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Abstract 
The current manuscript makes use of the prominent iterative procedure, called 
the Adomian Decomposition Method (ADM), to tackle some important spe-
cial differential equations. The equations of curiosity in this study are the sin-
gular equations that arise in many physical science applications. Thus, through 
the application of the ADM, a generalized recursive scheme was successfully 
derived and further utilized to obtain closed-form solutions for the models 
under consideration. The method is, indeed, fascinating as respective exact 
analytical solutions are accurately acquired with only a small number of itera-
tions. 
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1. Introduction 

Special differential equations of second-order are held with utmost esteem in many 
fields of physical sciences due to their fascinating properties [1] [2] [3]. Among 
others, they are characterized by the possession of the well-known special or-
thogonal functions, which are widely used in science and engineering domains. 
Additionally, these functions are greatly utilized in numerical methods, and ap-
proximation theories, just to mention a few. Besides, solutions of many differen-
tial equations are recast to the form of these special functions in mathematical 
physics [4]-[9]. 

However, the method of interest in the present study is the celebrated Ado-
mian Decomposition Method (ADM) [10] [11]. This method was devised in the 
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1980s by George Adomian to treat differential and integral equations. Various 
reformations and extensions of this method have been reported in the literature; 
in addition to different reliable modifications of the method among others [12] 
[13] [14]. Indeed, there exists a huge number of related literature with regard 
to the development of the ADM that is associated with various forms of Ini-
tial-Value Problems (IVPs) of ordinary and partial differential equations [15] 
[16] [17] [18]. Both the IVPs and boundary-value problems have been effectively 
treated via the application of the ADM to obtain their resulting closed-form (se-
ries) solutions or even the exact analytical solutions in many cases. This is, how-
ever, related to the fact that the procedure devised by Adomian tends to rapidly 
converge to the exact analytical solution, whenever obtainable, see [19] and the 
references therein. 

So far, there have been few works on the solution of special functions. In [9], 
the series solutions of some special functions are presented. Also, the authors in 
[20] studied the solution of Legendre differential equation and Chebyshev’s dif-
ferential equation by multiplying them by the singular coefficient and expressed 
it as based on ADM. In addition, the exact solutions for the Hypergeometric eq-
uation and Legendre equation, by writing the equation in the general operator 
form and finding its inverse, are given in [21]. Next, classical results on the Gauss 
Hypergeometric equation, Confluent Hypergeometric equation and Bessel equa-
tion are discussed in [22]. Additionally, differential transform method for Gauss 
Hypergeometric equation and Laguerre equations is applied in [23]. As well, the 
Frobenius method around all regular singular points for κ-Hypergeometric equa-
tion is employed in [24], Recently, [25] [26] thoroughly discussed the technique 
for obtaining an exact solution based on the modified Adomian decomposition 
method for the Laguerre equations and Chebyshev’s differential equation. 

What’s more, the present study aims to tackle some important special second- 
order differential equations that arise in many physical models of physical sciences. 
More specifically, the singular models to be examined in the present study are 
mentioned as follows: Legendre’s differential equation  

( ) ( )21 2 1 0, 1 1.x v xv n n v x′′ ′− − + + = − < <               (1) 

Chebyshev’s differential equation 

( )2 21 0, 1 1.x v xv n v x′′ ′− − + = − < <                 (2) 

Hermite’s differential equation 

2 2 0,v xv nv′′ ′− + =                         (3) 

where in the above equations, n is a non-negative integer. In doing so, we will 
utilize the aforementioned classical ADM procedure to effectively acquire their 
respective recursive relations, leading to their closed forms or even exact analyt-
ical solutions when the value of n is specified. Additionally, we arrange the paper 
as follows: Section 2 gives the analysis of the approach of interest—the ADM. 
Section 3 gives the application of the ADM procedure to the models of concern; 
while Section 4 gives some concluding remarks. 
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2. Analysis of the Method 

The present section gives a generalized derivation procedure for tackling nonli-
near Initial-Value Problems (IVPs) based on the ADM. To do so, let us consider 
the following differential equation [16] 

( )( ) ( ) ,G v x g x=                          (4) 

with G representing a generalized ordinary (or partial) differential operator. This 
operator being general, it can equally be expressed to involve both linear and non-
linear operators. Thus, we decompose the operator further, and rewrite the above 
equation as follows 

,Lv Rv Nv g+ + =                         (5) 

where L is the highest linear operator that is invertible, with R L< ; while N is 
specifically the nonlinear operator. More so, we rewrite the latter equation as 
follows 

,Lv g Rv Nv= − −  

such that applying the inverse operator 1L−  to both sides of the above equation 
yields 

( ) 1 1 1 .v x L g L Rv L Nvφ − − −= + − −                  (6) 

where ( )xφ  is the function emanating from the prescribed initial data. 
Further, the iterative procedure by the name ADM decomposes the solution 
( )v x  using an infinite series of the following form 

( ) ( )
0

,m
m

v x v x
∞

=

= ∑                        (7) 

while the nonlinear component Nv is equally decomposed using the following 
infinite series 

( )
0

,m
m

N v B
∞

=

= ∑                        (8) 

where mB ’s are polynomials devised by Adomian, and recursively determined 
using the following scheme [18] 

0 0

1 d , 0,1,2,
! d

m m
j

m jm
j

B N v m
m

λ

λ
λ = =

  
= =  

   
∑              (9) 

Therefore, upon substituting Equations (7) and (8) into Equation (6), one gets 

( ) ( ) ( )1 1 1

0 0 0
( ) .m m m

m m m
v x x L g x L R v x L Bφ

∞ ∞ ∞
− − −

= = =

= + − −∑ ∑ ∑  

Furthermore, the ADM procedure swiftly reveals the generalized recursive 
solution for the problem from the above equation as follows 

( ) ( )1
0

1 1
1 0 0

1 1
2 1 1

1 1
3 2 2

1 1
1

,
,
,
,

, 0,m m m

v x L g x
v L Rv L B
v L Rv L B
v L Rv L B

v L Rv L B m

φ −

− −

− −

− −

− −
+

 = +


= − −
 = − −


= − −



= − − ≥



                (10) 
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where mB ’s are the Adomian polynomials computed from Equation (9). Ex-
pressing few of these terms, we get 

( )
( )

( ) ( )

( ) ( ) ( )

0 0

0
1 1

0
2

0 0 2
2 2 12

0 0
2 3

0 0 0 3
3 3 1 2 12 3

0 0 0

,

d
,

d d1 ,
d 2 d

d d d1 ,
d 3!d d

B N v

N v
B v

dv

N v N v
B v v

v v

N v N v N v
B v v v v

v v v

=

=

= +

= + +



           (11) 

Remarkable, it is obvious that the Adomian polynomials mB ’s depend on the 
solution components mv . For instance, 0B  relies merely on 0v ; 1B  relies merely 
on 0v  and 1v ; 2B  relies merely on 0v , 1v  and 2v , and so on. 

Finally, a realistic solution is obtained by considering the following m-term 
approximations as 

1

0
,

m

m j
j

v
−

=

Ψ = ∑                          (12) 

where 

( ) ( ) ( )
0

lim .m jm j
v x x v x

∞

→∞ =

= Ψ =∑                  (13) 

3. Application to Standard Equations 

This section presents the application of the ADM procedure presented earlier in 
the above section to some selected singular special differential equations’ IVPs. 
More specifically, we make consideration to Legendre’s differential equation, Che-
byshev’s differential equation and Hermite’s differential equation. 

3.1. Legendre’s Differential Equation 
Consider the Legendre’s differential equation 

( ) ( )21 2 1 0, 1 1,x v xv n n v x′′ ′− − + + = − < <             (14) 

or alternatively rewritten as follows 

( )2 2 1 , 1 1.v x v xv n n v x′′ ′′ ′= + − + − < <               (15) 

So, we consider the right-hand side of the equation as a normal nonhomoge-

neous term, where the differential operator L is defined by 
2

2
d
dx

. 

More so, we consider the inverse operator 1L−  as a two-fold integral operator 
defined by 

( ) ( )1
0 0

. d d .
x x

L x x− = ∫ ∫  

Thus, applying the inverse operator 1L−  to both side of Equation (15), one 
gets 
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( ) ( )1 2 2 1 ,v x L x v xv n n vφ −  ′′ ′= + + − +   

such that 

( ) 0.L xφ =  

Thus, based on the ADM procedure, the solution ( )v x  is introduced through 
an infinite summation of components ( )mv x  earlier discussed in the metho-
dology. Hence, the recursive solution of Legendre’s differential equation is as 
follows  

( ) ( )
( ) ( )

0

1 2
1

,

2 1 , 0k k k k

v x x

v x L x v xv n n v k

φ
−

+

=

 ′′ ′= + − + ≥ 
 

where the overall solution ( )v x  follows immediately by summing the above 
components as follows 

( ) ( ) ( )
0

lim .m jm j
v x x v x

∞

→∞ =

= Ψ =∑                    (16) 

Case 1: 1n =  
Let us consider an IVP featuring Legendre’s differential equation with 1n =  

as follows 

( )
( ) ( )

21 2 2 0,

0 0, 0 1.

x v xv v

v v

′′ ′− − + =

′= =
                     (17) 

Therefore, we re-express the governing differential equation using operator 
notation as follows 

2 2 2 .Lv x v xv v′′ ′= + −                       (18) 

What’s more, we apply the inverse operator 1L−  to the both sides of the 
above equation to obtain 

1 2 2 2 .v x L x v xv v−  ′′ ′= + + −   

Lastly, through the application of the ADM, the overall recursive relation 
takes the following form 

( )
( )
( )

0

1 2
1 0 0 0

1 2
1

,

2 2 0,

2 2 0, 1,k k k k

v x x

v x L x v xv v

v x L x v xv v k

−

−
+

=

 ′′ ′= + − = 
 ′′ ′= + − = ≥ 

 

and it implies that 

( ) .v x x=                            (19) 

In fact, this is a well-known exact analytical solution for Legendre’s differen-
tial equation when 1n = . 

Case 2: 2n =  
Let us consider an IVP featuring Legendre’s differential equation with 2n =  

as follows 
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( )
( ) ( )

21 2 6 0,

10 , 0 0.
2

x v xv v

v v

′′ ′− − + =

′= − =
                    (20) 

Thus, upon expressing the governing differential equation using operator no-
tation as follows 

2 2 6 ,Lv x v xv v′′ ′= + −                      (21) 

we further apply the inverse operator 1L−  to both sides of the latter equation to 
obtain 

1 21 2 6 .
2

v L x v xv v−  ′′ ′= − + + −   

Then, the application of the ADM yields the following overall recursive rela-
tion 

( )

( )

( )
( )

0

1 2 2
1 0 0 0

1 2
2 1 1 1

1 2
1

1 ,
2

32 6 ,
2

2 6 0,

2 6 0, 2,k k k k

v x

v x L x v xv v x

v x L x v xv v

v x L x v xv v k

−

−

−
+

= −

 ′′ ′= + − = 

 ′′ ′= + − = 
 ′′ ′= + − = ≥ 

 

and it implies, 

( ) 21 3 ,
2 2

v x x= − +                        (22) 

which is a known exact analytical solution for Legendre’s differential equation 
when 2n = . 

3.2. Chebyshev’s Differential Equation 

Consider the Chebyshev’s differential equation 

( )2 21 0, 1 1.x v xv n v x′′ ′− − + = − < <                (23) 

Equally, using the ADM procedure described above, the corresponding recur-
sive scheme is obtained by 

( ) ( )
( )

0

1 2 2
1

,

, 0.k k k k

v x x

v x L x v xv n v k

φ
−

+

=

 ′′ ′= + − ≥ 
 

Case 1: 1n =  
Let us consider an IVP featuring Chebyshev’s differential equation with 1n =  

as follows 

( )
( ) ( )

21 0,

0 0, 0 1.

x v xv v

v v

′′ ′− − + =

′= =
                     (24) 

Now, expressing the governing differential equation using operator notation 
becomes 
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2 ,Lv x v xv v′′ ′= + −                       (25) 

such that upon applying 1L−  to both sides of Equation (25) reveals 
1 2 .v x L x v xv v−  ′′ ′= + + −   

What’s more, without loss of generality, the resulting recursive scheme for the 
IVP is found as follows 

( )
( )

0

1 2
1

,

0, 0,k k k k

v x x

v x L x v xv v k−
+

=

 ′′ ′= + − = ≥ 
 

implying 

( ) ,v x x=                            (26) 

which is indeed the exact analytical solution for Chebyshev’s differential equa-
tion when 1n = . 

Case 2: 2n =  
Let us consider an IVP featuring Chebyshev’s differential equation with 2n =  

as follows 

( )
( ) ( )

21 4 0,

0 1, 0 0.

x v xv v

v v

′′ ′− − + =

′= − =
                      (27) 

In the same manner, we express the governing differential equation above us-
ing operator notation as follows 

2 4 ,Lv x v xv v ′′ ′= + −                        (28) 

such that after applying the inverse linear differential operator 1L−  to both 
sides of the latter equation reveals 

1 21 4 .v L x v xv v−  ′′ ′= − + + −   

As in the preceding problem, the resulting recursive relation is thus obtained 
as follows 

( )
( )
( )
( )

0

1 2 2
1 0 0 0

1 2
2 1 1 1

1 2
1

1,

4 2 ,

4 0,

4 0, 2,k k k k

v x

v x L x v xv v x

v x L x v xv v

v x L x v xv v k

−

−

−
+

= −

 ′′ ′= + − = 
 ′′ ′= + − = 
 ′′ ′= + − = ≥ 

 

which upon taking the sum gives 

( ) 21 2 ,v x x= − +                        (29) 

that is also the exact analytical solution for Chebyshev’s differential equation 
when 2n = . 

3.3. Hermite’s Differential Equation 

Consider the Hermite’s differential equation 

2 2 0.v xv nv′′ ′− + =                      (30) 
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Equally, using the ADM procedure described above, the corresponding recur-
sive scheme is obtained by 

( ) ( )
( ) [ ]

0

1
1

,

2 2 , 0.k k k

v x x

v x L xv nv k

φ
−

+

=

′= − ≥
 

Case 1: 1n =  
Let us consider an IVP of Hermite’s differential equation with 1n =  as fol-

lows 

( ) ( )
2 2 0,

0 0, 0 2.
v xv v
v v
′′ ′− + =

′= =
                      (31) 

In a similar way, we express the governing differential equation above via an 
operator notation as follows 

2 2 ,Lv xv v′= −                         (32) 

such that after applying the inverse linear differential operator 1L−  to both 
sides of the latter equation reveals 

[ ]12 2 2 .v x L xv v− ′= + −  

Then, as in the preceding problem, the resulting recursive relation is thus ob-
tained as follows 

( )
( ) [ ]

0

1
1

2 ,

2 2 0, 0,k k k

v x x

v x L xv v k−
+

=

′= − = ≥
 

which upon summing the components nv  gives 

( ) 2 ,v x x=                          (33) 

which is a well-known exact analytical solution for Hermite’s differential equa-
tion when 1n = . 

Case 2: 2n =  
Let us consider an IVP of Hermite’s differential equation with 2n =  as fol-

lows 

( ) ( )
2 4 0,

0 2, 0 0.
v xv v
v v
′′ ′− + =

′= − =
                     (34) 

Therefore, expressing the governing differential equation above via an opera-
tor notation, one gets 

[ ]2 4 ,Lv xv v′= −                        (35) 

such that after applying the inverse linear differential operator 1L−  to both sides 
of the latter equation reveals  

[ ]12 2 4 .v L xv v− ′= − + −  

Lastly, the resulting recursive relation is thus obtained via the application of 
the ADM procedure as follows 
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( ) [ ]
( ) [ ]
( ) [ ]

0
1 2

1 0 0

1
2 1 1

1
1

2,

2 4 4 ,

2 4 0,

2 4 0, 2,k k k

v

v x L xv v x

v x L xv v

v x L xv v k

−

−

−
+

= −

′= − =

′= − =

′= − = ≥

 

that sums to, 

( ) 22 4 ,v x x= − +                      (36) 

which is the exact analytical solution for Hermite’s differential equation when 
2n = . 

Notably, it is worth mentioning here that, as the present study considers only 
the Legendre’s, Chebyshev’s, and Hermite’s differential equations for 1n =  and 

2n = , the same ADM procedure can equally be extended to other classes of spe-
cial differential equations in mathematical physics for any value of n, in general. 
Equations like Laguerre, Gegenbauer, Jacobi differential equations, and others 
(both singular and nonsingular) could, in the same way, be treated via the ADM 
for any given n. More so, other special equations that have no orthogonal func-
tions like Bessel, modified Bessel, Riccati, and Euler to state a few could also be 
examined by the method; in addition to the higher-order differential equations 
that are also evenly covered by the technique. 

4. Conclusion 

In conclusion, the present study makes use of the prominent Adomian iterative 
procedure to recurrently tackle some important special differential equations in 
physical sciences. As a particular interest, the known singular equations includ-
ing Legendre’s equation, Chebyshev’s equation, and Hermite’s equation have been 
successfully treated as test problems. Respective exact closed-form solutions for 
the models have been fruitfully acquired when 1n =  and 2n = . In fact, the 
acquired solutions happen to be precisely the same as the available results in the 
literature. Lastly, the used methodology is highly recommended for the study of 
both singular and nonsingular functional equations. 
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