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Abstract 
The aim of this paper is to give an appropriate numerical method to solve 
Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The 
time discretization involves an explicit scheme for the nonlinear part of the 
operator and an implicit Euler discretization of the linear part. Finite differ-
ence schemes are used for the spatial part. This finally leads to the numerical 
solution of a sparse linear system that can be solved efficiently. 
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1. Introduction 

Allen-Cahn equation was introduced by Allen and Cahn [1] [2] and can be 
viewed as a simple model to study the phase separation, such as ferromagnets 
with positively and negatively magnetized domains and viewed as a reaction 
diffusion equation in material sciences. The Allen-Cahn equation is a nonlinear 
kind of the heat equation. Similarly, to the heat equation, it contains a term that 
tends to make the field constant, given by a Laplace operator accomplishing a 
local average around any fixed point, and send this average towards zero. Many 
methods can be used to solve nonlinear PDEs. In [3], the author use Adomian 
Decomposition Method coupled to the Lesnic’s approach to solve boundary val-
ue problems and initial boundary value problems with mixed boundary condi-
tions for linear and nonlinear partial differential equations. Allen-Cahn equation 
has been applied to many problems, such as image analysis [4] [5] the motion by 
mean curvature flows [6]. In particular, it has become a essential model equation 
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for the diffuse interface technique proposed to study phase transitions dynamics 
in materials science [7]. Furthermore, an efficient algorithm of this equation has 
proposed. Several numerical schemes have been suggested to solve Allen-Cahn 
equation, and including the finite difference method, the finite element method. 
In [8], the authors propose some efficient and accurate numerical methods to 
compute the steady-state of variable coefficients space fractional Cahn-Allen equa-
tions. The approach combines an adaptive time stepping semi-implicit gradient 
flow method to minimize the fractional energy functional and pseudo-spectral ap-
proximation schemes. Based on the use of a preconditioned GMRES, the space 
fractional Cahn-Allen equation is then solved efficiently. In [9], the author pro-
posed and analyzed for the Cahn Allen equation by dividing the equation into 
linear part and nonlinear part based on the idea of operator splitting. For the li-
near part, it is discretized by using the Crank-Nicolson scheme and solved by fi-
nite element method. The nonlinear part is solved accurately. 

In [10], the authors split the Allen Cahn equation into the linear heat and 
nonlinear equations; and then solve the linear part using the Fourier spectral 
method and the nonlinear part using an analytic closed-form solution. These 
steps are unconditionally stable. However, if a large time step is used, then the 
nonlinear part dominates the evolution and results in a sharp interfacial transi-
tion layer. 

In this paper, we will look at the two dimensional form of the Allen-Cahn Equa-

tion corresponding to Equation (7.9) in [11] with 0g =  and ( ) ( )221 1
4

W u u= − , 

where ( ), ,u u x y t=  satisfies  

( ) ( ) ( ) ( )3, , , , in 0, ,tu x y t u x y t u u gε ε ε= ∆ − − + Ω× ∞         (1) 

supplemented with the Dirichlet or Neumann boundary conditions and the ini-
tial conditions  

( ) ( ), ,0 , in .u x y f x y= Ω                    (2) 

Here ( ) ( )2, 1,1x y ∈Ω = − . Here, f and g are two given functions, that will be 
fixed later for numerical study. It is a parabolic, nonlinear and nonhomogeneous 
PDEs in two dimensions. Moreover, the parameter 0t >  is the time and 0ε >  
is a parameter to fix, which can small leading to a stiff problem (and possibly 
unstable discretization schemes). To get a well-posed problem, we need to add 
a boundary condition on the boundary of the domain, i.e. :Γ = ∂Ω , that we 
choose as the non-homogeneous Dirichlet boundary condition ( ), , 1u x y t =  on 
Γ . Finally, since we have an initial value problem, we provide an initial data 
( ) ( )0, , 0 : ,u x y t u x y= =  in Ω . Many numerical simulations of Allen-Cahn eq-

uation was presented, see [11] [12] for a non-exhaustive list. The paper is orga-
nized as follows. In section 2, we recall some properties related to five points ap-
proximations of −∆  and the tensor product that will be used in our MATLAB 
code. In section 3, a semi-implicit finite difference will be formulated for homo-
geneous Allen Cahn equation with Dirichlet boundary condition. In section, 4, a 
semi-implicit finite scheme for homogeneous Allen Cahn equation with Neu-
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mann boundary condition will be presented. In section 5, we will consider the 
Non-homogeneous Allen Cahn equation with Neumann boundary condition as 
good application to valid our numerical approach, numerical tests will be pre-
sented for different choice of initial data to validate our algorithms and our code 
of calculation. Then we conclude.  

2. Preliminary 

We consider the square domain ( )2;a bΩ = , discretized by N segments in each 
direction x and y. The number of interior points is : 1m N= − , and the total  

number of interior points is 2M m= . The discretization step is b ah
N
−

= . The  

boundary Γ  is discretized by using 4N points. The boundary is composed of 
four parts , , ,S W N EΓ , for South, West, North, East. 

If ones considers a Dirichlet boundary condition, then we have u g=  on the 
boundary Γ  for solving the Laplace equation u f−∆ =  in Ω . We recall that 
under a suitable mathematical setting, the well-posedness of the problem can be 
proved. For the interior points, we use a five points stencil approximation of the 
negative Laplacian −∆   

( ) ( )1, , 1 , 1, , 12
1, 4i j i j i j i j i j i ju x y u u u u u
h − − + +−∆ ≈ − + − + +           (3) 

on the square lattice 2 ,i j N≤ ≤  with Dirichlet boundary condition 1hu =  on 
the boundary grid points [13] [14] [15]. In addition we have a right hand side 
(rhs) 1

,
M

D h
−∈f . The corresponding matrix ,D hA  of the Laplacian is com-

puted by using (3) for the interior points, resulting in a M M×  positive defi-
nite matrix. Nevertheless, in the case where Equation (3) holds for a point 
( ),i jx y  where one of the points with index ( )1,i j− , ( )1,i j+ , ( ), 1i j − , 
( ), 1i j +  is on the boundary, one must use the fact that we now the boundary 
value. As an example, if one writes Equation (3) for 2j = , then the point ( ),1i  
is on the south boundary and we have ,1 ,1i iu g= . This directly implies that con-
sidering Equation (3) one gets, for 2 i m≤ ≤ ,  

( )1,2 ,1 ,2 1,2 ,3 ,12
1 4i i i i i iu u u u u f
h − +− + − + + =  

If one assumes that 2i ≠  or m, then we have  

( )1,2 ,1 1,2 ,3 ,1 ,12 2
1 14i i i i i iu u u u f g
h h− +− − + + = +  

For the corner’s points, we must also handle the value of the left ( 2i = ) and 
right ( i m= ) endpoints. From above, we see that the matrix is modified as well 
as the right-hand side. Globally, the approximation of the Laplacian with Di-
richlet boundary condition leads to solving a linear system that we latter write  

, ,D h h D hA =u f . 

The resulting matrix ,D h hA u  is sparse, positive definite and of size M M× . 
Let us remark that the above system can be solved efficiently by using a LU fac-
torization or any well adapted linear system solver. In practice, the matrix ,D hA  

https://doi.org/10.4236/ajcm.2023.131005


B. Alqanawi, M. A. Aigo 
 

 

DOI: 10.4236/ajcm.2023.131005 125 American Journal of Computational Mathematics 
 

can be built in MATLAB by a tensor operation, based on the function kron as  

                 (4)

 

Here, kron is the Kronecker Product function computes the Kronecker tensor 
product of two matrices, more precisely if we have two matrices A and B the 
Kronecker tensor product is defined as: 

1 2 3 1 2

4 5 6 3 4

, ,
a a a x x

A B
a a a x x
   

= =   
   

 

then  

( )

1 1 1 2 2 1 2 2 3 1 3 2

1 3 1 4 2 3 2 4 3 3 3 4

4 1 4 2 5 1 5 2 6 1 6 2

4 3 4 4 5 3 5 4 6 3 6 4

kron , .

a x a x a x a x a x a x
a x a x a x a x a x a x

A B
a x a x a x a x a x a x
a x a x a x a x a x a x

 
 
 =
 
 
 

 

3. Discretization for the Dirichlet Boundary Condition 
3.1. Semi-Implicit Backward Method: System of Non-Linear  

Equation 

Semi-implicit finite difference schemes are used for the Allen Cahn equation. 
Namely, the time derivative is approximated by the backward-Euler and a second- 
order backward differentiation formula scheme is applied for the Laplacian operator 
(see Equation (3)) whereas the semi-implicit technique is used to deal with nonlinear 
part. This means we write all the terms implicitly except for the nonlinear term 
which is treated explicitly. Let ,x yh h  be the node spacings in the x and y directions 
and tδ  is the step time. If we denote by ( ), ,k

ij i ku u x y j t+ , here i, j is location 
node numbers, k is the time time step number, then after discretization get  

( ) ( )31 1 1 1 1 1 1
1 1 1 1

2 2

2 2k k k kk k k k k k
ij ij ij iji j ij i j ij ij ij

x y

u u u uu u u u u u
t h h

ε ε
δ ε

+ + + + + + +
− + − +

− − − + − +
= + + 

  
   (5) 

with initial condition: ( )0 ,ij i ju f x y=  and boundary condition:  

0 01, 1, 1, 1
x y

k k k k
j N j j iNu u u u= = = =  

Rearranging the Allen Cahn equation  

( ) ( )
( )( )3

1 1 1 1 1
1 1 1 12 2 2 2 2

1 11 2
k k
ij ij

k k k k k k
ij i j i j ij ij ij

x y x y

u ut tt u u u u u u t
h h h h

δ δδ δ
ε

+ + + + +
− + − +

−  
 + + − + − + = +     

(6) 

For simplicity, we can assume x yh h h= =  we have the final form of discre-
tized Allen Cahn equation 

( ) ( )
( )( )3

1 1 1 1 1
1 1 1 12 2 2 2

1 4 1 1
k kk ij ijijk k k k k

ij i j i j ij ij

u uu
u u u u u

t th h hδ δ ε
+ + + + +

− + − +

− + − + − + = + 
 

    (7) 
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In the next subsection, a more compact form of Equation (7) will be presented. 

3.2. Semi-Implicit Method: Matrix Formulation 

Concerning the discretization, use a uniform time step 0tδ >  and a uniform 
spatial discretization size h in both the x- and y-directions. We call ,D hA  the 
matrix that represents the five points stencil discretization of the 2D negative 
Laplacian ( −∆ ), given by Equation (3), on the square lattice 1 ,i j N≤ ≤  with 
Dirichlet boundary condition 1hu =  on the boundary grid points. These values 
are directly replaced into the system since they are given values. The matrix 

,D hA  is therefore a positive definite matrix of size 2 2N N× , where 2N  is the 
number of interior grid points. Since we use a inhomogeneous Dirichlet boun-
dary condition, and will have a right hand side 

2N∈b  latter related to a 
source, we denote by Db  the modified right hand side based on the inhomoge-
neous boundary condition and the five points stencil discretization of the Lapla-
cian. 

The nonlinearities in the PDE are trivial ( 3u u− ) to deal with if we choose an 
explicit time integration method for the nonlinear part and backward time inte-
gration for the linear part, all the mathematical details for the nonlinear discre-
tization of Allen Cahan equation is presented in subsection 3.1, we call this me-
thod a semi-implicit backward scheme. 

If we choose an explicit time integration method for Allen-Cahn equation, 
such as the Forward Euler finite difference, there is a strict restriction on the 
time step size to get convergence, for further details see [16]. Since the problem 
is a nonlinear dynamical system, for stability reasons, we propose taken explicit-
ly a semi-implicit backward Euler scheme with the nonlinear part (as presented 
in subsection 3.1). 

Reorganizing the equation gives a PDE for 1nu +  (see Equation (7)), leading 
then to the following linear system for each time step :nt n tδ= ,  

( )( )31
2

1 1 1:n n n n nI A u b u u u
t tδ δ ε

+ + = = + − 
 

            (8) 

where I is the identity operator and A is the discrete two-dimensional matrix for 
−∆  (see Equation (4)), with initial condition 0

0u u=  and with the inhomoge-
neous boundary condition 1 1nu + =  on ( )0,Γ = ∂Ω× ∞ , and the boundary con-
dition becomes  

0 01, 1, 1, 1, , 0, , .k k k k
j Nj i iNu u u u i j N= = = = =   

The right-hand side nb  must be updated at each time step for evolving the 
nonlinear system. When passing at the full discretization (both in space and 
time), then one gets the following linear system at each time step nt  to solve  

1
,

1 :n n
h D h D DI A

tδ
+ + = 

 
u b                      (9) 

for the interior grid points. The matrix hI  is the identity matrix of size 
( ) ( )2 21 1N N− × − . 
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3.3. Solvers 

When solving (9), we need to solve a sparse positive definite linear system at 
each time step. For the project, we coded a LU factorization after entering the 
time loop, to optimize the system solution. In addition, we also wrote Jacobi and 
Gauss-Seidel iterative methods that work well since the linear system is positive 
definite [17]. The linear system solution is fast and provides a real-time evolu-
tion of the solution. Finally, concerning the post-processing, we plot the solution 
onto the square at each time step. 

3.4. Example 

In our numerical example, we take the initial data  

( )
2 21 if 0.5

, ,0
1 otherwise

x y
u x y

− + <
= 


                 (10) 

and we work with the Dirichlet boundary condition ( )1 on 0,u = ∂Ω× ∞ .  
• We will use the Gauss Seidel iterative method to compute the solution of the 

matrix equation. For that, we fix the tolerance (tol) = 10−6 and we compute the 
discrete solution until the stopping criteria is verified. Figure 1 and Figure 2 
represent the discrete solution obtained via Gauss Seidel iteration method. The 
error term in Gauss Seidel iteration is defined as the difference between two 
consecutive iterate and more precisely our stopping test based on  

( )1norm < toln nu u+ − . The circle shrinks with time and disappears.  
 

 
Figure 1. Solution using Gauss Seidel iteration method at different times. 
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Figure 2. Numerical solution of Allen Cahn equation at different times. 

 
• Like the Gauss Seidel technique, the Jacobi method is considered to solve the 

matrix equation associated with the Allen Cahn equation. The same phenomena 
is observed.  

• Since, the algorithm proposed is a semi-implicit finite difference, there is no 
restriction on tδ  and h to get convergence. In our numerical implementation, 
we tested different choice of tδ  and h. For practical simulation, we take a small 
space step size 0.01h =  and a time step 2 10t hδ = . Moreover, the epsilon pa-
rameter is chosen very small, 10hε = .  

• The changes in the circle over time are shown, in Figure 1, Figure 2 with 
0.01h = , 2 10t hδ = , 10hε = . The inner circle has a larger curvature, it shrinks 

faster than the outer circle, and after the inner circle disappears.  

4. Discretization for the Neumann Boundary Condition 
4.1. Goals 

A second variation concerning the problem consists in considering a homoge-

https://doi.org/10.4236/ajcm.2023.131005


B. Alqanawi, M. A. Aigo 
 

 

DOI: 10.4236/ajcm.2023.131005 129 American Journal of Computational Mathematics 
 

neous Neumann boundary condition at the interface Γ . We can expect then a 
very different behavior of the numerical solution because of this fundamentally 
different boundary condition. Basically, the main point that must be modified is 
the way the discrete Laplacian matrix is computed. Here we call this matrix 

,N hA , which is of size N N× . To approximate the normal derivative, we use the 
approximation  

( )
1 1
1, ,1

1, 0
n n
N j N jn

x N j

u u
u x y

h

+ +
++

+

−
∂ ≈ =  

for the west side of the square, i.e. 1 1
1, ,

n n
N j N ju u+ +
+ =  (the extension to the three other 

sides is trivial). When considering the five points stencil approximation of the 
Laplacian at point ( ),0N  (except at the upper and lower left corners)  

( ) ( )1 1 1 1 1 1
1, , 1 , 1, , 12

1, 4n n n n n n
N j N j N j N j N j N ju x y u u u u u

h
+ + + + + +

− − + +−∆ ≈ − + − + +      (11) 

then, since 1 1
1, ,

n n
N j N ju u+ +
+ = , this simplifies as  

( ) ( )1 1 1 1 1
1, , 1 , , 12

1, 3n n n n n
N j N j N j N j N ju x y u u u u

h
+ + + + +

− − +−∆ ≈ − + − +          (12) 

For the Neumann boundary condition, the right hand side Nb  is an element 
of 

2N . The source term is built from the right hand side of Equation (8) at the 
discrete points. Finally, we have to solve a linear system in the form  

1
,

1 :n n
h N h N NI A

tδ
+ + = 

 
u b                       (13) 

for the interior grid points. This can clearly be done as for the Dirichlet case, i.e. 
by a LU factorization (the one which is coded here), a Jacobi or Gauss-Seidel 
fixed point iteration. We have only retained here the LU factorization from the 
numerical study performed for the Dirichlet situation. Indeed, the LU factoriza-
tion is done only once before entering into the time loop, and then a for-
ward-backward substitution is applied at each time step at a cost ( )2N . The L 
and U matrices remain with a low bandwidth because of this property on ,N hA  
(as well as ,D hA ). 

4.2. Example 

In our numerical example, we take the initial data (10), namely  

( )
2 21 if 0.5

, ,0
1 otherwise

x y
u x y

− + <
= 


                 (14) 

• We set a homogeneous Neumann boundary condition . 0 onu n∇ = ∂Ω , 
where Ω  is the square domain [ ]21,1− .  

• Using Direct method and considering a uniform step-size 0.01x yh h h= = =  
and the time step 2 10, 10t h hδ ε= = .  

• Figure 3(a) shows the graph of initial condition given by Equation (10).  
• The large-time behavior of solutions to Allen Cahn equation is established 

numerically for initial condition given by Equation (10). It’s observed that the 
circle shrinks slowly with time and disappears, see Figure 3(b).  
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Figure 3. Allen Cahn problem with homogeneous Neumann 
boundary condition and 2 10, 10t h hδ ε= = . 

 
If we solve the Allen Cahn equation with 1 200, 8h hε= =  with homogene-

ous Neumann boundary condition, the solution is unstable It’s necessary that 

( )2t O hδ = , for further details see [18]. So taking t hδ =  and 8hε = , the 
scheme explodes and is unstable. 

5. Non-Homogeneous Allen Cahn Equation with Neumann  
Boundary Condition 

5.1. Formulation and Discretization 

Considering the Non-Homogeneous Allen Cahn equation:  

( ) ( ) ( ) ( ) ( )3, , , , , in 0, ,tu x y t u x y t u u g x yε ε ε= ∆ + − + Ω× ∞        (15) 

where g is a given function and supplemented with the homogeneous Neumann 
boundary conditions  

( ) ( ), , 0 on 0, ,u x y t n∇ ⋅ = ∂Ω× ∞                  (16) 

and the initial conditions  

( ) ( )0, ,0 , in .u x y u x y= Ω                    (17) 
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Here ( ) ( )2, 1,1x y ∈Ω = − . The same strategy applied for homogeneous Allen 
equation and more precisely using Equation (7), we deduce that:  

( ) ( )
3

1 1 1 1 1
1 1 1 12 2 2 2

( ( ) )1 4 1 1 k k k
ij ij ij ijk k k k k

ij i j i j ij ij

u u u g
u u u u u

t th h hδ δ εε
+ + + + +

− + − +

− + − + − + = + + 
 

 

where ( ),ij i jg g x y= . 

5.2. Numerical Results 

In our simulation we consider two different initial conditions: the first one is 
given by Equation (10) and the second one is given by (18)  
 

 
Figure 4. Neumann condition: Contour of discrete solution (CDS) for Allen Cahn equa-
tion at different times. 
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Figure 5. Contour of discrete solution (CDS) at different times. The straight line move 
to the right. 

 

( )0

1 if < 0
,

1 if 1 <
x

u x y
x

−
= 


                    (18) 

For numerical implementation, we consider 2 10, 10t h hδ ε= = . We make 
different numerical tests to see how the initial data and the function g has an ef-
fect on the behavior of the solution.  

1) Considering the space domain (‒5, 5)2. If one consider as initial data (10) 
and 2g =  it’s observed that the circle grow instead of shrink as in the case of 

0g = , see Figure 4.  
• Considering the case where 1g = , and using Equation (18) as initial condi-

tion the line curve move to the right direction, see Figure 5.  
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Figure 6. Contour solution at different times. The straight line move to the right and be-
come curved. 

 
• Note that of 1g = − , one can that the line curve move to the left direction.  
• Considering the case where 21g y= − , the straight line move to the right 

and become curved, see Figure 6.  

6. Conclusion 

Using finite difference method, we can solve nonlinear PDEs, more precisely we 
have obtained a numerical solution to the Allen Cahn equation. We have for-
mulated using semi-implicit finite difference method and coded the corres-
ponding algorithm to the Allen-Cahn equation. Three methods were used with 
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the Allen-Cahn equation: the Direct method, the Jacobi and Gauss-Seidel itera-
tion Methods. For small mesh size and small-time steps, it is better to use itera-
tive methods, since the size of the matrix will be very large. Dirichlet boundary 
condition is considered, the solution is obtained and analyzed sing Direct and 
iterative technique. We also solved the Allen-Cahn equation using homogenous 
Neumann boundary conditions, this involved using ghost points next to the 
boundary. In the case of Neumann boundary condition the circle with 2g =  
grow instead of shrink as in the case 0g = . Moreover, for Neumann boundary 
condition, if we consider an initial data set 1u = −  for 0x <  and 1u =  for 

1x > . If you take 0g =  nothing was happened, but if we take 1g =  the line 
move in the right direction and if you take 1g = − , the line move in the other 
direction (left direction). Considering the case where 21g y= − , the straight 
line moves to the right and become curved. All the numerical tests confirm that 
the initial data and the function g has an effect on the behavior of the solution. 
All the methods presented were coded using MATLAB. 
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