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Abstract 
The immense quest for proficient numerical schemes for the solution of ma-
thematical models featuring nonlinear differential equations led to the reali-
zation of the Adomian decomposition method (ADM) in the 80th. Undoub-
tedly, the solution of nonlinear differential equations using ADM is presided 
over by the acquisition of Adomian polynomials, which are not always easy to 
find. Thus, the present study proposes easy-to-implement Maple programs 
for the computation of Adomian polynomials. In fact, the proposed algorithms 
performed remarkably on several test functions, consisting of one- and mul-
ti-variable nonlinearities. Moreover, the introduced programs are advanta-
geous in terms of simplicity; coupled with the requirement of less computa-
tional time in comparison with what is known in the literature. 
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1. Introduction 

The Adomian decomposition method (ADM) [1] [2] [3] [4] is one of the prom-
inent methods for the treatment of both the nonlinear or linear functional equa-
tions; including mainly the integral equations, partial differential equations (PDEs), 
ordinary differential equations (ODEs), integro-differential equations, and the 
blazing fractional differential equations (FDEs) among others. Certainly, ADM 
has been significantly utilized to solve a variety of emerging real-life problems in 
contemporary engineering and applied sciences. Amazingly, ADM competent-
ly solves assorted initial-value problems (IVPs) and boundary-value problems 
(BVPs) [2] [5]-[11] straightaway without the need for linearization, discretiza-
tion, perturbation, or even needless preventive postulations. In addition, the ap-
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proach divulges exact analytical solutions whenever reachable or closed-form se-
ries solutions whenever exact solutions are unreachable. Undeniably, the solu-
tion of nonlinear functional equations using ADM is presided over by the acqui-
sition of Adomian polynomials, which are not always easy to find for all forms of 
nonlinearities. 

In this regard, Adomian and his team members have successfully made use of 
the ADM to tackle various forms of nonlinear models endowed with varying 
nonlinearities. In particular, one may find the application of ADM in solving 
ODEs prescribed with product nonlinearity in [12], exponential nonlinearity in 
[13], composite nonlinearity in [14], polynomial nonlinearity in [15], trigono-
metric nonlinearity in [16], negative-power nonlinearity in [17], radical nonli-
nearity in [18], hyperbolic nonlinearity in [19], and lastly, decimal-power nonli-
nearity in [20] just to mention but a few. Besides, ADM rapidly solves nonlinear 
equations featuring any form of analytic nonlinearity; thereby revealing exact or 
optimal approximate solutions via convergent series. 

On the other hand, several researchers have theoretically examined the con-
vergence of ADM [21] [22] [23]. Cherruault [21] sufficiently addressed the con-
vergence issue of ADM via the application of fixed point theorems; in fact, Ab-
baoui and Cherruault [22] gave a yet different version of Equation (5) for the 
computation of Adomian polynomials; while [23] gave a simple but elegant 
convergence proof of the ADM. More so, various other researchers have pro-
posed several modifications for ADM by suitably proposing various ways for 
easy acquisition of Adomian polynomials, including for instance, Adomian and 
Rach [24], Wazwaz [25], Abdelwahid [26], and Rach [27] to mention a few; in-
terested reader(s) can equally read [28] [29] [30] [31] [32] and the references 
therewith. In the same vein, the recent work by Duan [33] [34] [35] on the mod-
ification of ADM stands out; indeed, yet reliable algorithms were proposed for 
ADM through the modification of the Adomian polynomials for both the one- 
and multi-variable nonlinearities. 

However, as symbolic computation using mathematical software for the com-
putation of Adomian polynomials has taken center stage in this arena—solely for 
the purpose of pass-tracking convergence—various researchers have greatly uti-
lized these softwares to devise fast converging schemes. For instance, see Choi 
and Shin [36] used MATHEMATICA to implement the algorithm introduced in 
[25]; Chen and Lu [37] made use of Maple to compute An so easily. Pourdarvish 
[38] utilized MATHEMATICA software for the coding of modification reported 
in [28]; see also Azreg-Aïnou [32], Duan [39] [40], Hendi et al. [41] and Bairagi 
[42] among others utilized the MATHEMATICA for the computation of Ado-
mian polynomials; while Fatoorehchi and Abolghasemi [43] made use of the 
MATLAB program for their algorithm.  

Nevertheless, based on the aforementioned relevance of symbolic computa-
tion in the acquisition of Adomian polynomials, and the quest for a fast and re-
liable algorithm for this computational task, the current study proposes easy-to- 
implement algorithms via the application of Maple software, for the construc-
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tion of Adomian polynomials in one- and multi-variable nonlinearity settings. 
Moreover, it is our aim to propose improved and equally simple Maple algo-
rithms that will swiftly compute the Adomian polynomials for all forms of non-
linearities. Moreover, we arrange the paper as follows: In the second section, we 
present the standard Adomian decomposition method. In Sections 3 and 4, we 
will Maple programs for the one- and multi-variable Adomian polynomials, re-
spectively. Section 5 gives the application of the algorithms given in Sections 3 
and 4; while Section 6 gives certain concluding points.  

2. Adomian Decomposition Method 

We make consideration to the following nonhomogeneous nonlinear ODE to 
highlight the ADM procedure: 

 Lu Ru Nu g+ + = ,                        (1)  

with L and R, (L > R) representing the linear order derivatives, Nu denotes the non-
linear term present, g is the forcing term, while ( )u u x=  is the solution function. 

Next, upon deploying the inverse operator 1L−  to both sides of the above 
equation, one obtains: 

( ) [ ] [ ]1 1 1 ,u x L g L Ru L Nu− − −= Φ + − −                 (2)  

where ( )xΦ  is a function emanating from the prescribed initial data. Addi-
tionally, ADM decomposes the solution ( )u x  in form of a series as follows:  

 ( ) ( )0 nnu x u x∞

=
=∑ ,                        (3)  

and further decomposes the nonlinear term Nu in form of a polynomial series as 
follows:  

0 nnNu A∞

=
=∑ ,                         (4)  

where nA , which depends on 0 1, , , nu u u , are referred to as Adomian polyno-
mials. In fact, given any form of nonlinearity ( )Nu f u= , Adomian polynomials 
are sequentially determined using the following précised relation [1] [2] [3]:  

( )0 0

1 d , 0,1,2,
! d

n
n

i
n in iA F u n

n λ
λ

λ =
=

 = =
 ∑               (5)  

Furthermore, one may make use of the above relation to explicitly express 
some of the Adomian polynomials corresponding to one-variable generalized 
analytic nonlinearity ( )( )Nu f u x= , as follows:  

( )
( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

1 1 0

2
2 2 0 1 0

3
3 3 0 1 2 0 1 0

42 2 4
4 4 0 2 1 3 0 1 2 0 1 0

,

,
1 ,
2!

1 ,
3!

1 1 1 ,
2! 2! 4!

A F u

A u F u

A u F u u F u

A u F u u u F u u F u

A u F u u u u F u u u F u u F u

=

′=

′ ′′= +

′ ′′ ′′

 
 


′= + +

′ ′′ ′′′= + + + +




 (6) 
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Thus, upon substituting Eqs. (3) and (4) into Equation (2), one acquires: 

( ) ( ) ( ) ( )1 1 1
0 0 0n n nn n nu x L g x L R u L A∞ ∞ ∞− − −

= = =
= Φ − − −∑ ∑ ∑ , 

which subsequently gives the expected solution ( )u x  recursively as follows:  

( ) ( ) ( )
( ) ( ) ( )

1
0

1 1
1

,

, 0.n n n

u x x L g x

u x L Ru L A n

−

− −
+

= Φ −

= − − ≥
                (7) 

Lastly, having found the solution components ( )nu x , for 0n ≥  above, the 
expected closed-form series solution of the governing IVP then takes the fol-
lowing form:  

0
1 , where lim ,n n n n

n
k u uψ ψ→=

−
∞= =∑  

that is, by taking the net sum of n-term partial sum; this is indeed the approx-
imate solution. 

3. Maple Program for Computing One-Variable Adomian  
Polynomials  

This section presents an easy-to-implement Maple program for the computation 
of one-variable Adomian polynomials through the application of the Adomian 
relation earlier given in Equation (5). Moreover, the program inputs are the 
nonlinear term N(u) and the number of the expected Adomian polynomials K. 
In essence, the program is written in simple and plain Maple language as follows:  

PROGRAM FOR ONE VARIABLE  
INPUT 
> restart 
> :k K=  
> ( ):f u N u= →  

> for j from 0 to k do [ ] [ ]( )( )20
0

1 d: 0,
! d

j
i

j iA j subs f u i x
j

λ λ
λ =

 
= = 

 
∑  od 

4. Maple Program for Computing Multi-Variable Adomian  
Polynomials 

In the same manner, the current section presents an easy-to-implement Maple 
program for the computation of multi-variable Adomian polynomials through 
the application of the generalized version of the Adomian relation earlier ex-
pressed in Equation (5). Furthermore, the program inputs are the nonlinear 
term N(u), the number of the unknown variables N, and the number of the re-
sulting Adomian polynomials K. Ultimately, we write the program in simple and 
clear Maple language as follows:  

PROGRAM FOR n-VARIABLE  
INPUT 
> restart 
> :n N=  
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> :k K=  
> ( ) ( )1 2 1 2: , , , , , ,n nf u u u N u u u= →   
> for j from 0 to k do  

[ ] [ ]( )( )( )20
0

1 d: 0, , , 1, ,
! d

j
i

j iA j subs f seq u m i x m n
j

λ λ
λ =

 
= = = 

 
∑   od 

5. Applications 

The present section portrays the application of the introduced one- and mul-
ti-variable Maple programs for the acquisition of Adomian polynomials. In fact, 
various forms of nonlinearities will be scrutinized to exhibit the competency of 
the devised associated algorithms.  

Example 1. (Polynomial nonlinearity): Consider the polynomial nonlinearity 
in one-variable of the form 3Nu u= . 

Applying the Maple program for the computation of one-variable Adomian 
polynomials on the given polynomial nonlinearity, we set 3K =  and then ob-
tain the associated Adomian polynomials as follows:  

( )3
0 0:A u x=  

( )2
1 0 13 ( ):A u x u x=  

( ) ( ) ( ) ( )2 2
2 0 1 0 23: 3A u x u x u x u x+=  

( ) ( ) ( ) ( ) ( ) ( )3 2
3 1 0 1 2 0 36 3:A u x u x u x u x u x u x= + +  

Example 2. (Product nonlinearity): Consider the derivative nonlinearity in 

one-variable of the form 
d
d
uNu u
x

= . 

Applying the Maple program for computing one-variable Adomian polyno-
mials on the mentioned product nonlinearity, we set 3K =  and obtain the as-
sociated Adomian polynomials as follows:  

( ) ( )0 0 0d
: dA u x u x

x
=  

 
 

 

( ) ( ) ( ) ( )1 1 0 0 1
d d
d d

:A u x u x u x u x
x x

   +   
   

=  

( ) ( ) ( ) ( ) ( ) ( )2 2 0 1 1 0 2
d d d
d d d

:A u x u x u x u x u x u x
x x x

     + +     
     

=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

3 3 0 2 1 1 2

0 3

d d d
d d d

d
d

:A u x u x u x u x u x u x
x x x

u x u x
x

     + +     
     
 +  
 

=
 

Example 3. (Hyperbolic nonlinearity): Consider the hyperbolic nonlinearity 
in one-variable of the form ( )sinhNu u= . 

Equally, we apply the Maple program for the computation of one-variable 
Adomian polynomials on the prescribed nonlinearity. Indeed, we 3K =  and 
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further obtain the associated Adomian polynomials as follows:  

( )( )0 0si: nhA u x=  

( )( ) ( )1 0 1cosh:A u x u x=  

( )( ) ( ) ( )( ) ( )2
2 0 1 0 2: 1 sinh cosh

2
A u x u x u x u x+=  

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )3
3 0 1 0 1 2 0 3

1 cosh sinh cosh
6

:A u x u x u x u x u x u x u x+= +  

Example 4. (Inverse trigonometric nonlinearity): Consider the inverse trigo-
nometric nonlinearity in one-variable of the form ( )1tanNu u−= . 

Accordingly, we implement the Maple program for the computation of one- 
variable Adomian polynomials on the present nonlinearity with 3K =  to ob-
tain the resulting polynomials as follows:  

( )( )0 0arc: tanA u x=   

( )
( )

1
1 2

01
:

u x
A

u x+
=   

( )
( )

( ) ( )
( )( )

2
2 1 0

2 2 22
0 0

1 1
:

u x u x u x
A

u x u x
−

+ +
=   

( )
( )

( ) ( ) ( )
( )( )

( ) ( )
( )( )

( )
( )( )

3 2 3
3 0 1 2 1 0 1

3 2 2 3 22 2 2
0 0 0 0

2 4 1
3 31 1 1 1

:
u x u x u x u x u x u x u x

A
u x u x u x u x

− + −
+ + + +

=   

Example 5. (Logarithmic nonlinearity): Consider the logarithmic nonlinearity 
in one-variable of the form ( )ln 1Nu u= + . 

In the same manner, the application of the devised Maple program for the 
computation of one-variable Adomian polynomials on the current logarithmic 
nonlinearity when setting 3K =  yields the following polynomials:  

( )( )0 0ln: 1A u x= +   

( )
( )

1
1

01
:

u x
A

u x+
=   

( )
( )

( )
( )( )

2
2 1

2 2
0 0

1
1 2

:
1

u x u x
A

u x u x
−

+ +
=   

( )
( )

( ) ( )
( )( )

( )
( )( )

3
3 2 1 1

3 2 3
0 0 0

1
1 31

:
1

u x u x u x u x
A

u x u x u x
− +

+ + +
=  

Example 6. (Negative-power nonlinearity): Consider the negative-power non-
linearity in one-variable of the form mNu u−= , where m∈ . 

Here, we evenly implement the Maple program for computing one-variable 
Adomian polynomials on the negative-power nonlinearity by setting 3K =  and 
subsequently acquire the following Adomian polynomials:  
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( )0 0: mA u x −=  

( ) ( )1
1 0 1: mA u x mu x− −−=  

( ) ( ) ( ) ( ) ( ) ( )2 2 1 2 22
2 0 1 0 2 0 1

1 1
2 2

: m m mA u x m u x u x mu x u x mu x− − − − − −− +=  

( ) ( )( ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

3 3 3 3 3 32
3 0 1 0 1 0 1

2 2 1
0 1 2 0 1 2 0 3

1 3 2
6

6 6 6

: m m m

m m m

A m u x m u x u x mu x u x u x

u x mu x u x u x u x u x u x u x

− − − − − −

− − − − − −

= − + +

− − +
  

Example 7. (Composite Nonlinearity): Consider the composite nonlinearity 

in one-variable of the form 
1sin
2e

u
Nu

 −  
 = . 

Accordingly, the application of the Maple program for one-variable nonli-
nearity on the present nonlinearity when 3K =  yields the following Adomian 
polynomials:  

( )0
1sin
2

0 : e
u x

A
 −  
 =  

( ) ( )
( )0

1sin
2

1 0 1
1 1cos e
2 2

:
u x

A u x u x
 −  
  −  

 
=  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

0 0

0

1 1sin sin2 2 2
2 1 0 0 2

12 sin2 2
0 1

1 1 1 1sin e cos e
8 2 2 2

1 1cos e
8 2

:
u x u x

u x

A u x u x u x u x

u x u x

   − −   
   

 −  
 

   −   
   

 

=

+  
 

 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

0 0

0

0

1 1sin sin3 2 2
3 0 1 0 1 2

1sin3 2
0 0 1

1 12sin sin
2 2

0 3 0 1 2

1 1 1 1cos e sin e
48 2 4 2

1 1 1sin cos e
16 2 2

1 1 1 1cos e cos e
2 2 4 2

:
u x u x

u x

u x u

A u x u x u x u x u x

u x u x u x

u x u x u x u x u x

   − −   
   

 −  
 

 − − 
 

   +   
   

   −    
   

   − +  
  

=




( )

( ) ( )
( )

0

0
13 sin3 2

0 1
1 1cos e
48 2

x

u x
u x u x

 
 
 

 −  
  −  

 

 

Example 8. (Radical nonlinearity): Consider the radical function nonlinearity 
in one-variable of the form 2Nu uα β= + , where ,α β ∈ .  

As proceed, the application of the one-variable Maple program with 3K =  
reveals the following resulting Adomian polynomials as follows:  

( )2
0 0:A u xα β= +   

( ) ( )
( )

0 1
1 2

0

:
u x u x

A
u x

α

α β
=

+
  

( ) ( )

( )( )
( )
( )

( ) ( )
( )

2 2 22
0 1 1 0 2

2 3 2 2
2 2 0 0

0

1 1
2 2

:
u x u x u x u x u x

A
u x u xu x

α α α

α β α βα β

− + +
+

=
++
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( ) ( )

( )( )
( ) ( )

( )( )
( ) ( ) ( )

( )( )
( ) ( )
( )

( ) ( )
( )

3 3 3 23 2 2
0 1 0 1 0 1 2

3 5 3 3
2 2 22 2 2

0 0 0

1 2 0 3

2 2
0 0

1 1
2 2

:
u x u x u x u x u x u x u x

A
u x u x u x

u x u x u x u x

u x u x

α α α

α β α β α β

α α

α β α β

− −

+ + +

+ +
+ +

=

  

Example 9. (Two-variable product nonlinearity): Consider the product non-

linearity in two-variable of the form 2 2
1

d
d
uNu u
x

= ∗ . 

Applying the Maple program for computing multi-variable Adomian poly-
nomials on the present two-variable product nonlinearity, we set 2N = , and 

3K =  to obtain the associated Adomian polynomials as follows:  

( ) ( )2
0 1,0 2,0d

: dA u x u x
x

=  
 
 

  

( ) ( ) ( ) ( ) ( )2
1 1,0 2,0 1,1 1,0 2,1: d d2

d d
A u x u x u x u x u x

x x
   +   
   

=   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 1,1 2,0 1,0 1,1 2,1

2
1,0 2,0 1,2 1,0 2,2

d d2
d d

d

:

d d2
d

A u x u x u x u x u x
x x

u x u x u x u x u x
x x

   +   
   
   + +   
   

=
  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
3 1,1 2,0 1,2 1,1 2,1

1,0 2,2 1,1 1,0 2,1 1,2

2
1,0 2,0 1,3 1,0 2,3

d d2
d d

d d2 2
d d
d
d

:

d2
d

A u x u x u x u x u x
x x

u x u x u x u x u x u x
x x

u x u x u x u x u x
x x

   +   
   
   + +   
   
   + +   
   

=

  

Example 10. (Two-variable nonlinearity): Consider the nonlinearity in two- 
variable of the form ( )1

2e cosuNu u= + . 
In the same way, we applying the Maple program for the computation of mul-

ti-variable Adomian polynomials on the governing two-variable nonlinearity by 
setting 2N = , and 3K =  to obtain the following Adomian polynomials:  

( ) ( )( )1,0
0 2,0: e cosu xA u x+=   

( ) ( ) ( )( ) ( )1,0
1 1,1 2,0 2,1e n: siu xA u x u x u x−=   

( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( )

1,0 1,02 2
2 1,2 1,1 2,0 2,1

2,0 2,2

1 1e e cos
2

si

:
2

n

u x u xA u x u x u x u x

u x u x

+ −

−

=
  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( )

1,0 1,0 1,03
3 1,3 1,2 1,1 1,1

3
2,0 2,1 2,0 2,1 2,2

2,0 2,3

1e e e
6

1 sin cos
6
sin

: u x u x u xA u x u x u x u x

u x u x u x u x u x

u x u x

+

+

−

= +

−   
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Example 11. (Four-variable nonlinearity): Consider the nonlinearity in four- 

variable of the following form 23
1 2 4

d
d
uNu u u u
x

= ∗ ∗ + . 

Accordingly, we implement the Maple program for the computation of mul-
ti-variable Adomian polynomials on the current four-variable nonlinearity by fix-
ing 4N = , and 3K =  to acquire the following resulting Adomian polynomials:  

( ) ( ) ( ) ( )2
0 1,0 2,0 3,0 4,0

d
d

:A u x u x u x u x
x

  + 
 

=   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1,1 2,0 3,0 1,0 2,1 3,0

1,0 2,0 3,1 4,0 4,1

d d
d d

d 2
d

:A u x u x u x u x u x u x
x x

u x u x u x u x u x
x

   +   
   
 + + 
 

=
  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 1,2 2,0 3,0 1,1 2,1 3,0

1,1 2,0 3,1 1,0 2,2 3,0

1,0 2,1 3,1 1,0 2,0 3,2

2
4,1 4,0 4,2

d d
d d

d d
d d
d d

d

2

:

d

A u x u x u x u x u x u x
x x

u x u x u x u x u x u x
x x

u x u x u x u x u x u x
x x

u x u x u x

   +   
   
   + +   
   
   + +   
  

+

=



+

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 1,3 2,0 3,0 1,2 2,1 3,0

1,2 2,0 3,1 1,1 2,2 3,0

1,1 2,1 3,1 1,1 2,0 3,2

1,0 2,3 3,0 1,0 2,2 3,1

d d
d d

d d
d d
d

:

d
d d
d d
d d

A u x u x u x u x u x u x
x x

u x u x u x u x u x u x
x x

u x u x u x u x u x u x
x x

u x u x u x u x u x u x
x x

   +   
   
   + +   
   
   + +   
   
  + +  


=

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,0 2,1 3,2 1,0 2,0 3,3

4,1 4,2 4,0 4,3

d d
d d

2 2

u x u x u x u x u x u x
x x

u x u x u x u x





   + +   
   

+ +

  

Remarkably, as portrayed in the above test examples for multi-variable nonli-
nearities—see examples 9, 10 and 11—it is pompous to state here that the de-
vised Maple program for the construction of Adomian polynomials for mul-
ti-variable nonlinearities can equally be relevant in the computation of Adomian 
polynomials for n-variable nonlinear functional operators. 

6. Conclusion 

In conclusion, the current study proposed easy-to-implement programs via the 
application of Maple software, for the construction of Adomian polynomials. 
Precisely, two competent Maple programs were introduced to squarely deal with 
the one- and multi-variable nonlinearities, respectively. Indeed, this study was 
motivated by the immense quest for proficient numerical schemes for the solu-
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tion of nonlinear mathematical models; noteworthy, most real-life scenarios are 
mathematically mimicked using nonlinear differential equations. Hence, our 
study improved the computational rapidity of the classical Adomian decomposi-
tion method by the proposed algorithms that swiftly compute the resulting Ado-
mian polynomials. More so, the introduced programs are advantageous in terms 
of simplicity, and of course, in comparison with what is known in the related li-
terature. Moreover, the generalized program for the multi-variable nonlineari-
ties is applicable in the computation of Adomian polynomials for n-variable 
nonlinear functional operators. 
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