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Abstract 
Acoustic fields with impedance boundary conditions have high engineering 
applications, such as noise control and evaluation of sound insulation mate-
rials, and can be approximated by three-dimensional Helmholtz boundary 
value problems. Finite difference method is widely applied to solving these 
problems due to its ease of use. However, when the wave number is large, the 
pollution effects are still a major difficulty in obtaining accurate numerical 
solutions. We develop a fast algorithm for solving three-dimensional Helm-
holtz boundary problems with large wave numbers. The boundary of compu-
tational domain is discrete based on high-order compact difference scheme. 
Using the properties of the tensor product and the discrete Fourier sine 
transform method, the original problem is solved by splitting it into inde-
pendent small tridiagonal subsystems. Numerical examples with impedance 
boundary conditions are used to verify the feasibility and accuracy of the 
proposed algorithm. Results demonstrate that the algorithm has a fourth- 
order convergence in 2L  and L∞ -norms, and costs less CPU calculation 
time and random access memory.  
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1. Introduction 

Acoustics is a branch of physics with high application value in military [1] [2], 
medical [3] [4] [5] and other fields [6] [7] [8]. After S. A. Schelkunoff introduced 
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the concept of impedance into electromagnetic fields [9], the concept of imped-
ance was gradually incorporated into various research fields. The impedance 
boundary condition (IBC), also called Shchukin-Leontovich condition, was first 
derived by A. N. Shchukin in 1940 [10]. In the same period, a detailed derivation 
of IBC was published by M. A. Leontovich [11] [12]. Inspired by Leontovich, Ya. 
L. Alpert first applied IBCs to the practical problems of electromagnetic waves 
propagation [13]. Since then, an increasing number of problems involving IBCs 
have been studied. In practical acoustic problems, such as indoor sound insula-
tion [14] [15] [16] and noise control [17] [18], sound-absorbing materials are 
fairly common and are usually considered as IBCs [19]. Therefore, impedance 
boundary conditions are of significance in acoustic engineering analysis and 
calculation. 

To solve the acoustic field with impedance boundary conditions, the finite 
element method (FEM) and the boundary element method (BEM) have attracted 
much attention. For the problems of two-dimensional acoustic pressure field 
with large uncertain-but-bounded parameters, a modified sub-interval perturba-
tion FEM is presented to reduce the dependency phenomenon of parameters, 
and has a remarkable performance in two-dimensional tube and cavity of a ve-
hicle [20]. In [21], Xia and Yu proposed an interval perturbation FEM and a 
modified interval perturbation FEM. 

Calculation of three-dimensional acoustic field is more challenging in both 
accuracy and efficiency. Additionally, when the frequency of acoustic waves is 
high, these standard mesh methods often exhibit the so-called “pollution effect” 
[22]. It is also a computational challenge to solve the problems within acceptable 
error for standard mesh methods. In this case, various numerical methods are 
presented to reduce the pollution effect [23] [24] [25]. However, these FEM- 
related methods still need a large amount of computing time and memory to 
solve the three-dimensional large wavenumber problem. Moreover, the pollution 
effect caused by the increase of wavenumber has not been completely solved. 

For finite difference method [26] [27], high-order schemes can be obtained by 
using the topological advantages of structured grids, which reduces the workload 
of computing area processing. Moreover, in [28] [29], it is a remarkable fact that 
fast Fourier transform technique is introduced to solve linear difference systems, 
which substantially reduce both the time consumption and the memory con-
sumption in calculation process. Nevertheless, there is still a drawback that the 
algorithms in [28] [29] can only solve Dirichlet boundary value problems or the 
boundary value problems with Neumann and Dirichlet boundary conditions. 
This drawback limits the practical application of the algorithms.  

In this paper, a high order fast algorithm is proposed to solve the three- 
dimensional Helmholtz boundary value problems involving impedance boun-
dary condition. By 19-point finite difference stencil, we discretize the Helmholtz 
equation and the impedance boundary condition to obtain the fourth-order 
compact difference scheme. Meanwhile, discrete fast Fourier sine transform is 
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used to simplify the linear systems to be solved. Furthermore, we apply the pa-
rallel techniques in programming to accelerate the calculation process. 

The outline of this paper is as follows. The model studied in this paper is 
introduced in Section 2. Fourth-order compact schemes of three-dimensional 
Helmholtz equation and discretization of impedance boundary condition are 
derived in Section 3 and Section 4, respectively. In Section 5, a fast algorithm 
with forth-order convergence is developed based on fast Fourier sine transform 
and Gaussian elimination. In Section 6, we present three numerical experiments 
to illustrate the performance of the algorithm. Several conclusions are finally 
drawn in Section 7. 

2. Model Problem 

Assuming the propagation of small amplitude acoustic wave is in a homogene-
ous ideal fluid, the wave equation in three-dimensional space is described as 

2 2 2 2

2 2 2 2 2

1 ,p p
c t x y z

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

                 (1) 

where p denotes the pressure of acoustic wave and c is the velocity of sound. The 
function of pressure p is given by 

( ) ( )( )i, , , , , e ,tp x y z t x y z ωψ −=Re                (2) 

where Re  denotes the real parts and ψ  represents the complex time har-
monic pressure. ω  is the angular frequency (rad/s) and i 1= −  is imaginary 
unit. Separating the variables of Equation (1) to obtain the time-independent 
form, the spatial distribution of acoustic pressure satisfies the Helmholtz equa-
tion 2 0ψ κ ψ∆ + =  with appropriate boundary conditions, where ∆  denotes 
the Laplace operator and κ  is the acoustic wave number given by cκ ω= . 

Without loss of generality, the problem studied in this paper is a Helmholtz 
boundary value problem in a three-dimensional continuous convex doman 

3⊂  . The boundary conditions on D∂  are mixed, involving a general im-
pedance boundary condition on IΓ  and a Dirichlet boundary on \D IDΓ = ∂ Γ . 
The model problem can be described as follows 

2 , in ,fψ κ ψ∆ + =                     (3a) 

, on ,Dbψ = Γ                      (3b) 

i , on ,Igψ κβψ⋅∇ + = Γn                  (3c) 

where ( ), ,f x y z , ( ), ,b x y z  and ( ),g x y  are known functions. n  is the 
unit outward normal to IΓ , and ∇  represents the gradient operator. β  de-
notes the relative surface admittance coefficient of sturctural damping. Generally, 
β  is a function of frequency and position. 

If 0ψ ≡  in Equation (3b), the boundary condition on DΓ  is called sound 
soft boundary. In Equation (3c), function g on the right side represents the flow 
across IΓ . Different from radiation problems, the sound source term g is set to 
zero in acoustic scattering problems. Additionally, the Neumann boundary con-
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dition is obtained if the value of β  is set to 0. Furthermore, the boundary IΓ  
is sound hard or acoustically rigid in the case of 0g = . If the valve of f, b and g 
are identically zero, and β  is set to non-zero, this model is degenerate into the 
steady-state acoustic pressure field oscillations involving an impedance boun-
dary condition as follows. 

3. Discretization of There-Dimensional Helmholtz Equation  

We assume that the domain of propagation   is cubic, and IΓ  is the upper 
surface. The domain [ ] [ ] [ ]min max min max min max, , ,x x y y z z= × ×  is divided into a  

uniform partition in steps max min

1x
x x

h
M
−

=
+

, max min

1y
y y

h
N
−

=
+

 and  

max min

1z
z z

h
K
−

=
+

 along the axes. { } 1, 1, 1

, , 0
, ,

M N K
i j k i j k

x y z
+ + +

=
 denotes the set of grids,  

where M, N and K are the numbers of internal grids in each directions. Figure 1 
illustrates the geometric structure of the model problem (3) and the 19-points 
finite difference stencil. In Figure 1, the central point is marked red. Blue and 
black represent all face-centered and all edge-centered points, respectively. 

Without losing generality, equal step size x y zh h h h= = =  is taken on each 
axes. Approximated by fourth-order Taylor series expansion at ( ), ,i j kx y z , we 
can derive 

( ) ( )

( )

12
2 2 4

, ,

2
, , 1, , , , 1, ,2

, , 1 ,
12

1 2 ,

xx i j k x x i j k

x i j k i j k i j k i j k

hx y z h

h

ψ δ δ ψ

δ ψ ψ ψ ψ

−

+ −

 
= + + 
 

= − +


             (4) 

where xxψ  is the second-order partial derivative of ψ  with respect to x, and 
2
xδ  denotes the standard second-order central difference operator in the x- 

direction. ( ), , , ,i j k i j kx y zψ ψ=  is the solution of ψ  at Let ( ), ,i j kx y z . The 
approximation of yyψ  and zzψ  can be derived in the same way, i.e. 
 

 

Figure 1. The geometric structure of the model problem and the 19-points finite differ-
ence stencil. 
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( ) ( )

( ) ( )

12
2 2 4

, ,

12
2 2 4

, ,

, , 1 ,
12

, , 1 ,
12

yy i j k y y i j k

zz i j k z z i j k

hx y z h

hx y z h

ψ δ δ ψ

ψ δ δ ψ

−

−

 
= + + 
 

 
= + + 
 





             (5) 

where 

( )

( )

2
, , , 1, , , , 1,2

2
, , , , 1 , , , , 12

1 2 ,

1 2 .

y i j k i j k i j k i j k

z i j k i j k i j k i j k

h

h

δ ψ ψ ψ ψ

δ ψ ψ ψ ψ

+ −

+ −

= − +

= − +
                (6) 

Combining Equations (3a), (4), (5) and (6), the compact fourth-order differ-
ence scheme for Helmholtz equation is obtained as follows 

( )
2

4
0 , , , ,1 ,

12i j k i j k
h f hψ

 
= + ∆ + 
 

T                   (7) 

where 

( ) ( )
2 2 2

2 2 2 2 2 2 2 2 2 2
0 1 .

12 6x y z x y y z x z
h hκ δ δ δ δ δ δ δ δ δ κ

 
= + + + + + + + 
 

T  

The truncation error of Equation (7) is 

( ) ( ) ( )

( )

4 4 6 6 4 2 2 4

4 4

2
4

4

1 1
144 360 72

.
144

x y x y x y x y

x y

h

h f f

κ ψ ψ ψ ψ ψ ψ
 

= + + + + + 
 

− +

E

      (8) 

Note that , ,i j kf∆  should be substituted by ( )2 2 2
, ,x y z i j kfδ δ δ+ + , if f is not 

second-order differentiable. Multiplying 2h  on the both sides and substituting 
2
zδ  in Equation (6), Equation (7) can be rewritten as 

( )
4

2
1 , , 1 , , 1 2 , , , , ,

12
1, 2, , ; 1, 2, , ; 1, 2, , .

i j k i j k i j k i j k
hh f

i M j N k K

ψ ψ ψ− +

 
+ + = + ∆ 

 
= = =  

T T
            (9) 

where 

( )

( ) ( )

2 2 2
2 2

1

2 4 2 4 2 2
2 2 2 2

2

1 ,
12 6

2 5 2.
12 3 6 6

x y

x y x y

h h

h h h h

κ δ δ

κ κδ δ δ δ

= + + +

 
= + + + + − 
 

T

T

         (10) 

For convenience, we introduce the tridiagonal Toeplitz matrix  

( )2

1 tridiag 1, 2,1
h

= −D . Thus, Equation (7) can be written in the matrix form as 

( )

( )

( )

2 2

2
2

2

1
12

6

.
12

M N K M N K M N K

M N K M N K M N K B

M N K M N K M N K B

h

h

h F F F

κ

κ

 
+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Ψ 

 

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Ψ + Ψ +Ψ

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + +

D I I I D I I I D

D D I I D D D I D

D I I I D I I I D

  (11) 
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Here the symbol ⊗  denotes the Kronecker product. The sizes of MD , ND  
and KD  are M M× , N N× , K K× , respectively. MI , NI , KI  are iden-
tity matrices, and 

( )
( )

T
1,1,1 1,1, 1,2,1 1,2, 1, , , ,

T
1,1,1 1,1, 1,2,1 1,2, 1, , , ,

, , , , , , , , , ,

, , , , , , , , , .

K K N K M N K

K K N K M N KF f f f f f f

ψ ψ ψ ψ ψ ψΨ =

=

   

   

 

BΨ  and BF  are the boundary parts not included in Ψ and F, respectively. In 
details, we can derive 

( ) ( )

( ) ( )

( ) ( )

2 2 2 2

1 0,:,: 2 :,:, 1

2 2 2 2

1 :,0,: 2 :, 1,:

2 2 2 2

1 :,:,0 2 :,:, 1

1 1
12 12

1 1
12 12

1 1 ,
12 12

B M N K M N K M

M N K M N K N

M N K M N K K

h hF F F

h hF F

h hF F

κ κ

κ κ

κ κ

+

+

+

   
= + ⊗ ⊗ + + ⊗ ⊗   
   
   

+ + ⊗ ⊗ + + ⊗ ⊗   
   
   

+ + ⊗ ⊗ + + ⊗ ⊗   
   

a I I a I I

I a I I a I

I I a I I a

 (12) 

where  

( ) ( )

( ) ( )

( ) ( )

T T
1 12 2

T T
1 22 2

T T
2 22 2

1 11,0, ,0 , 1,0, ,0 ,

1 11,0, ,0 , 0,0, ,1 ,

1 10,0, ,1 , 0,0, ,1 .

M NM N

K MK M

N KN K

h h

h h

h h

= =

= =

= =

a a

a a

a a

 

 

 

              (13) 

For BΨ , it is divided into edge part BEΨ  and surface part BSΨ  as 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

2 2

1 1 0,:,0 2 1 1,:,0

2 2

1 1 :,0,0 2 1 :, 1,0

2 2

1 1 0,0,: 1 2 0, 1,:

2 2

2 1 1,0,: 2 2 1, 1,:

2 2

1 2 0,:, 1

6 6

6 6

6 6

6 6

6

BE M N K M N K M

M N K M N K N

M N K M N K K

M N K M M N K M K

M N K K

h h

h h

h h

h h

h h

+

+

+

+ + +

+

Ψ = ⊗ ⊗ Ψ + ⊗ ⊗ Ψ

+ ⊗ ⊗ Ψ + ⊗ ⊗ Ψ

+ ⊗ ⊗ Ψ + ⊗ ⊗ Ψ

+ ⊗ ⊗ Ψ + ⊗ ⊗ Ψ

+ ⊗ ⊗ Ψ +

a I a a I a

I a a I a a

a a I a a I

a a I a a I

a I a ( )

( ) ( )

2 2 1,:, 1

2 2

1 2 :,0, 1 2 2 :, 1, 1

6

,
6 6

M N K M K

M N K K M N K N K
h h

+ +

+ + +

⊗ ⊗ Ψ

+ ⊗ ⊗ Ψ + ⊗ ⊗ Ψ

a I a

I a a I a a

  (14) 

and 

( )

( )

( )

( )

( )

2

1 1 0,:,:

2

2 2 1,:,:

2

1 1 :,0,:

2

2 2 :, 1,:

2

1 1 :,:,0

6

6

6

6

6

BS BI M N K M N K

M N K M N K M

M N K M N K

M N K M N K N

M N K M N K

h

h

h

h

h

+

+

Ψ = Ψ + ⊗ ⊗ + ⊗ ⊗ Ψ

+ ⊗ ⊗ + ⊗ ⊗ Ψ

+ ⊗ ⊗ + ⊗ ⊗ Ψ

+ ⊗ ⊗ + ⊗ ⊗ Ψ

+ ⊗ ⊗ + ⊗ ⊗ Ψ

a D I a I D

a D I a I D

D a I I a D

D a I I a D

D I a I D a
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( ) ( )

( ) ( )

( )

2 2 2 2

1 0,:,: 2 1,:,:

2 2 2 2

1 :,0,: 2 :, 1,:

2 2

1 :,:,0

1 1
12 12

1 1
12 12

1 ,
12

M N K M N K M

M N K M N K N

M N K

h h

h h

h

κ κ

κ κ

κ

+

+

   
+ + ⊗ ⊗ Ψ + + ⊗ ⊗ Ψ   
   
   

+ + ⊗ ⊗ Ψ + + ⊗ ⊗ Ψ   
   
 

+ + ⊗ ⊗ Ψ 
 

a I I a I I

I a I I a I

I I a

 (15) 

where BIΨ  is discrete value of solution on the impedance boundary IΓ . Since 
the function ( ), ,b x y z  is known, the solution of ψ  on DΓ  can be replaced. 
Moreover, we can rewrite Equation (11) as follows 

( )

( )

( )

( )

2 2

2
2

2 2 2

2 2 :,:, 1

2

1
12

6

1
12 6

,
12

M N K M N K M N K

M N K M N K M N K

M N K M N M N K K

M N K M N K M N K B BD

h

h

h h

h F F F

κ

κ

κ
+

 
+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Ψ 

 

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Ψ + Ψ

  
+ + ⊗ ⊗ + ⊗ + ⊗ ⊗ Ψ     

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + + −Ψ

D I I I D I I I D

D D I I D D D I D

I I a D I I D a

D I I I D I I I D

 (16) 

where BD B IΨ = Ψ −Ψ . 

4. Discretization of Impedance Boundary Condition 

To obtain the fourth-order difference approximation with Taylor series expan-
sion, we discrete the impedance boundary condition in Equation (3c). The left 
term can be written as 

( )

( )

( )

, ,

2
, , 2 , ,

, , 1, , 1

4

i

i
2 6

, 1,2, , ; 1, 2, , ,

i j K

i j K i j K
zzz i j Ki j K

h
h

h i M j N

ψ κβψ

ψ ψ
ψ βκψ+

++

⋅∇ +

−
= − +

+ = =

n

 

           (17) 

where , , 2i j Kψ +  is the ghost points outside the model domain  . Taking the 
partial derivatives of z on both sides of Helmholtz Equation (Equation (3a)), we 
can obtain the third-order partial derivative as follows 

2 .zzz xxz yyz z zfψ ψ ψ κ ψ= − − − +                  (18) 

Further, Equation (18) can be approximated as 

( ) , , 2 , ,2 2 2 .
2

i j K i j K
zzz x y zf

h
ψ ψ

ψ δ δ κ + −
= − + + +             (19) 

After substitution of (17) and (19) into (3c), the expression is given by 

( )

( ) ( )

2
, , 2 , ,2 2 2

, , 1

2
4

, , , 1

1 i
6 2

.
6

i j K i j K
x y i j K

i j z i j K

h
h

hg f h

ψ ψ
δ δ κ κβψ+

+

+

− 
+ + + + 

 

= + +

         (20) 
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Similarly, the matrix form of Equation (20) is obtained as follows 

( )

( )

2 2 2

:,:, 2 :,:, 1

2 2 2

:,:,

3

1 i2
6 6

1
6 6

2 ,
3

MN M N M N K K

MN M N M N K

z

h h h

h h

hh B

κ κβ

κ

+ +

  
+ + ⊗ + ⊗ Ψ + Ψ     

  
− + + ⊗ + ⊗ Ψ     

= + −

I D I I D

I D I I D

g f

   (21) 

where 

( )
( ) ( ) ( ) ( ) ( ) ( )( )
( )

T
1,1 1,2 1, 2,1 2, ,

T

1,1 1,2 1, 2,1 2, ,

2
T

0,1, 0,2, 0, , 1,1, 1,2, 1, ,

2

1,0, 1, 1, 2,0, 2, 1,

, , , , , , , , ,

, , , , , , , , ,

, , , ,0, ,0, , , ,
6

,0, ,0, , ,0, ,0, , ,
6

N N M N

z z z z z z zN N M N

K K N K M K M K M N K

K N K K N K M

g g g g g g

f f f f f f

hB b b b b b b

h b b b b b

+ + +

+ +

=

=

=

+

g

f

  

  

  

  (

)
,0,

T
, 1,

,

0, ,0, .

K

M N Kb +

 

We denote ( )
2 2 2

1 1
6 6MN M N M N
h hL κ 

= + + ⊗ + ⊗ 
 

I D I I D , and 1L  is in-

vertible if the h is small enough. Thus, we have 

3
1

:,:, 2 :,:, 1 :,:, 12 i2 .
3K K z K
hL h B hκβ−

+ +

 
Ψ = Ψ + + − − Ψ 

 
g f         (22) 

Replacing k in Equation (9) with 1K + , we have 

( )
4

2
1 , , , , 2 2 , , 1 , , 1,

12i j K i j K i j K i j K
hh fψ ψ ψ+ + +

 
+ + = + ∆ 

 
T T         (23) 

and the matrix form as follows 

( )

( )

( )

2 4 2 4

2 2

:,:, 1

2 2 2

:,:, 2

2 2 2

:,:,

4
2

:,:, 1 :,:, 1

12 3 6

5 2
6

1
12 6

1
12 6

.
12

M N M N M N

MN K

MN M N M N K

MN M N M N K

K K

h h h

h

h h

h h

hh F F

κ

κ

κ

κ

+

+

+ +

 
+ ⊗ + ⊗ + ⊗  

 
+ − Ψ    
  

+ + + ⊗ + ⊗ Ψ     
  

+ + + ⊗ + ⊗ Ψ     

= + ∆

D I I D D D

I

I D I I D

I D I I D

       (24) 

Denoting ( )
2 2 2

2 1
12 6MN M N M N

h hL κ 
= + + ⊗ + ⊗ 
 

I D I I D  and substituting 

Equation (22) into Equation (24), we have 
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( )

( )

2 4 2 4

2 2
1

:,:, 1 2 1 :,:, 1

2 2 2

:,:,

3 4
1 1 1 2

2 1 2 1 2 1 :,:, 1 :,:, 1

12 3 6

5 2 i2
6

2 1
12 6

2 .
3 12

M N M N M N

MN K K

MN M N M N K

z K K

h h h

h h L L

h h

h hhL L L L L L B h F F

κ

κ κβ

κ

−
+ +

− − −
+ +

 
+ ⊗ + ⊗ + ⊗  

 
+ − Ψ − Ψ    

  
+ + + ⊗ + ⊗ Ψ     

= − − + + + ∆

D I I D D D

I

I D I I D

g f

     (25) 

5. Fast Algorithm Based on Discrete Fourier Sine Transform 

Combining Equation (16) and (25), the linear system is obtained from the com-
pact fourth-order difference schemes as follows 

11 12

:,:, 121 22 K I

FA A
FA A Γ+

Ψ    
=      Ψ    

                  (26) 

Here 

( )

( )

( )

( )

2 2

11

2
2

2 2 2

12 2 2

2 2 2
2 T

21 2

2 4 2

22

1
12

,
6

1 ,
12 6

2 1 ,
12 6

12 3

M N K M N K M N K

M N K M N K M N K MNK

M N K M N M N K

MN M N M N K

hA

h

h hA

h hA h

h hA

κ

κ

κ

κ

κ

 
= + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ 
 

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

 
= + ⊗ ⊗ + ⊗ + ⊗ ⊗ 
 
  

= + + ⊗ + ⊗ ⊗     

 
= +



D I I I D I I I D

D D I I D D D I D I

I I a D I I D a

I D I I D a

( )
4

2 2
1

2 1

6

5 2 i2 ,
6

M N M N M N

MN MN

h

h h L Lκ κβ −


⊗ + ⊗ + ⊗  
 

+ − −    

D I I D D D

I I

 

( )

3 4
1 1 1 2

2 1 2 1 2 1 :,:, 1 :,:, 1

2

2 ,
3 12

12
.

I z K K

M N K M N K M N K

B BD

h hF hL L L L L L B h F F

hF F

F F

− − −
Γ + += − − + + + ∆

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ + −Ψ

g f

D I I I D I I I D  

To reduce the computational complexity and accelerate the speed of solving 
the linear system, the Fourier sine transform (FST) is applied to improve the al-
gorithm. The discrete Fourier sine transform matrix can be expressed as 

( ) ,

2 sin ,
1 1M i j

ij
M M

  =   + +  

πT                (27) 

and MT  satisfies M M M=T T I , where M represents the size of matrices. A typi-
cal discrete FST is shown as follows 
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( )
( )

( )

1 2

2
2

2

diag , , , ,

4 1
sin ,

2 1

M M M M M

i

M i
Ma

λ λ λ

λ

= =

 +
= −   + 

π


T D T L 

               (28) 

where 1,2, ,i M=  , 1,2, ,j M=  . Replacing M in Equation (28) with N, the 
definitions of ( ) ,N i j

T  and iµ  can be obtained in the same way. 
Multiplying M N⊗T T  on both sides of Equation (25), the following equation 

can be obtained 

2 :,:, 22 :,:, 12 ,
IK KL A F+ ΓΨ + Ψ =                   (29) 

where 

( )

( )

( )

2 4 2 4

22

2 2
1

2 1

2 2 2

1

2 2 2

2

12 3 6

5 2 i2 ,
6

1 ,
6 6

1 ,
12 6

M N M N M N

MN MN

MN M N M N

MN M N M N

h h hA

h h L L

h hL

h hL

κ

κ κβ

κ

κ

−

 
= + ⊗ + ⊗ + ⊗  

 
+ − −    
 

= + + ⊗ + ⊗ 
 
 

= + + ⊗ + ⊗ 
 

L I I L L L

I I

I L I I L

I L I I L

 

( ) ( ) ( )
( ) ( )
( ) ( )

3 4
1 1 1 2

2 1 2 1 2 1 :,:, 1 :,:, 1

:,:, 1 :,:, 1 :,:, 1 :,:, 1

:,:, :,:, 1 :,:, 1 :,:, 1

2 ,
3 12

, , ,

, ,

, .

I z K K

M N z M N z M N

K M N K K M N K

K M N K K M N K

h hF hL L L L L L B h F F

B B

F F F F

− − −
Γ + +

+ + + +

+ + +

= − − + + + ∆

= ⊗ = ⊗ = ⊗

= ⊗ ∆ = ⊗ ∆

Ψ = ⊗ Ψ Ψ = ⊗ Ψ

g f

g T T g f T T f T T

T T T T

T T T T

 

Apparently, the linear system expressed in Equation (29) is diagonal and has 
good properties for solving. 

For Equation (16), the discrete FST is applied similarly. Thus, we have 

11 12 :,:, 1KA A F+Ψ + Ψ =                       (30) 

where 

( )

( )

( )

( ) ( )

( )

2 2

11

2
2

2 2 2

12 2 2

2

1
12

,
6

1 ,
12 6

, ,

12

M N K M N K M N K

M N K M N K M N K MNK

M N K M N M N K

M N K BD M N K BD

M N K M N K M N K

B BD

hA

h

h hA

hF F

F F

κ

κ

κ

 
= + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ 
 

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

 
= + ⊗ ⊗ + ⊗ + ⊗ ⊗ 
 

Ψ = ⊗ ⊗ Ψ Ψ = ⊗ ⊗ Ψ

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ + −Ψ

L I I I L I I I D

L L I I L D L I D I

I I a L I I L a

T T I T T I

L I I I L I I I D

.

 

Since the existence of KD  making Equation (30) still a block tridiagonal sys-
tem, we consider introducing LU-decomposition to simplify the process of solu-
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tion. Firstly, we rewrite Equation (30) to its equivalent form as follows 

( ) ( )

( )

( ) ( ) ( )

2 2 2

, ,: , ,:

2 2 2
2

, ,: 1 , , 1

2

, ,: , ,: , ,: , ,:

1
12 6

1
12 6

.
12

i K j K K i j i j K j K i K i j

i j i j K i j K

i K j K K i j i j B BDi j i j

h h

h h a

h F F F

κ λ µ λ µ µ λ

κκ λ µ

λ µ

+ +

 
+ + + Ψ + + + Ψ 

 
 

+ Ψ + + + + Ψ 
 

= + + + + − Ψ

I I D I D D

I I D

 (31) 

Let 

( )

( )

2 2

, ,

2
2

1
12

6

i j i j i K j K K

i j K j K i K K

hL U

h

κ λ µ

λ µ µ λ κ

 
= + + + 
 

+ + + +

I I D

I D D I

 

denote the LU-decomposition of the symmetric tridiagonal matrix. Obviously, 

,i jL  is a K K×  invertible matrix. Multiplying 1
,i jL−  on both sides, Equation 

(31) can be written as 

( )

( ) ( ) ( )

2 2 2
1

, , ,: , 1 , , 1

2
1 1 1 1
, , ,: , , ,: , ,, ,: , ,:

1
12 6

.
12

i j i j i j i j K i j K

i j i K j K K i j i j i j i j B i j BDi j i j

h hU L a

h L F L F L F L

κ λ µ

λ µ

−
+ +

− − − −

 
Ψ + + + + Ψ 

 

= + + + + − ΨI I D

 (32) 

Secondly, the forward Gaussian elimination is adopted to solve Equation (32). 
For arbitrary positive integer [ ]1,i M∈  and [ ]1,j N∈ , we extract the last equ-
ation of Equation (32), and the following equations can be derived 

, , , , , , 1 , , .i j i j K i j i j K i j Ku l rψ ψ ++ =                   (33) 

Here ,i jl  is the last elements of ( )
2 2 2

1
, 11

12 6i j i j K
h hL aκ λ µ−

+

 
+ + + 

 
. ,i ju  and  

,i jr  denote ,i jU  and the right-hand term of the last equation of Equation (32), 
respectively. On this basis, we stack Equation (33) according to i and j, so we 
obtain the equations as follows 

:,:, :,:, 1 ,u K l K +Ψ + Ψ =D D R                    (34) 

where ( )1,1 1, ,diag , , , ,u N M Nu u u=D   , ( )1,1 1, ,diag , , , ,l N M Nl l l=D   , and  
( )T

1,1, 1, , , ,diag , , , ,K N K M N KR R R=R   . Combining Equations (29) and (34), we 
have 

2 :,:, 22 :,:, 1

:,:, :,:, 1

2 ,

,
IK K

u K l K

L A F+ Γ

+

 Ψ + Ψ =


Ψ + Ψ =D D R
                 (35) 

Notice that all coefficient matrices in Equations (29) and (34) are diagonal and 
invertible. Using Gaussian elimination, the solution of ψ  on IΓ  can be get, 
i.e. 

( ) ( )11 1
:,:, 1 22 2 22 2 .

IK u l uA L F L
−− −

+ ΓΨ = − −D D D R            (36) 
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Substituting :,:, 1K +Ψ  into Equation (30), the original large block tridiagonal 
linear system is reduced to 

( ) ( )11 1
11 12 22 2 22 2 .

Iu l uA F A A L F L
−− −

ΓΨ = − − −D D D R         (37) 

Thus, Ψ  can be obtained by substituting :,:, 1K +Ψ  into Equation (32), which 
is equivalent to solving Equation (37) directly. Finally, by multiplying  

M N K⊗ ⊗T T I  on the left side of Ψ , the numerical solution of the model 
problem in Equation (3) is obtained. Moreover, we can get :,:, 1K +Ψ  by multip-
lying M N⊗T T . 

We notice that the calculation process of Ψ  via Equation (32) is indepen-
dent of i and j. Meanwhile, due to the feature of coefficient matrix and the se-
quence of components of Ψ , ( )M N KΨ = ⊗ ⊗ ΨT T I  can be calculated sepa-
rately with respect to k. Therefore, the steps computing Ψ  and Ψ  can be 
processed in parallel. To summarize, Algorithm 1 demonstrates the steps of this 
fast algorithm. 

6. Numerical Experiments 

In this section, three numerical experiments with different coefficient β  are 
presented to demonstrate the validity, efficiency and applicability of the fast al-
gorithm for Helmholtz impedance boundary value problem. We consider nu-
merical experiments in the three-dimensional domain [ ] [ ] [ ]0,1 0,1 0,1= × × . 
All experiments are performed using MATLAB, and the BiCG method is adopted 
to solve the equations. 

To test the performance of the fast algorithm, we offer the time of computing 
Ψ  from Ψ , error in 2L  and L∞ -norms. The definitions of error in 2L  
and L∞ -norms are as follows 
 

 

Algorithm 1. Fast algorithm based on discrete Fourier sine transform. 
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( )( )( ) ( )( )2*
2 max min max min max m

1

in

*

2

,

,maxM

e x x y y z z MNK

e

= − − − Ψ −Ψ

= Ψ −Ψ
 

where *Ψ  and Ψ  are the exact solution and the numerical solution, respec-

tively. Notice that 2e  should be 
2

1 2
*1

MNK
 Ψ −Ψ 
 

 due to the size of  . 

The convergence order of the algorithm is defined as 

( ) ( )( )
( )
( ) ( )( )
( )

2 2 2 1
2

2 1

2 1

2 1

log
order ,

log

log
order ,

log

n n

n n

M n M n
M

n n

e h e h
h h

e h e h
h h

+

+

+

+

=

=

               (38) 

where nh  represents the labels of different step size. 

6.1. Example with 1β =  

This example tests the performance of the algorithm. When 1β = , the imped-
ance boundary condition has the most general form. For the model problem (3) 
which has the exact solution  

( ) ( ) ( )*
2

1 sin 3 sin sin ,x y zψ κ
κ

π π=                (39) 

the model problem (3) can be derived as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
2

2

2

i

10 sin 3 sin sin , in ,

1 sin 3 sin sin , on ,

1i sin 3 sin e , on .

D

z
I

x y z

x y z

x y κ

ψ κ ψ κ
κ

ψ κ
κ

ψ κβψ
κ

π
π π

π π

π π

∆ + = −

= Γ

⋅∇ + = Γn



       (40) 

The computational errors, the time and memory consumption for different M 
are indicated in Table 1. With fewer grid points used ( 16,32M = ), the compu-
tational error between the numerical solution and the exact solution is only 10−7.  
 
Table 1. Error, convergence rate, the time and memory consumption with 3κ = π  and 

1β = .  

M 2e  order2 Me  orderM Ψ  time 
(s) 

Ψ  time 
(s) 

Memory 
(MB) 

8 1.5853e−04 - 4.7366e−04 - 0.0076 0.0060 0.0318 

16 3.5083e−06 5.4978 8.9013e−06 5.7337 0.0070 0.0464 0.3951 

32 2.0781e−07 4.0774 5.5761e−07 3.9967 0.0280 0.3385 2.0110 

64 1.2573e−08 4.0469 3.4665e−08 4.0077 0.1103 2.9618 13.9073 

128 7.7463e−10 4.0207 2.1644e−09 4.0015 0.6551 54.0724 106.9786 

256 4.8097e−11 4.0095 1.3523e−10 4.0005 4.7838 1790.9248 780.5083 
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The convergence rate is calculated according to Equation (38) and is proved to 
be up to the fourth-order in 2L  and L∞ -norms. Moreover, the time and mem-
ory consumption are acceptable when the space complexity is ( )3M . Figure 
2 demonstrates the real part and imaginary part of numerical solution Ψ . It 
can be seen that the imaginary part of the numerical solution appears mainly on 
the impedance boundary. 

6.2. Example with 0β =  

When 0β = , the impedance boundary condition is simplified to Neumann 
boundary condition. In this case, the model problem (3) with the exact solution 

*ψ  in Equation (39) becomes the following 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
2

2

2

10 sin 3 sin sin , in ,

1 sin 3 sin sin , on ,

1 sin 3 sin cos , on .

D

I

x y z

x y z

x y z

ψ κ ψ κ
κ

ψ κ
κ

ψ κ
κ

π
π π

π π

π

∆ + = −

= Γ

⋅ π∇ = Γn



        (41) 

The convergence rate and some measures of the algorithm’s performance are 
shown in Table 2. With the Neumann boundary condition, the fast algorithm 
proposed in this paper still reach the convergence rate of the fourth order. Due 
to the simplification of the boundary conditions, the memory consumption and 
the time consumption of solving Ψ  have fallen by almost half compared with 
the case 1β = . The numerical solution and the error *

:,:,:ψΨ −  are given in 
Figure 3. Since 0β = , both the numerical and exact solutions are real numbers. 
When 7κ = π  and 256M = , the error is only 10−10, which shows that the al-
gorithm also has good applicability to Neumann boundary condition. 

6.3. Example with 1β = −  

The case of large wave numbers (or high frequency) is always a challenge for  
 

 

Figure 2. Numerical solution Ψ  with 3κ = π  and 256M = : Real part (left). Imaginary part (right). 
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Figure 3. Numerical solution Ψ  (left) and error (right) with 7κ = π  and 256M = . 
 
Table 2. Error, convergence rate, the time and memory consumption with 7κ = π  and 

0β = . 

M 2e  order2 Me  orderM Ψ  
time (s) 

Ψ  
time (s) 

Memory 
(MB) 

8 3.5831e−03 - 1.0380e−02 - 0.0070 0.0038 0.0234 

16 4.4159e−05 6.3424 1.1995e−04 6.4353 0.0048 0.0187 0.3243 

32 2.1652e−06 4.3501 5.9741e−06 4.3275 0.0212 0.1428 1.2170 

64 1.2722e−07 4.0891 3.7993e−07 3.9749 0.1018 1.0409 7.4846 

128 7.7887e−09 4.0298 2.3821e−08 3.9954 0.6242 18.8533 55.2907 

256 4.8289e−10 4.0116 1.4937e−09 3.9953 3.9950 423.6253 428.4968 

 
solving Helmholtz boundary value problem. In this example, we consider the 
model problem (3) when 1β = −  and 15 ,31 ,63κ = π π π . With exact solution in 
Equation (39), the model problem can easily be derived. Assuming the velocity 
of sound wave is 340 m sc = , so the frequency is 2 50 H2 5 zf cκ= π = , 5270 
Hz and 10,710 Hz, respectively. Figure 4 illustrates the fitting lines between 

( )log Error  and step h when 15κ = π . The slopes of the fitting lines represent 
the convergence rate according to Equation (38) and are 4.295 and 4.273, re-
spectively. 

When 15 ,31κ = π π  and 63π , the error of the numerical solution are plotted 
in Figures 5-7, respectively. It can be found that the Helmholtz equation is 
highly oscillatory with large wave numbers. With the wave number increasing, 
the error of both real part and imaginary part also increases, but it is still in the 
acceptable range. Furthermore, though the numerical solution has strong oscil-
lation, the boundary between wave and wave is very clear. It shows that the algo-
rithm has high resistance to “Pollution effect” in the case of large wave numbers. 
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Figure 4. log-log graph of ( )log h  and ( )log Error  with 15κ = π  (i.e. 2550 Hzf = ). 

 

 

Figure 5. Error *
:,:,:ψΨ −  with 15κ = π  and 256M = : Real part (left). Imaginary part (right). 

 

 

Figure 6. Error *
:,:,:ψΨ −  with 31κ = π  and 256M = : Real part (left). Imaginary part (right). 
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Figure 7. Error *
:,:,:ψΨ −  with 63κ = π  and 256M = : Real part (left). Imaginary part (right). 

7. Conclusions and Suggestions 

A fast high-order algorithm based on compact finite difference schemes is pur-
posed to solve three-dimensional Helmholtz impedance boundary value prob-
lems. By using the discrete Fourier sine transform and forward Gaussian elimi-
nation, the large block tridiagonal linear systems derived from the original mod-
el problem is reduced to several independent smaller systems. Moreover, ac-
cording to the arrangement format of the coefficient matrix, we parallelize the 
calculation program to further reduce the time consumption. 

Numerical examples with impedance and Neumann boundary conditions are 
considered to verify the effectiveness and accuracy of the algorithm. Results de-
dicate that the algorithm achieves fourth-order convergence rate in 2L  and 
L∞ -norms, and consumes less time and memory. It has certain application and 
popularization value in engineering practice. 

In the future, higher-order compact difference schemes can be derived for the 
three-dimensional Helmholtz boundary value problems with more complex 
boundary conditions, e.g. electromagnetic scattering and seismology. In that 
case, the algorithm can be modified and adopted to reduce the consumption of 
solving, including time cost and memory cost. 
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