
and weakening economic fundamentals, the new energy market and new energy 
vehicle market are not affected by the shocks in crude oil prices and natural gas 
prices, and still maintain a net spillover index of zero. It is not difficult to con-
clude that the new energy market has a certain role in hedging the risk of com-
modity price fluctuations, thus providing a new perspective for investors’ in-
vestment decision-making behavior. 

The directional spillover index and net spillover index plots between the car-
bon and energy markets show that, firstly, the directional and net spillover be-
tween the carbon and energy markets also exhibit extreme time-variability. Se-
condly, the time-varying directional spillover indexes between the carbon and 
energy markets also show that their spillover of them are bidirectional and 
asymmetric. Overall, during periods of severe price shocks in traditional energy 
markets such as crude oil, coal, and natural gas, the carbon market suffers sig-
nificantly higher spillover effects than in other periods. Moreover, new energy 
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markets can be used as an effective hedge against the risk of extreme volatility in 
commodities during the period examined. 

4.5. Directed Weighted Network Analysis 

To further explore the changes of spillover effects between carbon and energy 
markets, we take each market as a node and construct spillover network dia-
grams of carbon markets with non-participating new energy markets and par-
ticipating new energy markets respectively, using the dynamic average spillover 
matrix between markets as the adjacency matrix. From the fully connected spil-
lover network diagram in Figure 6, we find that the spillover network between 
the carbon market and the energy market has a typical cycle-network characte-
ristic, for example, the access and importance of each node in the network are 
the same. This reflects that the complex system of carbon and energy markets is 
extremely fragile and whatever a shock to either market would rapidly disrupt 
the whole complex system. Therefore, the government must improve the effi-
ciency of the market to ensure the coordinated development of the carbon emis-
sions trading market. Further by calculating the nodal importance indicators of 
the spillover network, it was found that after adding the new energy market to 
the energy market, the degree of importance of each market decreased from 
0.167 to 0.125, but the degree of access increased from 5 to 7 in both cases, fully 
demonstrating the hedging effect of the new energy market mentioned in the 
previous section, and also providing a new perspective for the regulator’s regu-
latory strategy formulation and risk prediction. 
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Figure 6. Directed weighted network for the volatility spillover of the carbon and energy markets. 
Each node illustrates the net transmitter of spillover. Vertices are weighted by averaged net pairwise 
directional connectedness measures. Meanwhile, the volatility spillover index between carbon and 
energy markets is expressed by the thickness of the edge. Source: Plotted by Matlab. 

4.6. Robustness Testing  

Based on the aforementioned, this paper uses the Kalman filter with the forget-
ting factor to estimate the unknown parameters, which overcomes the disadvan-
tages of the Monte Carlo method that relies on the ranking of variables. There-
fore, this paper uses the method of changing the prediction period to test the 
robustness of the empirical results and calculates the dynamic average spillover 
index table with prediction periods of 15 and 20 weeks respectively to compare 
with the dynamic average spillover index table with the initial prediction period 
of 10 weeks. The results are shown in Table 2 and Table 3. By comparing the 
results of the spillover indices in Table 3, it can be seen that when the forecast 
periods are 15 and 20 weeks respectively, the results are generally consistent with 
the results of the dynamic average spillover index with a forecast period of 10 
weeks, and the dynamic average net spillover relationship between the carbon 
and energy markets based on the full sample remains stable, thus indicating that 
increasing the forecast period has almost no effect on the estimation results, 
which in turn indicates that the model used in this paper is the validity of the 
model used in this paper. 
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Table 2. Average dynamic spillover index (H = 10).  

Spillover Index LOF GCA SHEA GDEA COM OIM TRQ YHQ From 

H = 10 

LOF 38.7 29.6 2.8 1.6 2.6 8.5 7.7 8.4 61.3 

GCA 33.0 41.9 2.6 1.5 1.1 6.9 6.6 6.5 58.1 

SHEA 2.2 2.0 73.3 1.6 3.5 5.2 6.2 6.0 26.7 

GDEA 1.9 1.3 1.9 75.1 2.5 8.7 5.6 2.9 24.9 

COM 5.7 0.8 3.3 2.8 75.8 2.5 6.8 2.4 24.2 

OIM 2.1 1.4 3.1 1.0 1.0 86.4 1.2 3.8 13.6 

TRQ 7.3 5.6 3.7 4.1 2.0 5.4 66.3 5.6 33.7 

YHQ 9.3 7.9 6.6 1.9 1.9 8.0 5.8 58.6 41.4 

To 61.5 48.7 24.1 14.4 14.5 45.3 36.9 35.6 283.8 

NSI 0.2 −9.4 −2.6 −10.4 −9.7 31.7 6.2 −5.8  

NPSI 3.0 6.0 3.0 5.0 5.0 0.0 1.0 5.0 35.5 

 
Table 3. Average dynamic spillover index (H = 15, 20). 

Spillover Index LOF GCA SHEA GDEA COM OIM TRQ YHQ From 

H = 15 

LOF 37.8 29.0 3.3 1.9 2.9 8.6 8.0 8.4 62.2 

GCA 32.5 40.9 3.0 1.7 1.3 7.0 7.0 6.6 59.1 

SHEA 2.9 2.5 68.3 2.1 4.3 6.2 6.9 6.7 31.7 

GDEA 2.4 1.6 2.4 69.0 3.8 10.0 7.2 3.7 31.0 

COM 6.0 1.1 3.5 3.1 72.2 3.5 7.8 2.8 27.8 

OIM 2.2 1.4 3.4 1.2 1.5 85.0 1.5 3.8 15.0 

TRQ 7.5 6.0 4.1 5.3 2.3 5.8 62.9 6.2 37.1 

YHQ 9.2 7.7 6.8 2.0 2.3 9.3 6.3 56.4 43.6 

To 62.7 49.4 26.5 17.3 18.4 50.3 44.7 38.2 307.5 

NSI 0.6 −9.7 −5.2 −13.7 −9.4 35.3 7.5 −5.4  

NPSI 3.0 6.0 3.0 6.0 4.0 0.0 1.0 5.0 38.4 

H = 20 

LOF 37.2 28.5 3.7 2.1 3.3 8.6 8.3 8.4 62.8 

GCA 32.2 40.1 3.4 1.8 1.6 7.1 7.2 6.6 59.9 

SHEA 3.6 2.9 64.8 2.4 5.3 6.6 7.4 7.0 35.2 

GDEA 2.9 2.0 2.6 64.9 4.9 10.6 7.9 4.2 35.1 

COM 6.3 1.3 3.7 3.5 69.5 4.3 8.3 3.1 30.5 

OIM 2.3 1.5 3.6 1.4 1.9 83.9 1.7 3.8 16.1 

TRQ 7.6 6.3 4.3 5.8 2.6 6.0 60.9 6.4 39.1 

YHQ 9.2 7.7 6.9 2.1 2.5 10.0 6.5 55.2 44.8 

To 64.0 50.1 28.1 19.2 22.1 53.2 47.3 39.5 323.4 

NSI 1.2 −9.8 −7.1 −15.9 −8.4 37.1 8.2 −5.3  

NPSI 3.0 5.0 4.0 7.0 4.0 0.0 1.0 4.0 40.4 
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5. Conclusion and Policy Implications 

This paper constructs a time-varying DY spillover index model based on a gene-
ralized forecast error decomposition by using a time-varying vector autoregres-
sive model (TVP-VAR) to systematically analyze the spillover effects between 
China’s carbon and energy markets in a quantitative manner. Unlike previous 
studies, this paper includes the new energy market when considering the energy 
market, based on the current economic development in China, to enrich the study 
of the linkage between the carbon market and the energy market. The main con-
clusions of this paper are as follows: 

1) The volatility spillover between China’s carbon and energy markets has 
significant time-varying characteristics, and the total spillover and directional 
spillover between markets exhibit strong time-variability in both size and direc-
tion, thus showing that the risk transmission between carbon and energy mar-
kets has strong uncertainty. Further analysis of the various types of inter-market 
spillover indices reveals that when price shocks occur in energy markets, the lev-
el of total spillover between carbon and energy markets tends to rise significantly, 
but the extent to which different pilot carbon markets respond to shocks from 
different markets varies, with the Shanghai carbon market being influenced main-
ly by the natural gas market and the Guangdong carbon market being influenced 
mainly by the crude oil market.  

2) The carbon market is very closely linked to the energy market, with risk 
propagation showing a circular pattern centered on the new energy market, 
spreading to the carbon market, the crude oil market, the coal market, and the 
natural gas market respectively. New energy investments can be used as an effec-
tive hedge against commodity risk during a new epidemic. 

In general, there is an obvious dynamic linkage between China’s carbon and 
energy markets, and the level of spillover between markets is also highly time- 
varying, which is not conducive to preventing the risk of price fluctuations be-
tween carbon and new energy markets. In this regard, some policy implications 
can be drawn from the above conclusions. First, improving the construction of 
the carbon emission trading and energy markets to form an inherently stable 
price mechanism between the markets. The results of the study found that the 
degree of volatility transmission between China’s carbon market and the tradi-
tional fossil energy market is much greater than that between China’s carbon 
market and the new energy market. To effectively prevent the impact of fossil 
energy price volatility on China’s carbon market, the price of carbon emission 
rights should be integrated into China’s energy price system for a comprehensive 
examination, to form a stable price mechanism between China’s carbon market 
and the fossil energy market. Second, improving China’s carbon market’s risk 
monitoring and early warning mechanisms. As the main risk spillover party, the 
carbon market absorbs the vast majority of risks from the energy market. On the 
one hand, carbon market regulators should pay close attention to price fluctua-
tions in the energy market and be alert to the risk fluctuations they may generate, 
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and on the other hand, in the context of a national carbon market, fully consider 
the risks of different regional energy markets and carbon markets, formulate 
proven risk regulation strategies and improve the carbon market’s risk Moni-
toring. In addition, the design of the national unified carbon market system and 
the process of managing rules should also take into account the characteristics of 
each regional carbon market, to reduce the adverse effects of different shocks 
with a diversified trading system, and comprehensively analyze the impact of 
external shocks such as energy price fluctuations on different regional carbon 
markets, effectively reducing regional heterogeneity and promoting fair compe-
tition in the carbon market. Third, the risk-oriented role of the new energy 
market should be fully exploited. The results of the study show that the new 
energy market has a better role in hedging against major risk shocks, and it is 
important for investors to appropriately favor new energy investments and 
choose diversified investment strategies in their investment decisions, to effec-
tively reduce the adverse effects of major unexpected shocks and maintain a ba-
lanced level of returns. 
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