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Abstract

In previous works, the theoretical and experimental deterministic scalar kin-
ematic structures, the theoretical and experimental deterministic vector kin-
ematic structures, the theoretical and experimental deterministic scalar dy-
namic structures, and the theoretical and experimental deterministic vector
dynamic structures have been developed to compute the exact solution for
deterministic chaos of the exponential pulsons and oscillons that is governed
by the nonstationary three-dimensional Navier-Stokes equations. To explore
properties of the kinetic energy, rectangular, diagonal, and triangular sum-
mations of a matrix of the kinetic energy and general terms of various sums
have been used in the current paper to develop quantization of the kinetic
energy of deterministic chaos. Nested structures of a cumulative energy pul-
son, an energy pulson of propagation, an internal energy oscillon, a diagonal
energy oscillon, and an external energy oscillon have been established. In
turn, the energy pulsons and oscillons include group pulsons of propagation,
internal group oscillons, diagonal group oscillons, and external group oscil-
lons. Sequentially, the group pulsons and oscillons contain wave pulsons of
propagation, internal wave oscillons, diagonal wave oscillons, and external
wave oscillons. Consecutively, the wave pulsons and oscillons are composed
of elementary pulsons of propagation, internal elementary oscillons, diagonal
elementary oscillons, and external elementary oscillons. Topology, periodicity,
and integral properties of the exponential pulsons and oscillons have been
studied using the novel method of the inhomogeneous Fourier expansions via
eigenfunctions in coordinates and time. Symbolic computations of the exact
expansions have been performed using the experimental and theoretical pro-
gramming in Maple. Results of the symbolic computations have been justified
by probe visualizations.
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Propagation, Internal Energy Oscillon, Diagonal Energy Oscillon, External
Energy Oscillon, Cumulative Energy Pulson

1. Introduction

The initial work on the exact solution for N nonlinear internal waves governed
by the nonstationary three-dimensional (3-d) Navier-Stokes equations [1] re-
vealed an extreme sophistication of the exact solution derived with the help of
experimental and theoretical programming in Maple via the Stationary Kinemat-
ic Euler-Fourier functions. To overcome this challenge, theoretical and experi-
mental Deterministic Scalar Kinematic (DSK) structures together with theoreti-
cal and experimental Deterministic Vector Kinematic (DVK) structures have
been developed in [2] to solve the Helmholtz problem for various wave systems
with the help of the method of Decomposition in Invariant Structures (DIS).

Consequently, the DSK and DVK structures have been complemented by the
theoretical and experimental Deterministic Scalar Dynamic (DSD) structures
accompanied by the theoretical and experimental Deterministic Vector Dynamic
(DVD) structures in [3] to find the exact nonstationary 3-d solution for deter-
ministic chaos of M internal waves from Jwave groups controlled by the Navi-
er-Stokes equations. In [3], the Dirichlet problem for the Navier-Stokes equa-
tions with the help of the Helmholtz decomposition is reduced to computation
of the Archimedean, Stokes, and Navier fields, whereas the kinetic energy of de-
terministic chaos of the exponential pulsons and oscillons turned out to be the
scalar Helmholtz potential of the Navier field.

To explore properties of the kinetic energy, rectangular, diagonal, and tri-
angular summations of the matrix of the kinetic energy and the general terms of
various sums have been used in the current paper to develop quantization of the
kinetic energy of deterministic chaos. Nested structures of the cumulative energy
pulson, the energy pulson of propagation, the internal energy oscillon, the di-
agonal energy oscillon, and the external energy oscillon have been established. In
turn, the energy pulsons and oscillons include the group pulsons of propagation,
the internal group oscillons, the diagonal group oscillons, and the external group
oscillons. Sequentially, the group pulsons and oscillons contain the wave pulsons
of propagation, the internal wave oscillons, the diagonal wave oscillons, and the
external wave oscillons. Consecutively, the wave pulsons and oscillons are com-
posed of the elementary pulsons of propagation, the internal elementary oscil-
lons, the diagonal elementary oscillons, and the external elementary oscillons.

Topology, periodicity, and integral properties of the exponential pulsons and
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oscillons are studied with the help of the inhomogeneous Fourier expansions via
eigenfunctions in coordinates and time. This novel method allows to replace the
(homogeneous) Fourier series including an unbounded number of terms with
the inhomogeneous Fourier expansions containing a bounded number of terms
that deliver exact solutions. Symbolic computations of the exact expansions have
been performed using the experimental and theoretical programming in Maple
since the functional bases include 16 inhomogeneous eigenfunctions for each
variable. Results of the symbolic computations have justified by probe visualiza-
tions in x-, y~, t-directions.

The contents of this paper are following. Quantization of the kinetic energy of
deterministic chaos of the exponential oscillons and pulsons is developed in Sec-
tion 2, using rectangular, diagonal, and triangular summations of the matrix of
the kinetic energy and the general terms of various sums. The section concludes
with a summary of nested structures of energy, group, wave, elementary oscil-
lons and pulsons.

Section 3 deals with the elementary oscillons of propagation, the elementary
pulsons of propagation, the internal elementary oscillons, the diagonal elemen-
tary oscillons, and the external elementary oscillons. Eigenfunctions of the in-
homogeneous Fourier expansions in x-, y-, - are constructed in this section. The
inhomogeneous Fourier expansions, periods, and averages of elementary oscil-
lons and pulsons are computed and illustrated.

The wave oscillons of propagation, the wave pulsons of propagation, the in-
ternal wave oscillons, the diagonal wave oscillons, and the external wave oscil-
lons are computed in Section 4 together with their periods and averages. The
wave pulsons and oscillons are also displayed in the x-, y-, £directions. In Sec-
tion 5, we consider topology, periodicity, integral properties, and visualizations
of the group oscillons of propagation, the group pulsons of propagation, the in-
ternal group oscillons, the diagonal group oscillons, and the external group os-
cillons.

In Section 6, the inhomogeneous Fourier expansions of the energy pulson
of propagation, the internal energy oscillon, the diagonal energy oscillon, the
external energy oscillon, and the cumulative energy pulson are developed and
visualized. Section 7 contains a short discussion of main results and further de-

velopments.
2. Quantization of the Kinetic Energy

2.1. Decomposition of the Matrix of the Kinetic Energy

The kinetic energy K, of the deterministic chaos of internal waves in a New-
tonian fluid with a constant density p, and a global velocity field U is de-
fined by

P,
Ke:?°u~u, (1)

where the global velocity field is formed by velocity fields of four wave groups
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u=u, +U, +U, +U,. (2)

Substitution of (2) in (1) yields the kinetic energy of the deterministic chaos of
the exponential oscillons and pulsons (118) of [3] in terms of the velocity fields

of four wave groups
e

K :%(ua+ub+uc+ud)-(ua+ub+uc+ud). (3)

For clarification of summation, we define a matrix of the kinetic energy M,
by

u,-u, Uu,-u, u,-u. Uu,-Uy
u -u u, -u u -u u -u
Ke_&{Me}7Me: b Ya b ' Yp b+ Ye b d’ (4)
2 U -u, Uu.-u U.-U, U Uy
Uy Uy Ug-Uy Uy -U; Uy -Ug

where the braces notation {M} denotes the rectangular summation of all
elements of the summation matrix M.

Since the velocity fields of four wave groups are expanded in the weighted ex-
perimental DVK structures [a,,b,,c,.d,] (20) of [3],

m?~m? ¥m?
M M M M
ua:zam:zan’ UbZmeZan,
m=1 n=1 m=1 n=1 (5)
M M M M
uczzcmzzcn’ ud= dmzzdn’

matrix (4) takes the following form:

b, -a, b, -b, b, -c, b, -d,
M. = {Cm'an} {Cm bn} {Cm'cn} {Cm'dn} , ©
{dm'an} {dm'bn} {dm Cn} {dm'dn}

where the summation braces {a, -b,} signify the rectangular summation of all
elements of a summation matrix with the general term a,-b, for n=12,---,M
and m=12,.--M, ie

{am-bn}=iiam-bn (7)

since each wave group is composed of A/ waves.

Primarily, we decompose M, as follows

M, =M, +M,,. (8)
Here,
{a,-a,} 0 0 0
0 b, -b, 0 0
Md — { m n} (9)
0 0 {Cn-Co} 0
0 0 0o {d,-d}

is a diagonal matrix, which includes all diagonal elements of M, , and
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0 {a, b} {a,-c,} {an-d,}

_ } 0 {bm'cn} {bm'dn}

Yoliena ) {ebt 00 {opedy)
{d an} {dm'bn} {dm'cn} 0

is a complementary matrix, which is composed of the upper and lower triangular

=

M, = 1P

2 (10)
a

o

m
m
m"

matrices of M,.

The kinetic energy is correspondingly decomposed as

K, =K, + Ku’l, (11)

where the first sum K, is produced by the elements of M :
Ko = Kaa +Kpp + Koo +Kg g (12)

and the second sum K, by the elements of M, :

Kup = Kop T Koo T Kog + Ky + Ky g +K 4 (13)

In (12)-(13), the constituents of K, are

Ka,a :&{am 'an}' Kb,b :%{bm 'bn}’

2 (14)
Kc,c :%{Cm 'Cn}’ Kd,d :%{dm 'dn}’
and the constituents of K, are
Kap =%{am ‘b, +b,-a,}, K, =%{am “Cp+Cp -y},
Ka,d =%{am 'dn +dm 'an}’ Kb,c z%{brﬂ 'Cn +Cm 'bn}’ (15)
Ky q :%{bm-dnerm-bn}, K. :%{cm-dn+dm-cn}.

Secondly, we expand all sums into internal sums with n=m, which cor-
respond to internal interaction of elementary oscillons of propagation from
the mth family, and external sums with n == m, which describe external inter-
action of elementary oscillons of propagation from the mth and nth families
(see Section 2.6).

The summation matrix of the diagonal constituent K_, of K,

alal ai.am al.an ai.aM
am.a1 am.am am.an am.aM
Miman =| - : : : (16)
an'a'l an'a'm an'a'n a'n'a'M
lay -a, - ay-a, - ay-a, .. ay-ay |

due to the commutative property of the dot products

a,-a, =a,-a, (17)
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yields the following reduction of the rectangular summation to the diagonal and

triangular summations:

M M-1 M
{ay-a,} =2 a,-a,+2>, > a,-a,. (18)
m=1 m=1 n=m+1
Similar reductions of the remaining diagonal constituents K, , K. ,K;4
yield
M M-1 M
{b,-b,}=>b,-b,+2> > b, b,
m=1 m=1 n=m+1
M M-1 M
{Cm'cn}:zcm'cm+zz z Cm *C>» (19)
m=1 m=1 n=m+1
M M-1 M
{dp-d,}=>d,-d, +2> > d,-d,
m=1 m=1 n=m+1
The summation matrices of the non-diagonal constituent K,, of K,
_a1b1 albm albn a’le_
a, 'bl ay bm ay bn ay, bM
M. non =| : 5 (20)
an bl an bm an 'bn a'n ’ bM
kM by ay ‘b, ay -b, ay -by i
and
I bl al bl 'am bl an bl a'M ]
l:’m C bm A bm ‘a, bm Ay
Mb,m,a,n = : : (21)
bn G bn a, bn “a, bn Ay
_bM.a1 bM’am bM‘an bM'aM_
because of the commutative properties of the dot products:
b,-a,=a,-b,, (22)

a,-b,+b,-a,=a,-b,+b, -a,

produce the following reduction of the rectangular summation to the diagonal

and triangular summations:

l M M-1 M
E{am-bn+bmoan}=2am'bm+z > (a,-b,+b,-a,). (23)
m=1 m=1 n=m+1

If n=m, the asymmetric reduction (23) is converted into the symmetric re-
duction (18).
Proceeding the same way for the rest of the summation matrices of the

non-diagonal constituents K, K, ,K; ., K, K., returns

a.c!’
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1 M M-1 M

E{am Co+Cp-ayf=.a,Ch+ Y D (a,-C,+Cy-a,),
m=1 m=1 n=m+1

1 M M-1 M

E{am d,+d,-a,}=>a,-d,+> > (a,-d,+d,-a,),
m=1 m=1 n=m+1

1 M M-1 M

E{bm Co+Cy-b =2 bco+> D (b,-c,+Cy-by), (24)
m=1 m=1 n=m+1

1 M M-1 M

Sl dywdy b} =Y by dy+ 3 Y (b, dy+d, by),
m=1 m=1 n=m+1

1 M M-1 M

E{Cm'dnerm'Cn}:sz'der > (cy-d,+d,-c,).
m=1 m=1 n=m+1

2.2. Wave, Group, and Energy Pulsons of Propagation

Thirdly, we define wave, group, and energy pulsons and oscillons via various
combinations of dot products of the DVK structures and express the dot prod-
ucts in terms of the weighted experimental DSD structures (29) of [3].

General terms of the internal sums of (18)-(19) produce wave pulsons of

propagation
p p
Kw,a,m,a,m :?Cam Qs Kw,b,m,b,m :?cbm 'bm’
(25)
p p
Kw,c,m,c,m :?Ccm “Chs Kw,d,m,d,m :?dm 'dm'

Since the DVK structures are related with the DSK structures by (20) of [3]
a, = [+Kmbm,+/lmcm,(—1)” umam], b, = [—Kmam,+/1mdm,(—1)” ,umbm]

(26)

Cn = |:+Kmdm’_ﬁ'mam’(_1)q /umcm:|’ dm = [_chm'_/lmbm '(_1)” :umdm:|’

the wave pulsons of propagation in the DSD structures take the following form:

Kw,a,m,a,m = %(;uriari + Krf]brﬁ + ﬂ’rﬁcri )’ Kw,b,m,b,m = %(anwari + ;uribrfl + lrﬁdri )’
(27)
ueman =2 (1202 4262 4K202) Ky = 22 (00 #5362 + 4203
A superposition of a group of the wave pulsons of propagation
Kg,i,m,i,m = Kw,a,m,a,m + Kw,b,m,b,m + I‘(W,c,m,c,m + Kw,d,m,d,m
(28)

= potth (8% +b7% +c2 +d2)

is termed a group pulson of propagation K Here, K is simplified

g,i,mi,m " g,i,m,i,m

by the Pythagorean identity for the wave numbers
KA+ A2 =l (29)

Eventually, the diagonal summation of all group pulsons of propagation re-

sults in an energy pulson of propagation
M
Ke,i,m,i,m = z Kg,i,m,i,m' (30)
m=1

which shows a cumulative energy of all group pulsons of propagation.
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2.3. Wave, Group, and Energy Oscillons of Diagonal External
Interaction

General terms of the external sums of (18)-(19) generate wave oscillons of di-

agonal external interaction (diagonal wave oscillons for brevity)

) )
Kw,a,m,a,n = ?cam a,, Kw,b,m,b,n = 7Cbm : bn'
(31)
P, P
Kw,c,m,c,n :?CC Chs Kw,d,m,d,n = 7Cdm 'dn'

Using (26) and Equation (26) with m=n, we obtain the diagonal wave oscil-

lons in the DSD structures

Kuamam = Pc (Hntadnd, + Knk,00b +24,4,€,.C, ),

Kubmom = C(K Kypandy, + fn tboby + A, A4,d d ), 32)
Kuomom = Pe (Ann@nn + My nConCy + Kk dy ),
d,)-

Kw dmd,m — pc (;Lmﬂ’nbmbn + KmKnCan +:um/un m

Summation of (32) yields a diagonal group oscillon

Kg,i,m,i,n = Kw,a,m,a,n + Kw,b,m,b n + ch m,c,n Kw,d,m,d,n (33)
= p M, (ana, +b,b, +c,c, +d.d, ),
where an amplitude produced by wave numbers
M, o = Kk, + Ay + Ho M- (34)

The triangular summation of the diagonal group oscillons results in a diagonal

energy oscillon

Z Z Kegimins (35)

m=1 n=m+1

which gives a cumulative energy of all diagonal group oscillons.
Koo Keor Ky g (12) of the kinetic energy

a,a’ “b,b?r"Mc,c?

is completed with the following result:

Ky =Keimim+Keimin: (36)

e,l,m,I,m e,l,m,i,n

So, summation of constituents K

If n=m, then the diagonal wave oscillons (32) are converted into the doubled
wave pulsons of propagation (27) and the diagonal group oscillon (33) becomes

equal to the doubled group pulson of propagation (28).

2.4. Wave, Group, and Energy Oscillons of Internal Interaction

General terms of the internal sums of (23)-(24) correspond to wave oscillons of

internal interaction (internal wave oscillons for brevity)

P P P,
Kw‘a,m,b,m :?Cam 'bm7 Kw,a,m,c,m :?Cam 'Cm' KW,a,m‘d,m :_Cam 'dm’
P P P, 7
Kw,b,m,c,m = 7Cbm “Chs Kw,b,m,d,m = 7Cbm 'dm' Kw,c,m,d,m = ?Ccm 'dm'
In the DSD structures, the internal wave oscillons become
DOI: 10.4236/ajcm.2023.131001 8 American Journal of Computational Mathematics
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Kwamom = Petn (a by + ) = +Kye mams
wamem = Pekn (nCn + 00y ) = +Kyp mams (38)
Kuaman = Potn (8ndn =buCr) = ~Kyyp mem:
Adding the internal wave oscillons, we get an internal group oscillon
Kgimim = Kuamom  Kuamen ¥ Kuamam ¥ Kupmen + Kupmam + Kucmam (39)

=2p, (ﬂrﬁ (a,by, +Cudyy )+ &2 (2, + b,y ))

The diagonal summation of the internal group oscillon results in an internal

energy oscillon
Elmjm ZKglmjm’ (40)

which returns a cumulative energy of all internal group oscillons.

2.5. Wave, Group, and Energy Oscillons of Non-Diagonal External
Interaction

General terms of the external sums of (23)-(24) correspond to wave oscillons of
non-diagonal external interaction (external wave oscillons for brevity)
K
K
K

=P (am 'bn +bm 'an)' Kw,a,m,c,n =P (am €, +Cy 'an)'
wamdn =P (@y-dy+d-ay), Kypmen =2 (byCy+Cy by ), (41)
wbmdn = Pe (bm 'dn +dm ’bn)l Kw,c,m,d,n =P (Cm 'dn +dm 'Cn)'

Using (26) and Equation (26) with m=n, we compute the external wave os-

w,a,m,b,n

cillons via the DSD structures

Kw,a,m,b,n =P (_(KmKn ~ My )(a b +b a )+ﬂ’mﬂ’ (Cmdn +dan ))’
Kw,c,m,d,n :pc (+ﬂ'mﬂ’ (a b +b a ) ( m:un (cmdn +dan)),
Kuamen = Pe (—(Andy = tn ity ) (8C, +Cpa )+K‘mK' (b,d, +d,b,)). @)
Kw,b,m,d,n =P (+KmKn (amcn + Cman) ( ~ My (b d + dmbn ))'
KW,a,m,d,n = pc (+:um/un (amdn +dma ) (K Ky +/1min) b C +Cmbn ))'
Kw,b,m,c,n =P (_(KmKn +ﬂ'mln)(amdn +dma )+/lmlun b C, +Cmbn ))
An external group oscillon takes the following form:
Kg,i,m,j,n = Kw,a,m,b,n + Kw,a,m,c,n + KW,a,m,d,n + Kw,b,m,c,n + Kw,b,m,d,n + Kw,c,m,d,n
= p,(An, (a,b, +b,a, +c,d, +d,c,)
43
+K,0 (anC, +Cpa, +b,d, +d.b,) “
~N,,(a,d, +d,a, +b,c, +c,b,)).
where amplitudes generated by the wave numbers
I<m,n = KnkK, _/Im/ln + Ho My Am,n = —KnK, +/7’mﬂ’n + Hon My s (44)

Mm,n = KnK, +ﬁ’mﬂ’n +:um:un’ Nm,n = +KmKn +/’i’m/ln —HnHy-

We then imply the triangular summation of the external group oscillons to
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find an external energy oscillon

M-1 M
Ke,i,m,j,n = Z z Kg,i,m,j,n7 (45)

m=1 n=m+1

which demonstrates a cumulative energy of all external group oscillons.
Thus, summation of constituents K, K, ,K, 4, K, , K, , K. 4 (13) of the

a,c’

kinetic energy is finished as follows:

Ku,I = Ke,i,m,j,m + Ke,i,m,j,n' (46)

If n=m, then the external wave oscillons (42) are transformed into the
doubled internal wave oscillons (38) and the external group oscillon (43) be-

comes equal to the doubled internal group oscillon (39).

2.6. Elementary Oscillons and Pulsons

Members of the m th family of elementary oscillons of propagation of the velocity

potential

K =a Ko,b,m = bm' Ko,c,m =C

o,a,m ~— “'m?

K =d (47)

m? o,d,m m

are defined via the weighted experimental DSK structures (1) of [3]
a, =+Av,sse, +Bv,cse, +Cv,sce, + Dv,cce,,
b, =—-Bv,sse, + Av, cse, — Dv_sce,, +Cv,cce,,
(48)
¢, = —Cv,sse, —Dv,cse, + Av,sce, + Bv,cce_,
d, =+Dv,sse, —Cv,cse, —Bv,_sce, + Av, cce,,

where m=12,---,M , [Avm,va,CVm,DVm] are functional amplitudes, 3-d
DSK functions [sse,,cse,,sce,,cce, | are products
sse,, = SX. Sy, €z, CSe, =CX Sy, ez

s my SC&, = SX,CY,€Z,, CCE, = CX,CY eZ, (49)

of the following 1-d (one-dimensional) DSK functions [sx,,cX,,SYy,.cy,]| and
an exponential function ez :
Xy =Sin(k, X, ), X, =cos(x, X, ),
. 0 (50)
SYp =SiN(4,Yy), Oy =c0s(4,Y,), ez, =exp((—1) ymz),

Xp=X=U t+X 0, Y, =y=V, t+Y .. (51)

mo0?! 'm

In Equations (47)-(51), (X, Y, z) are the Cartesian coordinates of a motion-
less frame of reference, ¢is time, [Xm Yoo Z] are the Cartesian coordinates of a
frame of reference moving with the mth elementary oscillon of propagation,
[UV,,0] is the celerity of propagation, and [vao ,Ym’oj are reference values
of [X,.Y,] at t=0, x=0, y=0. A sign parameter 7=0 for z<0 and
n=1 for z>0.

A wave oscillon of propagation of the velocity potential

Kw,a,m = Ko,a,m + Ko,b,m + Ko,c,m + Ko,d,m = a'm + bm +Cm + dm (52)

consists of the elementary oscillons of propagation.

Similarly, a group oscillon of propagation of the velocity potential
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Kg,i,m = Z KW,i,m (53)

is composed of the wave oscillons of propagation.

The wave pulsons and oscillons and the group pulsons and oscillons of the
kinetic energy are constructed of elementary pulsons and oscillons of the kinetic
energy.

Four elementary pulsons of propagation in the DSD structures for
m=12,---,M are defined by

pc 2
Kp‘a‘m‘a‘m _?am’ Kp,b,m,b,m p,d,m,d,m

==£%Lb§, K Loz g

p,¢c,m,c,m 2 m?

Pc 42
=-°d°. (54
5 I (54)

The wave pulsons of propagation (27) and the group pulson of propagation

(28) then become the following superpositions of the elementary pulsons of

propagation:
Kw,a,m,a,m = :uri Kp,a,m,a,m + Kri Kp,b,m,b,m + ﬂ’rﬁ Kp,c,m,c,m’
Kw,b,m,b m = Krf] Kp,a,m,a,m + :u:] Kp,b,m,b,m + ﬂ’rf] Kp,d,m,d,ml (55)
Kw,c,m,c m= ﬂ’rﬁ Kp,a,m,a,m + :urf] Kp,c,m,c,m + Kr%] Kp,d,m,d,m'
Kw,d,m,d m= /I;Kp,b,m,b,m +K§1Kp,c,m,c,m +:urf1Kp,d,m,d,m’
and
Kg,i,m,i,m = 2/'431 (Kp,a,m,a,m + Kp,b,m,b,m + Kp,c,m,c,m + Kp,d,m,d,m ) (56)

There are six elementary oscillons of internal interaction (internal elementary
oscillons for brevity) between members of the m th family of the elementary os-

cillons of propagation for m=12,---,M

Ko,a,m,b,m = :Dcambml K0,a,m,c,m = pcamcm' Ko,a,m,d,m = pcamdm’
K b,,C Ko,b,m,d,m = pcbmdm’ Ko,c,m,d,m = pccmdm'

0,b,m,c,m _pc m~m?

(57)

The internal wave oscillons (38) and the internal group oscillon (39) are de-

composed via the internal elementary oscillons as follows:
Kwambm = +Kucmdam = /1n21 (Ko,a,m,b,m + Ko,c,m,d,m)'
Kuamen = +Kupmam = Kn (Ko,a,m,c,m + Ko,b,m,d,m)’ (58)
Kuamdm =Kupmem = lurzn (Ko,a,m,d,m - Ko pmem )1

and

Kg,i,m,j,m = 2(/’i’n21 (Ko,a,m,b,m + Ko,c,m,d,m)+Kr$1 (Kw,a,m,c,m + Kw,b,m,d,m )) (59)

There are four elementary oscillons of diagonal external interaction (diagonal
elementary oscillons for brevity) between members of the mth and nth fami-
lies of the elementary oscillons of propagation from the same wave groups with
n=m+1lm+2,---M and m=212,---,M -1
Ko,a,m,a,m :pCa a K

m~n? " Yo,b,mbm

= pcb b Ko,c,m,c,m = PCiChs K

m™~n?

p.d.d.. (60)

odmdm =

The diagonal wave oscillons (32) and the diagonal group oscillon (33) then are

subsequent superpositions of the diagonal elementary oscillons:
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Kw,a,m,a,m = HpHy Ko,a,m,a,m + KnkKn Ko,b,m,b,m + ﬂ’mﬂ’n Ko,c,m,c,m’
Kw,b,m,b,m = KKy Ko,a,m,a,m +:um:un Ko,b,m,b,m +/lmﬂ’n Ko,d,m,d,m' (61)
Kw,c,m,c,m = /’)’mj’n Ko,a,m,a,m +/um/un Ko,c,m,c,m +KmKn Ko,d,m,d,m'
Kuamam = AndKopmom ¥ Kk Ko e mem + it Ko g mam
and
Kg,i,m,i,n = Mm,n (Ko,a,m,a,n + Ko,b,m,b n + Ko c,m,c,n Ko,d,m,d,n ) (62)

Eventually, there are six elementary oscillons of non-diagonal external interac-
tion (external elementary oscillons for brevity) between members of the mth
and n th families of the elementary oscillons of propagation from distinct pairs
of wave groups with n=m+1m+2,---M and m=12,.-- M -1

Ko,a,m,b,n = pc (ambn + bman )’ Ko,a,m,c,n = pc (amcn + Cman )'
Ko,a,m,d,n = pc (amdn + dman)’ Ko,b,m,c,n = pc (brncn + Cmbﬂ )’ (63)
Ko,b,m,d,n = pc (bmdn + dmbn )' Kw,c,m,d,n = pc (Cmdn + dmcn )

The external wave oscillons (42) and the external group oscillon (43) are de-

composed in terms of the external elementary oscillons in the following way:

Kw,a,m,b,n = _(KmKn — Hn My ) Ko,a,m,b,n + ﬂ’mﬂ’n Ko,c,m,d,n'

Kueman =+ AnAKoamon = (Knkn =ttty ) Ko cman:
Kuamen == (Ande = ity ) Koamen + KnkoKopman: (64)
Kubman = T5nkaKoamen =(Andn =ttty ) Kopma.n:
Kuaman = +n Ko aman = (Knkn + Ande ) Kopmen:
Kubmen =~ (K& + Ande ) Ko aman + Ko b mens
and
Kgimin =Amn (Ko,a,m,b,n + Ko eman ) +Konn (Ko,a,m,c,n + Ko,b,m,d,n) (65)

_Nm,n (Ko,a,m,d,n + Ko,b,m,c,n )

If n=m, then the diagonal elementary oscillons (60) are reduced to the
doubled elementary pulsons of propagation (54) and then the external elemen-
tary oscillons (63) are transformed into the doubled internal elementary oscil-
lons (57).

2.7. Summary of the Deterministic Quantization

Finally, we summarize quantization of the kinetic energy of the deterministic
chaos of exponential oscillons and pulsons. The cumulative pulson of the kinetic

energy (11) (the cumulative energy pulson for brevity) may be decomposed as

follows:
Ke = Ke,i,m,i,m_‘—Keimjm_'_Keimin_’_Keimjn
M (66)
:Z(Kg,i,m,im glmjm) Z Z ( glmln gl,m,j,n)’
m=1 m=1 n=m+1
where K,; ., is the energy pulson of propagation (30), K., ;, is the in-

ternal energy oscillon (40), K is the diagonal energy oscillon (35), and

e,i,m,i,n

DOI: 10.4236/ajcm.2023.131001

12 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2023.131001

V. A. Miroshnikov

K is the external energy oscillon (45).

eim,in
TheJ energy pulson and the energy oscillons are composed of the group pul-
sons and the group oscillons, respectively. The group pulson of propagation
K (28) is composed of four wave pulsons of propagation

Kyamam: K K K

of velocity fields of m th elementary oscillons of propagation (47) from four wave

g,i,m,i,m

(27) that describe a vector self-interaction

w,b,mb,m? Nw,c,m,c,m? “Nw,d,m,d,m

m?=m

groups [a,,ay]:[by.by ], [CnrCr |- [dm Oy | > respectively, for m=1,2,---,M .
The internal group oscillon K, . (39) consists of six internal wave oscil-
K K K K K (38) that ex-

press a vector internal interaction of velocity fields of m th elementary oscillons

lons K

w,a,m,b,m? "Mw,aa,mec,m? " Nw,a,md,m? Nwb,mecm? Nwb,m,d,m? " Mw,e,m,d,m

of propagation from the distinct wave groups
[an. 0, ] [an: Cn ]+ [@n A ]:[Br: € ] [P Oy ] o[ G Dy ] » cOrrespondingly, for
m=12.-M.

The diagonal group oscillon K (33) is constructed of four diagonal

(32) that describe a vector

g.im,im
wave oscillons K, o Koy non Kyemenr Kudmdn
external interaction of velocity fields of mth and n th elementary oscillons of
propagation from the selfsame wave groups [a,,a, ].[by,.b,].[Cn Cy].[dn 0, ]
for n=m+1m+2,--M, m=12,.-- M -1.

The external group oscillon K, . (43) includes six external wave oscil-
K K K K K (42) that express

a vector external interaction of velocity fields of mth and nth elementary os-

lons K

w,a,m,b,n? Mw,a,mc,n? Nwa,md,n? Mwbme,n? Nwbmd,n Nwe,m,d,n

cillons of propagation from the distinct pairs of wave groups [am,bn] &
[b..2,]> [an.C.] & [cn.a,]s [an.d,] & [dy.a,], [by.c,] & [cn.b,]>
[by.d,] & [d..b,] » [c,.d,] & [dy.c,] , respectively, for
n=m+lim+2;--M, m=12--M-1.

The wave pulsons of propagation (27) are composed of four elementary pul-
K K K (54) that describe a

scalar self-interaction of Mth elementary oscillons of propagation from four

sons of propagation K

p,amam?’  Np,bmbm? Npc,mem?tp,d,mdm

wave groups with the velocity potentials a,,b,,c,,d, , respectively, for

m=212,---,M .

The internal wave oscillons (38) consist of six internal elementary oscillons
K K K K K

Ko,a,m,b,m v "¥0,a,m,c,m? ' Yo,a,m,d,m?

scalar internal interaction of mth elementary oscillons of propagation from the

(57) that express a

o,b,mc,m? " Yo,b,md,m? " No,c,m,d,m
distinct wave groups with the velocity potentials a, & b,, a, & ¢,, a, &
d,» b, & c,, b, & d,, ¢, & d,,respectively,for m=12,---,M .

The diagonal wave oscillons (32) are constructed of four diagonal elementary

oscillons K K K K

oaman Kobmbnr Kocmenr Kodaman (60) that describe a scalar exter-

nal interaction of Mth and n th elementary oscillons of propagation from the
selfsame wave groups with the velocity potentials a, & a,, b, & b, ¢, &

c,, d, & d,,correspondingly, for n=m+1im+2,--- M, m=12,--- M -1.

n)
The external wave oscillons (42) include six external elementary oscillons
K K K K K K

lar external interaction of Mth and n th elementary oscillons of propagation

(63) that express a sca-

0,a,m,b,n > o,a,mc,n? “o,a,md,n? "No,b,mc,n! " Nob,md,n? " No,c,md,n
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from the distinct pairs of wave groups with the velocity potentials a, & b,
and b, & a,, a, & ¢, and ¢, & a,, a, & d, and d, & a,, b, &
c, and ¢, & b,, b, & d, and d, & b,, ¢, & d, and d, & cC,,
for n=m+Lm+2,---M, m=12,---,M -1.

m

3. Elementary Oscillons and Pulsons

3.1. The Elementary Oscillons of Propagation

To clarify topology of the elementary oscillons of propagation in the x-direction,

we separate variable x and recast (47)-(51) to the following x-form:
Koam =€Z,Q,pnSIN (K'm (x+ Suym )) Koem =€Z,R, ,sIN (zcm (x +S5um )) )
Kopm = €ZuQym cos(xm (X+5,,m )) Kodm = €ZnRym cos(/cm (X+35,m ))

where amplitudes

Q,m =VAY: +Cyz, R, =+/Byz +Dy; (68)

are expressed via coefficients

Aym = CVm CYp + AVm SYm Bym = AVmcym - CVm SYm»

(69)
Cy,, = Dv,cy, +Bv,sy,, Dy, =Bv,cy, —Dv,sY,,
Suym =%ym —Unt+ X, 0,800 =B, m—Unt+ X0 (70)
are x-shifts in the motionless frame, and
. C . D
Ay =iarcsm Yo By =iarcsmﬁ (71)
Km y,m Km y,m

are X, -shifts in the mth moving frame.

For any frozen y=y,,z=12,1t=t;, the elementary oscillons of propagation
(47) are transformed into solo-frequency (1-f) neutral oscillons in x with wave-
number «,, , amplitudes proportional to ez, (Z,),Q, , (Yo.t), R, (Yo.ty)> and
x-shifts

Sa,y,m(yU’tO)’ Sﬂ,y,m(y0|tg)- (72)
See classification of oscillons and pulsons in Section 3.5.

Let’s consider propagation velocity U and period T, as independent

parameters. Then a wave number

K == : (73)

and a spatial period along the x-axis (an x-wavelength)

Lx,m :Ume,m' (74)
Since integrals of sines and cosines of (67) over x-period L, vanish,
Lx,m
| Koimdx=0, i=ab,c,d, (75)

0

Le. the elementary oscillons of propagation are neutral as the average over the

x-period vanishes.
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To display topology of the elementary oscillons of propagation in the
y-direction, we separate variable y and transform (47)-(51) into the following
y-form:

Koam = €2y Q) SIN (/Im (Y+S40m )) Kopm = €ZnRy SN (ﬂm (Y+S50m ))
Ko,d,m

(76)
Koem = €ZnQym cos(/im (Y+Sym )) =ez,R,,, cos(ﬂm (y+ Spm )

where amplitudes

Qum =yAX: +Cx2, R, =4/BX; + DX} (77)

are computed in terms of coefficients

Ax, = Bv,cx, + Av,sx,, Bx, = Av,cx, —Bv,sx,,

(78)
Cx,, =Dv,cx,, +Cv_sx., Dx,=Cv cx,—Dv,sx,,
Sa,x,m = ax,m _th +Ym,0’ Sﬂ,x,m = ﬂx,m _th +Ym,0 (79)
are y-shifts in the motionless frame, and
1 . Cx 1 . Dx
a, ,, =——arcsin—=, g = =-—arcsin—-" (80)
"= B = -arcsin

m X,m m X,m

are Y, -shifts in the mth moving frame.
For any frozen X=X,,Z=12,t=t,, the elementary oscillons of propagation
(47) are reduced to 1-f neutral oscillons in y with wavenumber A4, , amplitudes

proportional to ez, (Z,),Q, n (X:to ), Rym (Xo.t, ) » and p=shifts
Suam (Xor10)s Spm (Xo:to)- (81)

Since V,, and T, are independent parameters, a wave number and a spa-
tial period along the y-axis become
PRI STVE (82)

m - ! y,m m'y,m
Lim Valym

The elementary oscillons of propagation are also neutral in the y-direction

because

Lym
[ Kgindy=0, i=ab,c,d. (83)

0

Topology of the elementary oscillons of propagation in time follows from the

inhomogeneous Fourier #form of (47)-(51)

ez ez
Ko,a,m = Tm(_Qm 1:l,m + Rm f3,m)’ Ko,b,m = Tm(+Qm fZ,m - Rm 1:4,m)'
(84)
ez ez
Ko,d,m = 2m (+Qm f1,m + Rm f3,m )' Ko,c,m = 2m (+Qm f2,m + Rm f4,m)
in terms of four trigonometric functions
fin=sinA, ., f, =cosA, , f, =sinA, ,f, =cosA, (85)
of two arguments
Ay =(0, 0+ 0y 0 )48, +5, 0+ 0ty 6)
A, = (a)x,m - )t +Sem ~Sym T Ao
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In Equations (84)-(86),

2

Q. :\/(Avm - Dvm)z +(Bv,, +Cvm)2 ,R. = \/(Avm + Dvm)2 +(Bv,, —Cv,,)" (87)
are amplitudes,
2n 2n
O, =——=Kk,Up, Oy =——= AN, (88)
Tx m Ty,m
are frequencies,
. Av, —-Dv_ . Av_ +Dv,
a, , = arcsin——m=, a, , = arcsin—"——=m= (89)
m m
are t-shifts,
Sem =K (X X00)s Sy == (Y+Y00) (90)

are x- and y-shifts, respectively.
For any frozen X=X,,Y =Y,,Z=1Z,, the elementary oscillons of propagation

(47) are converted into duet-frequency (2-f) neutral oscillons in ¢ which are

generated by superpositions of sine waves f, ,f, —and cosine waves f, ,f,
with frequencies o, +®,,,®, , -, , respectively, amplitudes proportional
to Q,,R,.€z, (2, ),and tshifts depending on

wx,m' wy,m’ al,m' az,m' Sx,m (XO)’ Sy,m (yo) (91)

Since temporal periods of f, ,f, ~and f, ,f, = areequalto, respectively,
2n 2n
Tl,m = ' T2,m = ’ (92)
wx,m + wy,m wx,m - wy,m

a temporal period of the elementary oscillons of propagation

To,m = LCM (Tl,m’TZ,m ) = I(l,mTl,m = I(Z,mTZ,m’ (93)
where LCM (a,b) is a least common multiple of a,b and k., .k,, are in-
tegers.

Because integrals of sine waves f, ,f, =~ and cosine waves f, ,f, —over

t-periods T, ,T,, vanish, the elementary oscillons of propagation are neutral
in time, as well, since

Tom

[ Koindt=0, i=ab,c,d. (94)

0
The elementary oscillon of propagation K, , with
L= 4/3, L,=1T,;=2 is visualized in Figure 1 for the following independent
parameters:
p.=1L M=3 75=0  x=0 y,=0, z,=0, t, =0,
T.=2 T,=1 T,=2/3, T,.=3T,= 3/2, T,5=1
U =4 U,=3 U,=2, V=3 V,=2 V, =1,

(95)
Xiog=7, X,0=5 X;,=3, Y=5 Y,0=3  Y;,=1
Ay, =11, Av, =7, Av, =3, By, =6, Bv,=4, Bv,=2,
Cv, =8, Cv,=6, Cv, =4, Dv,=7,Dv,=4, Dy,=1
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(c)

Figure 1. The elementary oscillon of propagation K,,;: (a)—K,;; (%) (67),
(b)—K, ;5 () (76), (c)—K,, ;5 () (84) for independent parameters (95).

In Figures 1-18, two adjacent x-, y- and #periods are shown by dotted vertical
lines.

The elementary oscillons of propagation are displayed via 1-f neutral oscillons
in x with periods L, = [8, 3,4/ 3] , in terms of 1-f neutral oscillons in y with pe-

riods Ly,m = [9,3,1] , and by 2-f neutral oscillons in ¢ with periods Tom = [9,3, 2] S
five local #maximums, and five local #minimums, the numbers of which are
specified by kl,m = [5, 5, 5].

In agreement with (67) and (74),

Koim [x+%vam,y,z,tj =K, m (X ¥, 2,t), [i,j]=[a.b].[c.d]. (96)

So, x-extrema of the elementary oscillon K, ,, which are equal to +ez, Q, .,
correspond to x-zeroes of the x-complementary oscillon K, =~ and x-zeroes of
Koam to xextrema of K, ., which are also equal to *ez Q .. Similarly,
x-extrema of K, ., whichareequalto tez R, correspond to x-zeroes of the
x-complementary oscillon K, and x-zeroes of K . to x-extrema of

Ko.a.m> Which are equal to tez, R, , as well.
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Because of (76) and (82),
Ko im (x, y+%Lyvm,z,tj =K, ;n (X y.2,t), i, j]=[a.c],[b,d]. (97)

Thus, y-extrema of the elementary oscillon K, , -, which are equal to
*ez,,Q, > correspond to y-zeroes of the y-complementary oscillon K and

o,c,m

y-zeroes of K to y-extrema of K, -, which are also equal to +ez Q, .

0,a,m
Analogously, y~extrema of K , -, which are equal to *ez R, , correspond to
y-zeroes of the y-complementary oscillon K, , =~ and y-zeroes of K , = to

y-extrema of K, ,whichareequalto *ez R, ,aswell

3.2. Eigenfunctions of the Inhomogeneous Fourier Expansions in x
andy

Consider the mth and nth families of inhomogeneous x-eigenfunctions of

propagation
foam=SiNAL o fon=CosA 1, fa,=sinA, ., f,,=C0SA,, ., (98)
foan=siNA ., f,,=cosA  , f,,=sinA,,, f.,,=CosA ,,
of four arguments
An =Ky (x+ sa'y‘m), A on =Ky (x+ Sﬂ,y.m)’ (99)

A><,1,n =Ky (X + Soz,y,n )' Ax,z,n =K, (X+ Sﬂ,y,n)'

which are parametrized by two wavenumbers «,, and x, with m=12.--- M
and n=12,---,M .
An x-matrix of external interaction (n#m) between x-eigenfunctions of

propagation of the mth and n th families takes the following form:

fx,l,m 1:x,l,n fx,l,m fx,z,n fx,l,m fx,3,n fx,l,m 1:x,4,n

fx = 1:><,2,m fx,l,n 1:x,z,m fx,z,n fx,z,m 1:><,3,n 1:><,2,m fx,4,n ) (100)
m 1:><,3,m fx,l,n fx,S,m f)(,2,n fx,S,m f><,3,n 1:><,3,m fx,4,n
f><,4,m fx,l,n fx,4,m fx,Z‘n fx,4,m f><,3,n f><,4,m fx,4,n

Because of the product rules for sine and cosine waves, there are 16 inhomo-

geneous x-eigenfunctions of external interaction

feamn =SINAL 0 Fomn =COSA 1,
feamn =SINA 5 0 fymn =COSA , 1,
fesmn =SINA 00 fiemn =COSA 5 1,
fezmn =SINA 4o Tigmn =COSA,, 1,
feomn =SINA 50 fiiomn =COSA 5o 1,
ferimn =SINA gy fomn =COSA ¢ 1 (10)
fessmn =SINAL ;0 famn =COSA 1,
fx‘15,m,n =sin Ax.a,m,nv fx,lﬁ,m,n =C0s Ax,8.m.n
of eight arguments
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Asimn = Kimn X+ K0 Sy ym + Ko Sy Ax2mn = Kamn X+ Ko Seyim = Kn Sayins
Ax,3,m,n = Kl,m,n X+ Km Soz,y,m + Kn Sﬁ',y,n 1 A><,4,m,n = Kz,m,n X+ Km Soz,y,m - Kn Sﬂ,y,n' (102)
A><,5,m,n = Kl,m,n X—’—Km S/i,y,m + Kn Soz,y,n'Ax,G,m,n = Kz,m,n X+Km Sﬁ,y,m - Kn sa,y,n'
Am,m’n = Kimn X+ Ky Spym + K, Sﬂ,y,n,Ax,B‘m‘n = Kymn XFT Ky Spym — Ko Sgyns
which are parametrized by two wavenumbers
Kimn = Kn TKyy Ky = Kn — K, (103)

with m=12,---;M, n=12,.--,M . Thus, the x-eigenfunctions of external inter-
action include sine and cosine waves of all possible combinations of x-wave-
numbers and x-shifts.

Computing products (100) of x-eigenfunctions of propagation yields the fol-

lowing expansions via the x-eigenfunctions of external interaction (101):

2fx,l,m fx,l,n = _fx,z,m,n + fx,A,m,n' 21:><,1,m fx,2,n = fx,l,m,n + 1:x,3,m,n'
2fx,l,m f><,3,n :_fx,G,m,n + fx,S,m,n’ 2f><,1,m f><,4,n = f><,5,m,n + f><,7,m,n'
21:><,2,m fx,l,n = +fx,1,m,n - fx,3,m,n7 21:x,z,m fx,2,n = fx,z,m,n + fx,4,m,n7
2fx,z,m 1:><‘3,n = +fx,5,m,n - fx,7.m,n’ 21:><,2,m fx,4.n = fx,G,m,n + fx.8,m,n’
2fx,3,m fx,l,n :_fx,lo,m,n + fx,lz,m,n’ 2fx,3,m 1:><,2,n fx,9,m,n + fx,ll,m,n’
2 f><,3,m f><,3,n = _fx,14,m,n + fx,le,m,n' 2 f><,3m fx,4 n f><,13,m,n + f><,15,m,n' (104)
21:x,4,m 1:x,l,n =+ fx,g,m,n - 1:x,ll,m,n’ 21:><,4,m fx,z,n = fx,lO,m,n + 1:x,lz,m,n’
2.I:x,4,m fx,3‘n = +fx,13,m,n - fx,lS,m,n' 2f><,4,m 1:><,4,n = fx,l4,m,n + fx,16,m,n'

If n=m, then two wavenumbers of the x-eigenfunctions of external interac-

tion (103) are reduced to a single degenerated wavenumber since

Kl,m,m = 2Km’ Kz,m,m = O (105)

Consequently, eight arguments (102) of the x-eigenfunctions of external inter-

action are transformed into four arguments as

Aimm = 25K, (x+ Suyim ) Acrmm =0,

A smm =K (2 X+S, ym+Ssym ) A smm =TA 3 mm (106)
A,y amm = Kn (Sa,y,m —Spym )' Ay omm = —Axamm:

A nm = 2K, (x+ sﬂ'y'm), A gmm=0.

Therefore, we define the following four arguments of x-eigenfunctions of in-

ternal interaction:

Byn=2K, (x+sa'y‘m), B, om =Kn (2x+sa‘y'm +sﬂ_y,m),

(107)
B, sm = 2K, (x+ sﬁ'y'm), By =K, (Sa,y,m ~S5um )

If n=m, x-eigenfunctions of external interaction are converted into eight
x-eigenfunctions because

foomm =+sinB, ., f,,., =C0sB

x,3,m,m = 0’ f :1!

x,4,m,m

x,1,m?

x,2,m?

f
fosmm =+SINB, ., f enm =COSB
f f

X,7,m,m =+sIn By,l,m’ X,8,m,m = C0s By,l,m’
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f><,9,m,m =+ fx,S,m,m' fx,lo,m,m = fx,e,m,m’

f><,11,m,m = f>-<,7,m,m' fx,lz,m,m = fx,s,m,m’ (108)
fx,13,m,m =+sIn B><,3,m7 fx,14,m,m = COSBx,B,m’

fx,ls,m,m = 0’ fx,lﬁ,m,m =1'

Thus, six x-eigenfunctions of internal interaction g,;.,0,,m: "1 0y6m and

two vertical shifts h,, ,h ,  are defined as follows:
gx,l,m = +Sin Bx,l,m ! gx,z,m = COSBx,l,m ! gx,3,m = +Sin Bx,z,m ! gx,A,m = COSBX,Z,m’ (109)
Oysm =+SINB, 5,0, 6m =COSB, 5, hnym =+sin By,l,m'hy,z,m =C0SB, ;.

The x-matrix of internal interaction (n=m) becomes a symmetrical one,

namely,
2
fx,l,m fx,l,m fx,Z,m fx,l,m fx,3,m f><,1,m 1:><,4,m
2
f D fx,l,m fx,z,m f><,2,m f><,2,m f><,3,m 1:x,2,m fx,4,m (110)
b fx,l,m fx,3,m fx,Z,m fx,3,m fx2,3,m fx,3,m fx,4,m
fx,l,m fx,4,m fx,Z,m fx,4,m fx,3,m 1:><,4‘m fx2,4,m

Computing elements of the x-matrix of internal interaction via the x-eigen-

functions of internal interaction (109) returns

280 = Oan L 260 fon =400
2f0m fam = 9xam tNom 2F0n fuam =+9cam +y 1

21 =+0,om +1, 2% 0m fram = *+9am —Dyim (111)
2% 0m Fam =+9am +hyom: 2 =—0m+1
2%, 3 fram =+0xsms 217, =+, 6m +1.

Computation of eigenfunctions of the inhomogeneous Fourier series in y
coincides with the computation of the eigenfunctions of the inhomogeneous

Fourier series in xup to the following substitutions:

X= y' Km = ﬂ’m’ Kn = /ln' y =X, Kl,m,m = ﬂ’1,m,m ' Kz,m,m = ;)'Z,m,m' (112)

3.3. Eigenfunctions of the Inhomogeneous Fourier Expansions in ¢

Consider the mth (85) and n th families of inhomogeneous teigenfunctions

of propagation
fin=sinA,, f, =cosA ,f, =sinA, ,f, =cosA, , (113)
fo=sinA,, f, =cosA, , f, =sinA, , f, =cosA,,
of four arguments
Ay =(0,n+ @, Jt+5, 0 +5, +
A= (wx,n + a)y,n)t + Sen T Sy T A (114)
szm = (a)x'm - Oy )t + S¢m~ Sym T Ao
A, :<a)x,n - a)y'n)t + Sn — Synt Qg
which are parametrized by four frequencies @, , +®, ., @, ,+®, ,, @, , — @, >
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and o, n

" Oy, with m=1,2,---,M

>

=12,---,M

A tmatrix of external interaction (n#m) between t-eigenfunctions of
propagation of the mth and n th families takes the following form:

1:l,m fl,n f1,m 1:Z,n
f. o= f ,m 1:l,n 2,m f2,n
b f3,m fl,n f3,m f2,n
f4,m fl,n f4‘m f2,n

Due to the product rules for sine and co

of t-eigenfunctions of external interaction

f1,m 1:3,n fl,m 1:4,n
f2,m fs,n fz,m f4,n (115)
f3,m f3,n fS,m f4,n
f4‘m f3,n f4,m f4,n

sine waves, there are eight arguments

Al,m,n A +Aln' A2m,n =A Aln'
Agnn=Aint Ay Apnn =An— Ay,
3,m, 2 4,m, 2 (116)
A5,m,n :A +Aln' AGm,n _A Aln’
A7,m,n :Az,m+A2,n' A8,m,n :A AZn'

which include all possible sums and differences of the arguments of #-eigen-

functions of propagation (114).

Consequently, there are 16 inhomogeneous #eigenfunctions of external inter-

action
fomn =SINA o, =CosA L f 0 =sinA, L f, L =C0SA,
fomn =SINA; L fon, =COSA;  f,  =sinA, |, f., =COSA, ., 117)
fomn =SINAg 1y flonn =COSA  Fy o =sinAg o, =CosAg L,
fla mn Sm A7 m,n? f14,m,n =C0s A7,m,n! f15,m,n = Sm AS,m,n' f16,m,n =C0s A8,m,n
of eight arguments
A g =@ U+ S+ S, 0+ S + S+ o+ a4y,
A2 mn = @ U+ S+ Sym ™ Sen ™ Synt A~ Ay,
Agnn =@yt S+ Symt Sen — Syt Ot Ay
Ay =Qpal+ S+ Syn— Sy +Sy0 + Ay~ Ay
Ag g =G n U+ S =S S, +Sy+ X+ s
Agin =@ mnt +Sen— Sym = Sxn — Syn T Xam — Ay, (118)
A n =0 t+8 = Symt Sn — Syt ot Ay,
A8 mn = @b+ Sy m— Sym~ Sxn tSynt Xom— Ay
which are parametrized by eight frequencies
Oy = O+ O+ O+ Oy Oy =0+ O — O — O
Oyin = Oy T O+ O =By Oy = Oy + O =B+ Oy, (119)
O = Oy = Oy T O+ Oy Qg = Oy = Oy 0 — Oy ) — O 1,
O g = Oy = O+ O = Oy gy =00 — O — O+ O
with m=12,---,M, n=12,---M .

Computation of elements of the #matrix

of external interaction (115) returns

the following expansions in terms of the #eigenfunctions of external interaction

(117):
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2f1,m f1,n = _f2,m,n + f4,m,n’ 2f1,m fz,n f1,m,n + f3,m,n’

2f1,m fs,n - _fG,m,n + fs,m,n’ 2f1,m f4,n f5,m,n + f7,m,n'

2%, =+t — T 260 fon = fonn + famns

2t fn =t s = frmne 2f0n fan = fomn + fomns

2% f = Tomn + fiomnr 2f0m fon = fomn + fiomns
2t B == Tumn* femns 2830 fan = Tamn + fismns

2 0= o~ b 200 =
2f4,m fs,n = +f13,m,n - f15,m,n' 2f4,m f4,n = fl4,m,n + flG,m,n'

If n=m, then eight frequencies of the #eigenfunctions of external interaction

are reduced to four degenerated frequencies since

a)l,m,m = 2(a)x,m + a)y,m)’ a)z,m,m = 0’ a)3,m,m = 2a)x,m’ a)4,m,m = 2a)y,m’

(121)
Dsmm = Dz3mms Dsmm = Pammr Drmm = 2(a)x,m = Oy )' WDgmm = 0.

So, we define four frequencies of #eigenfunctions of internal interaction
o, = Z(wxvm to,, ), Oy =20, ), O =20, ., O, = 2<a)x’m -0, ) (122)

Consequently, eight arguments of the #eigenfunctions of external interaction

are transformed into four independent arguments as

Al = 2|:<wx,m + a;y'm)t + Syt Sy + al,m:|’ Apmm =0,

A?:,m,m = wa,m t+ 28><,m + al,m + az,m' A5,m,m = 3,m,m? (123)
A4,m,m = 2wy,mt—+_ 25y,m O Qs A6,m,m = _A4,m,m7
Ay m = 2|:(a)x,m — Oy )+ S =S+ azym], Agnm=0.

Thus, we define the following four arguments of ~eigenfunctions of internal
interaction:

B ,=a,t+ ZSxym + Zsyym + 2al,m’ By,=aw, t+ st,m +ay,t o,

(124)
B,,=0,,t+2s - 2Sy,m + 20, By, =05, t+ 25y,m +ta,—a,

,m*

If N=m, 16 t-eigenfunctions of external interaction are converted into eight
functions because

1:l,m,m =SmBl,m' fz,m,m =COSBl,m’ f3,m,m =O’ f4,m,m =1’
fomm =SiNB, ., fo o =cosB, ., f, . =sinB;., f3 . =cosB,,
(125)
f9,m,m = f5,m,m’ 1:lO,m,m = fG,m,m’ 1:11,m,m :_f7,m,m' f12,m,m = 1:S,m,m’
f13,m,m :SinB4,m' f14,m,m = COSB4,m' f15,m,m = 0' f16,m,m =1

Therefore, eight #-eigenfunctions of internal interaction are defined as fol-
lows:
gl,m :SinBl,mv gz,m :COSBLm! g3,m ZSinBZ,mv gA,m :COSBZ,m'

. . (126)
gs,m :SInB3,ml gG,m :COSB3,mI g7,m :SInBﬂ.,ml gS,m :COSB4,m'

Substitution of (126) in (125) yields asymptotics of #eigenfunctions of exter-
nal interaction as n approaches m
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1,m,m glm' 2,m,m :gz,m’ 3,mm _O' f4,m,m :1'

f
5,m,m :g&m7 6,m,m :g4,m’ f7mm :+95,m’ f8,m,m :gfj,m’
f

f
f
f9 m,m = g3 m? 1:lO,m,m = g4,m’
f

(127)
11,m,m :_95,m’ f12 mm — gG,m’
13,m,m g? m? f14,m,m = gs,m' f15,m,m = 0’ f16 m,m =1
The £matrix of internal interaction (n = m) is a symmetrical one, viz.

1:l,zm fl,m f2,m fl,m f3,m fl,m f4,m
fi,m,j,m — 1:1,m f2,m fzz,m f2,m2f3,m f2,m f4,m ) (128)

f1,m f3,m f2,m f3,m f3,m f3,m f4,m

f1,m f4,m fz,m f4,m f3,m f4,m f42,m

Computing elements of the #matrix of internal interaction via the #eigen-
functions of internal interaction (126) gives
2 ==Gom + 1, 2f 0 fom =00
fam ==9am+ Yo 2T T =+Ggn + G
om fam =+0%3m = U5 (129)
217 =—Ogm +1,

217, =405, +1.

2f, .,
21 =+0,, +1 2f
2 fz,m f4,m = +94,m + ge,m!

2 f3,m f4,m = +g7,m’

3.4. The Elementary Pulsons of Propagation

In eigenfunctions f (98) with 1=1,2,3,4, the elementary oscillons of

propagation of the velocity potential (47), (67) are represented as follows:

x,I,m

Ko, =a, = €z, Q fxlm, Koem = Cn = €Z,, Ry,m fxv3,m , (130)
_b =€z Qym X,2,m? Kdm:dm:eZmRy,m f)(,4,m'
Substitution of (130) in (54) gives
1 1
Kp,a,m,a,m = 2 =P EZ Qy m xlm ’ Kp,c,m,c,m = Epc EZ Rsm fx 3m?
(131)
1 1
Kp,b,m,b,m = 2 eZ Qy m x 2 m? Kp,d,m,d,m = 2 p ez R)%m fx24 m*

Computing squares of f by (111) in terms of the x-eigenfunctions of in-

x,1,m

ternal interaction g, (109) yields

1 1
Kp,a,m,a,m = ch eZrzn Qim (1_ gx,z,m )' Kp,c,m,c,m = ch ezri R;m (1_ gx,G,m )'
(132)

1 1
Kp,b,m,b,m = ch ezri Qfm (1+ gx,z,m)' Kp,d,m,d,m = ch lei Rim (1+ Ox6.m )

For any frozen y=y,, z=12,, t=t;, the elementary pulsons of propagation
are reduced to 1-f critical positive pulsons in x with wavenumber 2k, , ampli-

tudes proportional to
Per €20, (25): Qi (Yo lo)s Ry (Yorlo), (133)

x-shifts (72), and energy shifts proportional to (133). The elementary pulsons of
propagation are critical since they are produced by the complete squares of

f

x,I,m *
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The x-period of the elementary pulsons of propagation

1 1
I-><,m,m :E Lx,m vy Um Tx,m' (134)
Because integrals of ¢,,, and g,,, over L, . vanish,
L,
1 e 1 .
- j Ko imim 0% =P ez2 Q.. i=ab,
x,mm 0
L (135)
- 1 J‘ K pimim dX :%pc ezi R7 ., i=c,d.
x,mm 0

Integrals (135) show that two pairs of the elementary pulsons of propagation
K K and K K

pamam Kpbmbm pemems Kpdmam ON average transfer equal positive

amounts of the kinetic energy along the x-axis.
Similarly, the elementary oscillons of propagation of the velocity potential
may be written in the y-direction as

Ko‘a‘m = a'm = ezm Qx‘m fy,l,m 1 Ko‘b,m = bm = ezm Rx,m fy.3,m 1 (136)
Ko,c,m = Cm = eZm Qx,m 1:y,2,m’ Ko,d,m = dm = ezm Rx,m 1:y4

4.m*

Therefore, the elementary pulsons of propagation of the kinetic energy via

f, 1 m become
1 2 2 2 l 2 2 2
Kp,a,m,a,m = Epc ezm Qx,m fy,l,m ' Kp,b,m,b,m = Epc ezm Rx,m fy,2,m ’
1 1 (137)
Kp,c,m,c,m = Epc ezli Qfm fx2,2,m’ Kp,d,m,d,m = Epc ezri Rfm fy2,4,m '
and in termsof ¢, take the following form:
1 1
Kp,a,m,a,m = ch ezri Qme (l_ gy,z,m)’ Kp,b,m,b,m = ch ezr?] Rf,m (1_ gy,6,m)’ (138)

1 1
Kp,c,m,c,m = ch ezri Qfm (1+ gy,z,m)' Kp,d,m,d,m = ch GZ; Rfm (1+ gy,e,m )

For any frozen X=X,,z=1z,,t=t,, the elementary pulsons of propagation are
transformed into 1-f critical positive pulsons in y with wavenumber 24, am-

plitudes proportional to
pc,lezn(Zo), Qf,m(XO’tO)' Rf,m(XO’tO)' (139)
y-shifts (81), and energy shifts proportional to (139). The elementary pulsons of

propagation are also critical since they are formed by the complete squares of f,, .

Since amplitudes and shifts do not effect periods, the y-period

1 1
I-y,m,m :E Ly,m :E mTy,m' (140)
Because integrals of g,,, and ¢ ¢, over L . vanish,
L
1 y,mm 1 .
| Koimindy=7pce7, Qs i=asc,
y,m,m 0
(141)
L L e R?
Kpimimdy==p. €2, R, i=b,d.
Ly’m’m 0 p.I,m,1,m 4 c m m

Therefore, two pairs of the elementary pulsons of propagation
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Kp,a,m,a,m’ Kp,c,m,c,m and Kp,b,m,b,m’ K
amounts of the kinetic energy along the y-axis.
With the help of (54), (47), and (84), the elementary pulsons of propagation

become the complete squares of trigonometric polynomials

pdmdm ON average transfer equal positive

2

Kp,a,m,a,m - e; ( Q f1m + R f3 m) p.b,mbm = ez_m (+Qm fz,m - Rm fd,m )2 '
(142)
ez ez

Kp,d,m,d,m: 8 (+Q f1m+Rf ) pcmcm_ 8 (+Q f2m+Rf )

Expanding the trigonometric polynomials and substituting elements of the
t-matrix of internal interaction (129) via the #eigenfunctions of internal interac-

tion (126) returns

1
Kp,a,m,a,m = Epc ezé |:Qr$1 +Rr$1 _Qri 92.m +2QmRm(g4,m _QGm) R gB,m:|'
1
Kp,d,m,d,m =—F EZé[Qé+Ri—Qé gZ,m_ZQmRm(g4,m_g6m) R gSm:|'
16 (143)
1
Kp,b,m,b,m = Epc ezrf] [an'| + Rri +Qri gz,m - 2Qm Rm (g4,m + gs m ) +R gs m:|:
1
Kp,c,m,c,m = Epc ez,ﬁ Qn21 + Rr?] + an‘l Oom + 2Qm Rm <94,m + G, m)+ m Je, m:|
where
Q2 +R? :Z(Av§]+Bv§1+Cqu+Dv§]). (144)

For any frozen X=X,,Y=Y,,Z=1,, the elementary pulsons of propagation
are converted into at most quartet-frequency (4-f) critical positive pulsons in ¢,

which are formed by superpositions of cosine waves @, ,0,:95m: 95 n With

frequencies 2 (a)xym to,, ) 20, 0,20, ,,2 (a)xvm -, ) , correspondingly, am-
plitudes proportional to
P Qui Ry €22 (25), (145)
t-shifts depending on (91), and energy shifts proportional to
Pe, Q2 +R2, €22 (z,). (146)

The elementary pulsons of propagation are critical as they are described by the
complete squares of trigonometric polynomials (142).

Temporal periods T, T. Tommi Tamm Of 92m19sm196miJgm > respec-

,m,m? "2mm?
tively, are
2n 2n 2n 2n
T1,m,m =T T2,m,m =T T3,m,m = TA.,m,m =— (147)
a)x,m + a)y,m a)x,m a)y,m x,m a)y,m

Therefore, a temporal period of the elementary pulsons of propagation

T =LCM (T, ( 1Lm,m? Tz,m,m' T3,m,m' TA,m,m) (148)
kp 1,m,m lm m= I(p,Z,m,m TZ,m,m = I(p,3,m,m T3,m,m = kp,4,m,m T4,m,m'
where K, 000K ommsKpammsKpamm are integers.

Because integrals of cosine waves 0, ., 0, 06m: Jgm OVEr
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T

1,m,m?

T

2,m,m?

T

3,m,m?

T

4,m,m

tionover T, ., become

vanish, averages of the elementary pulsons of propaga-

p.mm
= 1 Kpimim dt:%pc ez2 (Q2+R?), i=ab.c.d. (149)

p,mm 0

Therefore, integral (149) validates that the elementary pulsons of propagation
on average transfer in time the same positive amount of the kinetic energy.

The elementary pulson of propagation K, .., with L ;5=2/3,L 4,=1/2,
and T ;,=1 is shown in Figure 2 for independent parameters (95). The el-
ementary pulsons K, .0 Koy opmi Ko cmems Kpamam are visualized by 1-f
critical pulsons in x with periods L, . =[4,3/2,2/3] and in terms of 1-f criti-
cal pulsons in ywith periods L, =[9/2,3/2,1/2].

The elementary pulsons K, .0 Ky pnem are displayed as 4-f critical pul-
=[3,3/2,1], [4,5,5] local +maximums, and
[4,5,5] local £minimums, the numbers of which do not exceed or equal to
kp,l,m,m
elementary pulsons K
T

bers of which do not exceed or equal to k

sons in ¢ with periods T,

:[5,5,5] due to [1,0,0] merged fmaximums and #minimums. The
K
[4,4,5] local ~maximums, and [4,4,5] local +minimums, the num-

as 4-f critical pulsons in #with periods

p,c,m,c,m? p,d,m,d,m

p,m,m >

because of [l,l,O] merged

p.Lm,m

t-maximums and #~minimums.
In the view of (131), (132), and (134),

Kp‘i’m‘i’m(x+£LX’m‘m,y,z,tj:Kp’jlm’j_m(x,y,z,t), [i, /]=[a.b].[c.d],
2 (150)

1 1
2Ap,a,y :E'DC eZ,i Q;m’ 2Ap,c,y :Epc le?‘I R)%m

So, xmaximums of the elementary pulson K , which are equal to

p.a,m,a,m

2A, ., > correspond to x-zeroes of the x-complementary pulson K and

p,b,m,b,m
x-zeroes of K to x-maximums of K, . ., which are also equal to

p.a,m,a,m
2A

p.ay*

equal to 2A
Kpdmam and xzeroes of K, . to xmaximums of K, . 4., which are
equalto 2A, ., as well.

Due to (137), (138), and (140),

1 L
Kp'i'm‘i'm(x,y+§Ly,m‘m,z,tj= Ky pmim (v22,0), i i]=[a.c],[b,0],

Similarly, x-maximums of the elementary pulson K . ., which are

ocy > correspond to x-zeroes of the x-complementary pulson

(151)

20 =T 2A

1 2 2
p,b,x = Epc eZm Rx,m'

Thus, y-maximums of the elementary pulson K, ., which are equal to
2A, x> €
y-zeroes of K
2A
are equal to 2A,, ., correspond to y-zeroes of the y-complementary pulson

Kp,d,m‘d‘m
also equalto 2A,, ..

orrespond to y-zeroes of the y-complementary pulson K, ... and

to y-maximums of K n»> Which are also equal to

p,a,m,a,m p.c,m,c,

oax - Analogously, y-maximums of the elementary pulson K, . ., which

and y-zeroes of K to y-maximums of K , which are

p,b,m,b,m p,d,m.d,m
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2.5

1.5

0.5

104

(©)

Figure 2. The elementary pulson of propagation K, (a)—K, 3, (%) (132),
(b)—K, 1355 (1) (138), ()—K,, 55,5 (1) (143) for independent parameters (95).

3.5. The Internal Elementary Oscillons

Expressing definitions (57) in the x-eigenfunctions f (98) with 1=1,2,3,4

and using the x-matrix of internal interaction (111) yields the internal elemen-

x,I,m

tary oscillons via the x-eigenfunctions of internal interaction g, (109) in the

following form:

1 1
Ko,a,m,b,m:2 eZ Qym gxlm7 Kocmdm:_

2
Ko,a,m,c,m =%pc le%\ Qy,m Ry, ( y,2,m - gx4m)'
)

Ko .o.m,d.m :%pc ez, Qym Rym ( y2m T Oxam (152)
Kusman =+ 32 Qun Ry (M + Gz,
Kumen == 322 Qyn Ry (N = Gz

For any frozen y=Y,,z=12,t=t;, the first pair K, K .4, of in-

ternal elementary oscillons is reduced to 1-f neutral oscillons in x, which are
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formed by sine waves ¢,,.,0,5, Wwith wavenumber 2x, . The second pair
K K

nonneutral oscillons in x, which are generated by cosine wave ¢,,, and sine

oamem Kopmam and the third pair K K, are presented by 1-f

wave @,,, with wavenumber 2x, and energy shifts proportional to
pc' EZ; (ZO)' Qy,m (yO'tO)' Ry,m (yO'tO)’ hy,l,m (yO’tO)' hy,z,m (yO'tO)' (153)

For the first pair, amplitudes are proportional to (133) and x-shifts are speci-
fied by (72), for the second and third pairs amplitudes are proportional to
p.,€22 (ZO),Qy’m (Yorto), Rym (Yo:t;) and x-shifts depend on (72). The x-period
of the internal elementary oscillons coincides with the x-period of the elemen-

tary pulsons of propagation (134).

Since integrals of g,,, for 1=12,---,6 over L, . vanish,
I—><,m,m

Ll [ Kopmym B =0, [i, j]=[a.b].[c.d].

x,mm 0

1 Lx,m,m p

j KoimjmOX=52e22 Q, R, N, iy j]=[a.c].[b.d], (154)

I‘x,m,m 0 2

l Lx‘m‘m l Lx‘m‘m p
nymym £ Ko,a,m d,m dX = nymym _(l; Ko,b,m,c,m dX 2C ez Qy m Ry m hylm

It is at tedious but a straightforward procedure to show that
Qy m'Yy,m ylm Qy m'ty,m sin K (ay,m _ﬁy,m ) = _Aym Dym + Bymcym
=Av Dv, -Bv,Cv,,
Q Ryl 2m=Qy Ry COSK (@) = By ) = +AY, BY,, +Cy, Dy, (155)

==(Av2 +Bv2 —Cv2 —DV2)s2y_+(Av_Cv_+Bv_Dv_)c2y_,
2( m m m m m m m m m m

where trigonometric functions of the double argument

s2y, =sin(24,Y,), c2y, =cos(24,Y,). (156)

Integrals (154) show that the first pair of internal elementary oscillons does
not transfer on average any kinetic energy, the internal elementary oscillons of
the second pair transfer on average equal amounts of the kinetic energy of the
same sign, and the internal elementary oscillons of the third pair transfer on av-
erage equal amounts of the kinetic energy of opposite signs along the x-axis.

For two vector fields U and V, a scalar field of the kinetic energy of interac-

tion is given by
Ki(x,y,2,t)= /;C u(x,y,z,t)-w(xy,zt)= /;C (u W, +U, W, +U,W, ) (157)
By the definition of the dot product
K; =%|u||w|cosA, (158)

where A(X y,Z,t) is an angle between vector fields U and Vv at a point
(x,y,2,1).
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So, the maximal magnitude of K,

| i|max

:%|u||w|, (159)

does not depend on A, but the sign of K, is determined by cos A . If the vec-
tor fields U and V are unidirectional at (X, y,Z,t), then K; = |Ki|max' If the

vector fields have opposite directions, then K; = —|Ki| . The kinetic energy of

max
interaction vanishes, if the vector fields U and Vv are orthogonal at (X, y,z,t).
Thus, K, becomes negative if 7/2< A <3rn/2 on the contrary to the ki-

netic energy of propagation of the vector field U

K, (% Y,2,t) =%u(x, y,z,t)-u(x,y,z,t) =%(uf +Uj +uf) (160)
that is always positively defined. To summarize, the scalar field of the kinetic
energy of propagation K has a pulsatory nature and the scalar field of the ki-
netic energy of interaction K; an oscillatory one.

Let a nonlinear wave f(v) with an energy shift E, and amplitudes
[—Anin+ Anex ] be decomposed into the inhomogeneous Fourier expansion via M
cosine waves and sine waves with wavenumbers g, and v -shifts proportional

to a,,b,

f(v):EO+§:[Aﬂcos(ymv+am)+Bmsin(ymv+bm)} (161)
m=1
such that
Ay < F(V)-Ey < ALy (162)

Then a period of f (V) inavariable v= [X, Y, Z,t]

P =LCM (Elz_n'ﬁ] (163)
lu.l. /um :uM
and the average of f(v) over period P,
17
— [ f(v)dv=E,. (164)
P o

An oscillon f (V) is termed a neutral oscillon, if the average of f(v) over
P, vanishes, ie. E; =0. So, the neutral oscillon doesn’t transfer the kinetic
energy along the v -direction.

An oscillon f (V) is called a positive (nonneutral) oscillon, if the average of

f(v) over P, is positive since 0<E, <A, and the nonneutral oscillon
transfers the positive amount E, of the kinetic energy along the v -direction.

When E, = A, , the positive oscillon is transformed into a critical positive
pulson, which also transfers the positive amount E, of the kinetic energy along
the v-direction. If E > A, , the critical positive pulson is converted into a
supercritical pulson, which transfers the positive amount E, of the kinetic
energy along the v -direction, as well.

Similarly, an oscillon f (V) is named a negative (nonneutral) oscillon, if the
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average of f(v) over P, is negative because —A  <E, <0 and the non-
neutral oscillon transfers the negative amount E_ of the kinetic energy along
the v -direction.

When E, =-A,,, the negative oscillon is transformed into a critical negative
pulson, which also transfers the negative amount E, of the kinetic energy
along the v-direction. If E; <—-A,,,, the critical negative pulson is converted
into a subcritical pulson, which transfers the negative amount E_ of the kinetic
energy along the v -direction, as well.

We then represent definitions (57) in the y-eigenfunctions f, , =~ with
1=12,3,4 and use the y-matrix of internal interaction to compute the internal
elementary oscillons in terms of the y-eigenfunctions of internal interaction

g, asfollows

1
Ko,a,m,b,m = Epc lei Qx,m Rx,m (hx,z m gy 4,m

1
Ko,c,m,d,m = Epc eZrzn Qx,m Rx,m (hx,z,m + gy,d m

N |-

1
Ko,a,m,c,m = Epc ezri Qfm gy,l,m ! Ko,b,m,d,m = p eZrzn Rfm gy,5,m' (165)

1
Ko,a,m,d,m =+ Epc BZ; Qx,m Rx,m ( kim T gy3 m)
) )

1
obmem Epc lei Qx,m Rx,m ( x,1,m gy 3,m

K

of internal elementary oscillons are represented

For any frozen X=X,,z=2,,t=t,, the first pair K and the
third pair K K

by 1-f nonneutral oscillons in y; which are generated by cosine wave ¢, and

o,a,mb,m? " “o,c,md,m

o,a,m,d,m? " “o,b,m,c,m

sine wave @, ., with wavenumber 24, and energy shifts proportional to
pc' ezrzn (20)1 Qx,m (XO'tO)' Rx,m (XO’tO)’ hx,l,m (X01t0)’ hx,z,m (XO’tO)' (166)

The second pair K K

o,a,mc,m?

obmdm 18 transformed into 1-f neutral oscillons
in y, which are formed by sine waves ¢,,,0,5, with wavenumber 24 . For
the first and third pairs, amplitudes are proportional to

P..€22 (ZO)’Qx,m (yO,tO), Rim (y0 t,) and p-shifts depend on (81). For the
second pair, amplitudes are proportional to (139) and y-shifts are specified by
(81). The y-period of the internal elementary oscillons equals to the y-period of

the elementary pulsons of propagation (140).

Because integrals of g, for =12,---,6 overtheperiod L, ,  vanish,
Ly b].[c.d
L _[ 0,i,m,j,m y_?ezm Qx,m X,m x2m1 [I J] [a: ]:[Cx ],
y,m,m 0
1 e .
- I Koimjmdy =0, [i, i]=[a.c].[b.d], (167)
y,m,m 0
1 I-y,m,m 1 Ly,m,m
L Ko,a,m,d,m dy:_L I Ko,b,m,c,m dy eZ me x,m xlm
y,m,m 0 y,m,m 0

It may be shown that
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me X,m xlm me meInﬁ’m (ax,m_ﬂx,m):_AXmDXm +BXmCXm
= Av,Dv,-Bv,Cv,,
me X,m x2m me x,m COS/’i’m (ax,m _ﬂx,m):+AXmBXm +CXmDXm (168)

= E(Avnz1 —BV2 +CVv2 —DVZ )stm +(Av,Bv, +Cv,Dv, )c2x,,

where trigonometric functions of the double argument

$2X, =sin(2x;, X, ), €2x, =cos(24, X, ). (169)

Thus, the internal elementary oscillons of the first pair transfer on average
equal amounts of the kinetic energy of the same sign, the second pair of internal
elementary oscillons on average does not transfer on average any kinetic energy,
and the internal elementary oscillons of the third pair transfer on average equal
amounts of the kinetic energy of opposite signs along the y-axis.

Usage of definitions (57) together with trigonometric polynomials (84) in
t-eigenfunctions (113) and application of the #matrix of internal interaction
(129) yields the internal elementary oscillons in terms of the #eigenfunctions of

internal interaction (126) in the following #form:

1
Ko,a,m,b,m = _gpc ezri (Q; gl,m _2Qm Rm g3,m + er] g7,m)7
1 2 2 2
Ko,c,m,d,m = +§pc eZm <Qm gl,m + 2Qm Rm g3,m + Rm g7,m )’
1 2 2 2
Ko,a,m,c,m = _gpc ez, (Qm gl,m +2QmRm gs,m - Rm g7,m )'
(170)
Ko,b,m,d,m = 8 P €L (Q glm m gS,m - er] g7,m)’
1
Ko,a,m,d,m +8pc €z (Q me RZ gsm Q +R )
1 2 (A2 2 2 2
Ko,b,m,c,m - +§pc eZm (Qm gz,m - Rm gB,m +Qm - Rm )’
where
-QZ +R?2 =4(Av, Dv, —Bv,Cv,). (171)
For any frozen X=X;,Y=Y,,Z=2,, the first pair K, .K, nqn of in-

ternal elementary oscillons is presented by at most trio-frequency (3-f) neutral
oscillons in ¢ which are produced by superpositions of sine waves
Oy 93m 07 With frequencies 2<a)xym +a)yym>, Za)xvm,Z(a)X'm —a)y,m) , corre-
spondingly. The second pair K, ... K,y nam is represented by at most 3-f
neutral oscillons in ¢ which are generated by superpositions of sine waves
O1m+9sm: 97 With frequencies Z(a)xym +a)y‘m),2wy'm,2(wxvm —a)y‘m) , respec-
tively. The third pair K, . 4 niKopmen 18 formed by 2-f nonneutral oscillons
in £ which are created by superpositions of cosine waves ¢, .,0g, with fre-
quencies 2(a)x,m +a)y’m),2(a)xym —a)y'm) , correspondingly, and energy shifts
proportional to pc,an1 - R,ﬁ,ezé (Zo) . For all pairs, amplitudes are proportional

to (145) and #shifts depend on (91).
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A temporal period of the first pair

To,l,m,m =LCM (Tl,m,m’ T2,m,m' T4,m,m) (172)
= ko,l,l,m,m Tl,m,m = ko,l,z,m,m Tz,m,m = kt),l,é‘.,m,m T4,m,m'
where ko,l,l,m,m ! ko,1,2,m,m ' ko,l,zl,m,m are integers and Tl,m,m 'T2,m,m ’T3,m,m’T4,m,m are
given by (147).
Similarly, a temporal period of the second pair
To,Z,m,m = LCM (Tl,m,m’ T3,m,m’ T4,m,m) (173)
= I(o,Z,l,m‘m Tl‘m‘m = I(0,2,3,m‘m TZ,m,m = I(0,2,4‘m,m T4,m,m’
where K, 000K 2ammiKooamm are integers.
Analogously, a temporal period of the third pair
To,3,m,m =LCM (Tl,m,m ’T4,m,m ) = I(0,3,1,m,m Tl,m,m = I(0,3,4,m,m T4‘m,m’ (174)
where K, ;.0 Kozamm areintegers.
Because integrals of @, ,095,,095m:97.n over T T 0 0T s Tamm  vanish,

averages of the internal elementary oscillons over the relevant #periods become

1 Toimm N
Tosmm I Koimimdt=0. [, j]=[a,b][c.d],
1 T0,2,m,m o
Toomm l Koimim At =0, [i, j]=[a,c],[b,d], (175)
1 To3mm 1 To3,mm pc
T0,3,m,m -([ KO,a,m,d,m at= _To,s,m,m '([ Kovbvm,c,m dt = ?eZ; (_anq + Rri )

Therefore, the first and second pairs of internal elementary oscillons do not
transfer on average any kinetic energy in time, the internal elementary oscillons
of the third pair on average transfer in time equal amounts of the kinetic energy
of the opposite signs.

The internal elementary oscillon K, ., ; with
Liss =2/3,L,55=12,T, 5, =1 is visualized in Figure 3 for independent pa-
rameters (95). The first pair is displayed by 1-f neutral oscillons in x with periods
Lymm =[4,3/2,2/3], the second and third pairs via 1-f nonneutral oscillons in x

with periods L

X,m,m *

The first and third pairs are visualized in terms of 1-f nonneutral oscillons in y
with periods L, =[9/2,3/2,1/2] and the second pair by 1-f neutral oscillons
in ywith periods L, ..
The first pair is shown by 3-f neutral oscillons in ¢ with periods
=[3,3/2,1], [3,5,5],[3,3,5] local #maximums, and [3,5,5],[3,3,5] lo-
cal fminimums, the numbers of which do not exceed or equal to
Kozmm =[5.55] due to [20,0],[2,2,0] merged rmaximums and
t-minimums, respectively. The second pair is visualized via 3-f neutral oscillons
:[3,3/2,1], [3,4,5] local #maximums, and [3,4,5]

local #minimums, the numbers of which do not exceed or equal to

T

0,1,mm

in ¢ with periods T,

,2,m,m

Ko 2.mm :[5,5,5] due to [2,1,0] merged #maximums and #minimums. The
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third pair is displayed in terms of 2-f neutral oscillons in ¢ with periods
Tozmm :[3,3/2,1], [5,5,5] local #maximums, and [5,5,5] local #minimums,

the numbers of which are indicated by k, ;. . =[5,5,5].
In agreement with (152),

_ 2
Ko,b,m,d,m = p. €z, Qy,m Ry,m hy,2,m - Ko,a,m,c,m'

) (176)

Ko,a,m,d,m = pc eZm Qy,m I:Qy,m hy,l,m + Ko,b,m,c,m .
Locations of x-maximums of K, . coincide with locations of
x-minimums of K and locations of x-minimums of K coincide

0,b,m,d,m

with locations of xmaximums of K

0,a,m,c,m

obmdm- Locations of x-maximums and

x-minimums of K coincide with locations of x-maximums and

o,a,m,d,m

x-minimums of K ..

Because of (165),
Ko,c,m,d,m = P ezi Qx,m Rx,m hx,z,m - Ko,a,m,b,m’

. (177)
Ko‘a‘m,d,m = pc eZm Qx,m Rx,m hx,l,m + Ko‘b,m,c‘m'

R EEREEE R - e

(c)

Figure 3. The internal elementary oscillon K, ,;,s (a)—K,,3,; () (152),
(b)—K,, .55 (1) (165), (c)—K,, 3,5 () (170) for independent parameters (95).

DOI: 10.4236/ajcm.2023.131001

33 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2023.131001

V. A. Miroshnikov

Locations of y=maximums of K
of K
of y-maximums of K
K

oampm coincide with locations of y-minimums

and locations of y-minimums of K coincide with locations

o,c,m,d,m 0,a,m,b,m

ocmdm- Locations of y-maximums and y-minimums of

oamam coincide with locations of y-maximums and y=minimums of K
Due to (170),

0,b,mc,m*

Koamam = %pc ez2 (-Q2+R3)+ K (178)

o,b,m,c,m "

Locations of #maximums and #~minimums of K coincide with loca-

0,b,m,c,m

tions of £~-maximums and #minimums of K ;..

3.6. The Diagonal Elementary Oscillons

Using (130), we recast definitions (60) of the diagonal elementary oscillons in
(98) and convert them with the help of
the x-matrix of external interaction (104) into the following form:

terms of x-eigenfunctions f,, ,f, |

1
Ko,a,m,a,nzzpcez €z Qmeyn( X,2,m,n x4mn)
1
Ko,b,m,b,n = 2:0 eZ €z Qmeyn( x2,m,n x4mn)’
179
1 (179)
Ko,c,m,c,n =Epc ezm eZn Ry,m Ryn ( 1:><14mn xlemn)l
1
Ko,d,m,d,n = Epc €z, ez, Ry,m Ry n (+ fx d4mn T x16 m.n )

For any frozen y=Y,,z=12,t=t,, the diagonal elementary oscillons are
transformed into 2-f neutral oscillons in x, which are produced by superposi-
tions of two pairs of cosine waves f , . f , =~ and f., ., f.¢., withtwo

wavenumbers ; .k, ,» respectively, amplitudes proportional to
Per €20 (20), €2,(20), Qum (Yo t0)s Qua (Yorto ) Rym (You 1) s Ry (Yo b)) (180)

and x-shifts depending on
Kr Knr Saryn (Yorto)s Sayn (Yorto)Spym (Yoot ) Spyn (Youlo)- - (181)

If n=m, the diagonal elementary oscillons (179) are reduced to the doubled
elementary pulsons of propagation (132) in the view of (108)-(109).

A spatial period of the diagonal elementary oscillons along the x-axis

Lx,m,n =LCM (Lx,l,m,n' Lx,2,m,n ) = k)(,l,m,n Lx,l,m,n = k><,2,m,n Lx,Z,m,n’ (182)

where
21 21
I‘x,l,m,n = ' Lx,Z,m,n = (183)
1m,n 2,m,n
are x-periods of f ., . f, . and f_, . f.. ., respectively, and
KeimnsKeomn areintegers.

Because integrals of f , — for 1=125,6,9,10,13,14 over L vanish
for 1=34,7,8,11,12,1516 over L

averages of the diagonal elementary oscillons over L,

Xx,1,m,n

and integrals of f also vanish,

x,1,m,n X,2,m,n

mn Vvanish since
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Lxmn

[ Koimindx=0, i=ab,c,d (184)

0

in the view of (179), (182) and the additive interval property. The diagonal el-
ementary oscillons are neutral since on average they do not transfer any kinetic
energy along the x-axis.

Similarly, representation of definitions (60) in y-eigenfunctions f,, ., f

with the help of (136) and transformation into y-eigenfunctions of external

interaction f yield

y,l,m,n

f

1
Ko,a,m,a,n =7 2 ez €z Qx m Qx n y,2,m,n y 4,m,n )'

(185)

(-
1
Ko,c,m,c,n = 2 eZ €z meQ n<+fy2mn y4,m,n)’
K (-

1
0,b,m,b,n = Epc eZm eZn Rx,m Rx n fy 14,m,n ylG,m,n)’

K + f

o,d,m,d,n y,14,m,n y,lG,m,n)'

1
=5 P2y €7, Rem Ryen (+F

For any frozen y=Y,,2Z=2,t=t;, the diagonal elementary oscillons are
transformed into 2-f neutral oscillons in y; which are formed by superpositions

of two pairs of cosine waves f f and f f with wave-

y,2,mn’ "y,dmn yl4,mn? Ty16,m,n
numbers 4, .,4, ., respectively, amplitudes proportional to

pcl ezm (ZO)’ ezn (ZO)’ Qx,m (XO'tO)! Qx,n (Xo’to)’ Rx,m(XO’tO)’ Rx,n (XO'tO) (186)
and y-shifts depending on
/Im'ﬂ'n' Saxm(X(J' )' axn(XO'tO)'Sﬁ,x,m(XO'tO)'Sﬂ,x,n(XO'tO)' (187)

If n=m, the diagonal elementary oscillons (185) are reduced to the doubled
elementary pulsons of propagation (138).

A y-period of the diagonal elementary oscillons

Lymn =LCM (Lyvl,mvn’ Lyyz,mvn): ky,l,m,n Lysmn = ky,z,m,n Ly omn (188)
where
2n 2n
Lysmn =m Ly 2.mn =% (189)
are y—periods of fy,Z,m,n’ 1:y,4,m,n and fy,14,m,n7 fy,lG,m,n 5 respectively, and
kyylvm'n ) ky,z,m,n are integers.

for 1=12,5,6,9,10,13,14 over
for 1=3,4,7,8,11,12,15,16 over

In the view of vanishing integrals of f ,

L and vanishing integrals of f

y,L,m,n y,l,m,n

y,2,m,n >

Ly,m,n

[ Koimindy=0, i=ab,c.d. (190)

0

The diagonal elementary oscillons are also neutral along the y-axis since on
average they do not transfer any kinetic energy.

In agreement with (60), (47), (84), we use the #matrix of external interaction
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(120) to compute the inhomogeneous Fourier expansion of the diagonal elemen-

tary oscillons via the #eigenfunctions of external interaction (117) as follows:

Ko,a,m,a,n :; eZ eZ [ Q Q ( 2mn f4,m,n) +QmRn ( f6,m,n - fS,m,n)

+R Q(flOmn_ lZm,n) m n(f14mn_ 16m,n):|'
1
Ko,d,m,d,n =§pCeZm€Z (men - 4mn) n(femn - 8mn)
(flomn_ 12m,n) m n(f14mn_ 16m,n):|’

Ko,b,m,b,n = %pcezmez [+Q Q ( 2,m,n f4,m,n) _Qm Rn ( 1:6,m,n + fS,m,n)
R Q ( 10,m,n f12,m,n )+ Rm Rn ( f14,m,n + f16,m,n )]’
Ko.c,m,c,n = ; eZ eZ [+Q Q ( 2,m,n 4.m,n) +Qm Rn ( fﬁ,m,n + fa‘m,n)

+ Rm Qn ( flO,m,n + f12,m,n)+ Rm Rn ( f14,m,n + f16,m,n ):|

For any frozen y=Y,,2=12,t=t,, the diagonal elementary oscillons are

(191)

transformed into at most octet-frequency (8-f) neutral oscillons in # which are

produced by superpositions of cosine waves f with frequencies @, ,, for

2l,m,n

1=12,---,8, amplitudes proportional to

Psr Quns Qur Ry Ry ez, (25), €2, (2,) (192)
and fshifts depending on
O s Oy Oy 1y Oy 13 Oy 1 Oy 13 g 1y Sy (%0 )18 (X%9) 28y (Yo ) Sy (Vo )- (193)

If n=m, the diagonal elementary oscillons (191) are reduced to the doubled
elementary pulsons of propagation (143) due to (127).
for 1=12,---,8 is

T2 (194)

I,m,n

Since a t-period T, of f

2l,m,n

I,m,n

a t-period of the diagonal elementary oscillons

Td,mn _LCM( 1Lmn? "'-I—I,m,n""'TB,m,n) (195)
= I(d,l,m,n Tl,m,n == I(d,l,m,n Tl,m,n == kd,8,m,n T8,m,n'
where Ky 0Ky mneo Kggmn are integers.
In the view of vanishing integrals of f, = over T .,
Td.mn
[ Keimindt=0, i=ab,c,d. (196)
0

Integral (196) demonstrates that the diagonal elementary oscillons are neutral
in time, as well, as they do not transfer on average any kinetic energy.

The diagonal elementary oscillon K, ,,; with
L,s=12,L,,,=3/2,T,,;=6 is shown Figure 4 for independent parameters
(95).
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. 81
. 67
.41
.27
0
.21
.44
.67
. 84

Figure 4. The diagonal elementary oscillon K, ,,,s: (a)—K,,,,; () (179),
(b)—K, 5255 (7) (185), () —K, 4,45 (1) (191) for independent parameters (95).

Along the x-axis, the diagonal elementary oscillons are visualized by 2-f neu-
tral oscillons in x with periods L, . =[L,1,0Lisi L, 55 |=[24,812],[11,7,13]
local x-maximums, and [11, 7,13] x-local minimums, the numbers of which are
specified by K, ;.= |:k><,1,1,2 Ky113n km'm} =[11,7,13].

Along the y-axis, the diagonal elementary oscillons are displayed via 2-f neu-
=[9/2,9/2,3/2],[2,5,2] local
y-maximums, and [2,5, 2] local y-minimums, the numbers of which are indi-
cated by k =[2,5,2].

The diagonal elementary oscillons K

tral oscillons in ywith periods L, ,

y,Lm,n
K are [7-f, 7-f, 6-f] neutral
oscillons in ¢ with periods T, . =[6,36], [13,9,25] local #maximums, and

o,a,ma,n’" “ob,mb,n

[13,9, 25] local #minimums, the numbers of which do not exceed or equal to
Kg1mn =[15,10,25] due to [2,1,0] merged #maximums and #minimums.
ocment Kodgman are [7-f, 7-f, 6-f] neutral
[13,9,23] local #maximums, and [13,9,23]

local #-minimums, the numbers of which do not exceed kg, ., dueto [2,1,2]

The diagonal elementary oscillons K

oscillons in ¢ with periods T,

,m,n >

merged #maximums and ~minimums.
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3.7. The External Elementary Oscillons

With the help of (130), we transform definitions (63) of the external elementary

oscillons via x-eigenfunctions f f (98) and express them using the

x,I,m? "x,I,n

x-matrix of external interaction (104) as follows:

Ko,a,m,b,n = pcezmeany,mQy,n 1:><,1,m,n ' Ko,c,m,d,n = pcez ezn Ry mRy n fx 13,m,n?
1
Ko,a,m,c,n = 2 EZ €z [Q)’m Yn( X,6,m,n + f><,8,m,n)
+Ry mQyn ( x,10,m,n + f><,12,m,n ):|'
1
0,b,m,d,n = 2 eZ €z I:Qym Vn( X,6,m,n + fx,8,m‘n)
+Ry mQyn <+fx10mn fx,12,m,n ):|'
L f
Ko,a,m,d,n = 2 ez €z |:Qym Yn( X,5,m,n + x,7,m,n)

+ Ry,mQy,n <+ f)(,Q,m,n - fx,ll,m,n )]l

1 (197)
Ko,b,m,c,n =4 2 eZ €z [QY m®ty,n ( x,5mn fx,7,m,n)
+Ry mQyn (+ fmen fx,ll,m,n ):|
For any frozen y=Y,,z=2,t=t,, the first pair K K, 4. of ex-

ternal elementary oscillons is reduced to 1-f neutral oscillons in x, which are

formed by a pair of sine waves f ., f . . with wavenumber «x, . . The

second pair K, .., K ;. is transformed into 2-f neutral oscillons in x,

which are generated by superpositions of two pairs of cosine waves f, o ., f ¢,

and f o000 fiiom, With wavenumbers x, &, ., respectively. The third pair
K

K

by superpositions of two pairs of sine waves f o . f, . and f.o . f. .,

is converted into 2-f neutral oscillons in x, which are produced

o,a,m,d,n? ' Yo,b,m,c,n

with wavenumbers x; ., k, , ;> correspondingly.

For all three pairs, amplitudes are proportional to parameters (180) and
x-shifts depend on parameters (181). The x-period of the first elementary pair is
L and the x-period of the second and third elementary pairsis L, that
are defined by (182)-(183). If n=m, the external elementary oscillons (197) are
reduced to the doubled internal elementary oscillons (152) due to (108)-(109).

x,1,m,n

Averages over the x-period of six external elementary oscillons vanish since

j Kyom o dx=0, [i,j]=[ab].[c.d],
0, (198)
I Kypm g =0, i, ] =[] 0] [a.d] [o.c].

0

because of the same reasons as for the diagonal elementary oscillons (184). The
external elementary oscillons are also neutral because on average they do not
transfer any kinetic energy along the x-axis.

Analogously, definitions (63) written in y-eigenfunctions f , ., f with
the help of (136) and the y-matrix of external interaction give
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Ko,a,m,b,n ; ez ez |:Qx mx,n ( y,6,m,n + fy,s,m,n)
+Rx man< y,10,m,n + fy,lZ,m,n )]’
ocmdn = ; GZ €z |:Q>< m®x,n ( y,6,m,n + I:y,S,m,n>

+RmeXn<+fylomn fy,lZmn):l’

Ko,a,m,c,n = pcezmeZan,mQx,n y,L,mn Ko,b,m,d,n = pCEZ eZn Rx me n fy 13,m,n?’
1
Ko,a,m,d,n = 2 ez €z |:me xn( y,5,m,n + f)',7,m,n)

+ RX'mQx,n (+ fy,9,m,n - fy,ll,m,n ):|’

1 (199)
Ko,b,m,c,n =5 2 PceZ,€Z |:Qx mTx,n ( y5mn fy,7,m,n)
+Rx man (+ fygmn 1:y,ll,m,n ):|
For any frozen y=Y,,z2=12y,t=t,, the first pair K . K ;. of ex-

ternal elementary oscillons is transformed into 2-f neutral oscillons in y; which

are generated by superpositions of two pairs of cosine waves f . . f ¢ and

fy10mns fy1ome with wavenumbers A4, ., 4, ,, correspondingly. The second

K

by a pair of sine waves f , ., f 5 with wavenumber 4 . . The third pair
K K

duced by superpositions of two pairs of sine waves f . .. f ;. = and

pair K is reduced to 1-f neutral oscillons in y;, which are formed

o,a,mc,n? " “obmd,n

oamdnt Kopmen 18 converted into 2-f neutral oscillons in y; which are pro-

fyomns fysimn with wavenumbers 4, ., 4, respectively.
For all pairs, amplitudes are proportional to parameters (186) and y-shifts de-
pend on parameters (187). The y-period of the first and third elementary pairs is

L and the y~period of the second elementary pair is L

y,mn that are speci-

Lm,n
fied by (188)-(189). If n=m, the external elementary oscillyons (199) are trans-
formed into the doubled internal elementary oscillons (165).

The external elementary oscillons are also neutral along the y-axis since on
average they do not transfer any kinetic energy as

Ly,m,n

| Kosmsndy =0, [i.i]=[a.b] [c.a],[a.d] [o.c].
(200)

L.vv

y:[mn onmjndy 0, [i:j]:[a,C],[b,d].

With the help of (63), (47), and (84), we employ the #matrix of external inter-
action (120) to compute the inhomogeneous Fourier expansion of the external
elementary oscillons via the #-eigenfunctions of external interaction (117) in the

following #form:

1
Ko,a,m,b,n = chezmezn |:_Qm Qn fl,m,n +Qm Rn f5,m nt R Q f9 mn Rn f13,m,n]'

1
Ko,c,m,d,n = chezmezn |:+Qm Qn fl,m,n +Qm I:en f5,m,n + Rm Qn f9,m,n + Rm Rn f13,m,n :|'
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1
Ko,a,m,c,n = chezmezn |:_Qm Qn f1,m,n _Qm Rn f7,m,n + Rm Qn fle,m,n + Rm Rn f13,m,n]!

1
Ko,b,m,d,n = chezmezn |:+Qm Qn fl,m,n _Qm Rn 1:7,m,n + Rm Qn 1:1l,m,n - Rm Rn f13,m,n :|'
1 (201)
Ko,a,m,d,n =chezmez |:+Q Q ( 2,mn "~ ‘4 m,n) - Rm Rn ( fl4,m,n - f16,m,n )]’
1
Ko,b,m,c,n = chezmez |:+Q Q ( 2,mn 4m,n) - RmRn ( f14,m,n + flG,m,n )j|
For any frozen X=X,,Y=Y,,Z=2,, the first pair K, ;K nan, of ex-
ternal elementary oscillons is reduced to at most 4-f neutral oscillons in ¢ which
are formed by superpositions of four sine waves f ., f; ., fo ., f;, . with
frequencies @, ., @5 01 @5 0 @; 1 > TESpectively. The second pair
Koamen Kopman i8 transformed into at most 4-f neutral oscillons in £ which

are generated by superpositions of four sine waves f, ., f, . f, . f 0
with frequencies @, ., @, nn1 @5 mn @7y > correspondingly. The third pair
K

produced by superpositions of four cosine waves f

vamdnt Kobmen 1S converted into at most 4-f neutral oscillons in £ which are

f fl4,m,n’ 1:16,m,n WIth

2,mn? "4mn?

frequencies @, ,, @, ;0 @7 0y @5 > TESPECtively.

For all pairs, amplitudes are proportional to parameters (192) and #-shifts de-
pend on parameters (193). If n=m, the external elementary oscillons (201) are
converted to the doubled internal elementary oscillons (170) because of (127).

Temporal periods of the first pair

To,l,mn _LCM( 1mn’T3,m,n’ 5m,n? 7mn) (202)
kollmn 1m,n =|(0,1,3,mn 3mn — k015mn 5,m,n =ko,l,7,m,n 7,m,n?
the second pair
To,Z,mn_LCM( 1mn'T4,m,n’ 6,m,n? 7mn) (203)
k021mn lmn:k024mn 4,mn — I(026mn 6mn:k0,2,7,m,n 7.mn?
and the third pair
To,3,mn _LCM( 1mn'T2,m,n' 7,mn? Smn) (204)
koalmn lmn:k032mn 2,mn — I(037mn 7m,n:ko,3,8,m,n 8,m,n?
where Kk k k Kk k k k k k

0,11,m,n? Mo,1,3,m,n? Mo,1,5,m,n? No,1,7,m,n* No,21,m,n? N0,2,4,mn? M0,2,6mn’ "0,2,7,mn’ "0,31,mn >

k0,3,2,m,n ’ k0,3,7,m,n ’ k0,3,8‘m,n are integers, Tl,m,n
(194).

Because integrals of sine waves f, , = over the relevant fperiods T

for 1=1,2,---,8 are specified by

vanish for |=1,2,---,8, averages of the external elementary oscillons also vanish

for the reason that

To,l,m,n

Kym 1 dt=0, [i,j]=[a.b].[c.d],
Tj Koo 1 dt=0, [i,j]=[a.c].[0.d], (203)

[ Koimyndt=0, [i, j]=[a.d].[b.c]
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due to (201)-(204) and the additive interval property. In agreement with (205),
the external elementary oscillons are also neutral because on average they do not
transfer in time any kinetic energy.

The diagonal elementary oscillon K, 5 with
Lo =12,L,;,5=3/4,T,,,5 =6 is shown in Figure 5 for independent param-
eters (95).

Along the x-axis, the first pair is visualized by 1-f neutral oscillons in x with
«imn =|24/11,8/7,12/13]. The second and third pairs are displayed by
2-f neutral oscillons in x with periods L = [24,8,12] R [ll, 7,13] local

X,m,n

periods L

x-maximums, and [11, 7,13] local x-minimums, the numbers of which are speci-
fied by k :[11,7,13].

Along the y-axis, the first and third pairs are depicted by 2-f neutral oscillons
in y with periods L = [9/2,9/2,3/2] , [2,5, 2] local y-maximums, and

y,m,n

x,1,m,n

[2,5, 2] local y-minimums, the numbers of which are indicated by

I(y,:L,m,n

riods L

=[2,5,2]. The second pair is shown by 1-f neutral oscillons in ywith pe-
—[9/4,9/10,3/4].

y.Lm,n

Figure 5. The external elementary oscillon K, ,,.;: (a)—K,,,. (%) (197),

0,

(b)—K, .53 (1) (199), (6)—K,,,, o5 () (201) for independent parameters (95).
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The first pair is presented by 4-f neutral oscillons in ¢ with periods
Totmn =[6,3/2,6], [15,5, 25],[11,5, 25] local ~maximums,
[15,5,25],[11,5,25] local #minimums, the numbers of which do not exceed or
=[15,5,25] due to [0,0,0],[4,0,0] merged #maximums and
tminimums, respectively. The second pair is represented via [3-f, 4-f, 4-f] neutral
=[2,3,6], [5,9, 25] local #maximums, and
[5,9,25] local #minimums, the numbers of which do not exceed or equal to
k
The third pair is visualized by [4-f, 4-f, 3-f] neutral oscillons in ¢ with periods
Tosmn = [6,3, 6] , [15,10, 25] local #maximums, and [15,10, 25] local
=[15,10,25].

equal to k

0,1,m,n

oscillons in ¢ with periods T, .

o 2mn :[5,10, 25] because of [O,l, O] merged #maximums and #minimums.

t-minimums, the numbers of which are provided by k.

4. Wave Oscillons and Pulsons
4.1. The Wave Oscillon of Propagation
Separation of variable xin (52) gives

Kuim =€Zy Qyym SIN (K'm (x + Swaym )) (206)

where

Quym =+ AVum +CVirm (207)

is an amplitude, which is expressed via coefficients
Ayw,m = va,m Cym + Avw,m syml Cyw,m = DVw,m C'ym + va,m Sym'

Av, ., = Ay, —-Bv, -Cv, +Dv,, By, =Av, +Bv, -Cv, -Dyv,, (208)
Cvym =Av, —Bv, +Cv, —Dv,, Dy, = Av, +Bv, +Cv, +Dv,.

In Equation (206),

Swya,y,m =Cyym _Um t+ Xm,o (209)
is an x-shift in the motionless frame and
1 . C
Qyym :—arcsm—yw*m (210)
Kn w,y,m

is an X -shift in the mth moving frame.

For any frozen y=y,,z=12,t=t,, the wave oscillon of propagation is
transformed into a 1-f neutral oscillon in x with the wavenumber «,,, an am-
plitude proportional to ez,(z,),Q,,n(Yo:t,) and the x-shift s, (y,.t).
The x-period L, of the wave oscillon of propagation coincides with (74).

The wave oscillon of propagation of the velocity potential is neutral in the

x-direction since

[ Kyimdx=0. (211)

Proceeding with the same approach, we separate variable yin (52) to find

Kw,i,m = eZm Qw,x,m Sin (ﬂ’m (y + sw,oe,x,m ))' (212)
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where an amplitude

Qum =y AXZ , +CX (213)

is computed via coefficients

AX, n =BV, X, + AV, sX, CX, o= Dy, ox +Cv,, s (214)
In Equation (212),
Sw,a,x,m = aw,x,m _Vm t +Ym,0 (215)
is a y=shift in the motionless frame and
1. Cx
Oy =/1—arcsm Ll (216)

m w,X,m

is an Y,-shift in the m th moving frame.
For any frozen y=Y,,Z=12,t=t,, the wave oscillon of propagation is con-
verted into a 1-f neutral oscillon in y with the wavenumber 4

m

proportional to ez, (Z,),Quum(X,:t;) and the p=shift s, . (%t). The

, an amplitude

y-period L, of the wave oscillon of propagation is specified by (82).
The wave oscillon of propagation of the velocity potential is also neutral along
the y~axis because

Lym

[ Kuimdy=0. (217)
0

Topology of the wave oscillon of propagation in time is described by the in-

homogeneous Fourier #expansion of (52)
1
Kyim==6€Z,( - fuim + Rum | 218
w,i,m 2 m( Qw,m w,1,m w,m w,3,m) ( )

expressed via two trigonometric functions

fuam =SINA,, 0 (219)

1:w,l,m =sIn Aw,l,m' w,
of two arguments

Ayin =(@n + Oy Jt+s,  +5,, + @

w,l,m?
(220)

Aw,2‘m = (wx,m - a)y,m )t + S><,m - Sy,m + aw,z,m'

In Equations (218), (220),
2 2
Qw,m = \/( Avw,m - Dvw,m) + ( va,m + CVw,m) !

(221)

Rym = \/( AV, + DY, )+ (B, —CY, )

are amplitudes and
Av, —Dv Av, +Dv

Ay =aresin—-"——=0 g = arcsin% (222)

are t-shifts.
For any frozen X=X,,y=Y,,Z=1,, the wave oscillon of propagation is re-

duced to a 2-f neutral oscillon in # which is formed by superpositions of sine
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waves f f with frequencies o, , +o

wim® lw3m o, , — o, correspondingly,

y.mr ©xm T Yy,

amplitudes proportional to Q ez,(z,), and tshifts depending on

w,m? wm'

Q,

X,m?

D)y Qi Qzms Sem (X0 ) s Sym (Vo) - The £period of the wave oscillon of

y,m?~wlm? ¥w,2m? ¥x,m

propagation is given by (92)-(93).
Because integrals of sine waves f,, ,f, . —over T T,  vanish, respec-

tively, average of the wave oscillon of propagation over #period T, vanishes,

as well, since
[ Kyimdt=0. (223)

The wave oscillon of propagation K, with L ;=4/3, L ,=1T ;=2 is
visualized in Figure 6 for independent parameters (95). The wave oscillons of

propagation K are displayed by 1-f neutral oscillons in x with periods

L, = [8,3, 4/3] , via 1-f neutral oscillons in y with periods L, = [9,3,1] , and
through 2-f neutral oscillons in ¢ with periods T,,=[9,32], 5 local

tmaximums, and 5 local #minimums, the numbers of which are specified by
k. =[5,5,5] -

104

-101

[N SRV
PRSP e i

,2.
,3.

/\/\ A /\/\/\/\ A /\4
allaadik

Figure 6. The wave oscillon of propagation K, ,;: (a)—K,, ;5 (%) (206), (b)—K, ;5 ()
(212), (c)—K,, ;5 (9 (218) for independent parameters (95).
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4.2. The Wave Pulsons of Propagation

Combining (55) and (132) yields that the wave pulsons of propagation (27) in

terms of the x-eigenfunctions of internal interaction g, , (109) become

Kw,a,m,a,m :%p |:(K +/,l ) +ﬂ“n21R§m _12 (Qy mgx2m + R;mgx,&m )]’
KW,b,m,b,m :%p |:( ,Ll )Q +ﬂ’r§1R§m +ﬂ’2( ymgxzm +R2mgx,6,m):|’

1 (224)
Kw,c,m,c,m :Z |: +(K + ) ﬂ’ ( ymgx2m y,mgx,e,m ):I’
Kw,d,m,d‘m = ip €z |:)“2Qym +(K TH ) l ( ymgx2m i,mgx‘e,m )j|

For any frozen y=Y,,z=2,t=t,, the wave pulsons of propagation are re-
duced to 1-f supercritical pulsons in x, which are formed by a superposition of
cosine waves ¢, , ., 0,6, With wavenumber 2k, , amplitudes proportional to
A% and (133), x-shifts (72), and energy shifts depending on &2, 12, and (133).
Therefore, the x-period of the wave pulsons of propagation is specified by (134).

Since integrals of g,,, and @,;, over L . vanish,

Lx,m,m

[ Kiimindx =%ezn21 [/151 (AV2 +BV2 +Cv2 +DV2 )+ 2K Q;m] i=a,b,
(225)
[ Kuimimdx _%ez [/1; (AV +BVZ +CV2 +DV2 )+ 2« R;m], i=c,d.

K

on average transfer equal positive amounts of the kinetic

Two pairs of the wave pulsons of propagation K and
K K

energy along the x-axis.

w,a,ma,m? ' *wb,mb,m

w,c,m,c,m ? w,d,m,d,m

Similarly, we combine (55) and (138) to compute the inhomogeneous Fourier
expansion for the wave pulsons of propagation (27) via the y-eigenfunctions of
internal interaction g, in the following form:

1
Kw,a,m,a,m = ch EZ; |:(Ar$1 +:ur$1 )Q T Ky Rfm -

1
Kw,c,m,c,m = ch ezri I:(ﬂ“ri + :uri )Q + Ky Rfm

xmgy2m+Rzmgy6m>:|'

X mgyZm + Rf,mgy,e,m ):|’
)]

2 (Q
(<

Kunmon =3 20028 [ KiQEn + (A + 2 )R K2 (@208, 2+ Rin 50
2 (QnGy2n + RinGyem) |

1
w,d,m,d,m — ch EZ; [K;Qfm +(lrﬁ +:um) m T Kn

For any frozen y=Y,,z=12,t=t,, the wave pulsons of propagation are
converted into 1-f supercritical pulsons in y; which are produced by a superposi-
tion of cosine waves §,,.,0,5, With wavenumber 27, amplitudes propor-
tional to x> and (139), y-shifts (81), and energy shifts depending on &2, 12,
and (139). Therefore, the y-period of the wave pulsons of propagation is speci-
fied by (140).

Because integralsof ¢,,, and g,,, over L . vanish,
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I-y,mm
- 1 Kuimim QY = %ez [ K2 (Avrf] +BV2 +CV2 + Dv,f])+2/1r§ vam] i=a,c,
e (227)
1 bar P .
_[ K, .. dy="tez? [ 2(Av2+Bv2+Cv2+Dv2)+2/12R2 :|,I=b,d.
L w,i,m,i,m 4 m m m m m m ' x,m
y,m,m 0
So, two pairs of the wave pulsons of propagation K, .. ,K, ... and

K K

energy along the y-axis.

wbmb.m? on average transfer equal positive amounts of the kinetic

w,d,m,d,m
Substitution of (143) in (55) and collection of like terms results in the inho-
mogeneous Fourier expansion of the wave pulsons of propagation (27) through

the f-eigenfunctions of internal interaction g, (126)

1 1
K == pezt| > u2 (Q2+R2)+QuR, (42 Uy — K2 Gom

w,a,m,a,m c m 1
4 2

") )
usmon =5 .622| 512 (2 +RE)-QuR (42 00 12 gam)] .
unman =3 82| 3 8 Q6+ RE)- Qo (42 80 2 02|
Kusman = P22 %u (Q2 +R2)+ QuR, (42 Gy + &2 gem)

For any frozen X=X,,Y=Y,,Z=12,, the wave pulsons of propagation are
transformed into 2-f supercritical pulsons in # which are generated by superpo-

sitions of cosine waves ¢,.,ds, Wwith frequencies 2w

X,m?

2w, respectively,
amplitudes proportional to x>,A’, and (145), tshifts depending on (91), and
energy shifts proportional to 2 and (146).

A temporal period of the wave pulsons of propagation

Tw,m,m =LCM (Tz,m,m 'T3,m,m ) = kw,z,m,m T2,m,m = kw,3,m,m T3,m,m’ (229)
where K, , . .K,3nn areintegersand T, . T, = given by (147).
Average of the wave pulsons of propagation over T, . takes the following
form:
1 T 1 .
T £ Kuimin 8= ¢ 1% ezl (AVZ +BV2 +CV2 +DVZ ), i =a,b,c,d. (230)

Integral (230) validates that the wave pulsons of propagation on average
transfer the same positive amount of the kinetic energy in time.

The wave pulson of propagation K, ., with
Liss =2/3,L,55 =1/2,T, 55 =1 is shown in Figure 7 for independent param-
eters (95). The wave pulsons of propagation are visualized by 1-f supercritical
wmm = |%3/2,2/3], through 1-f supercritical pulsons
in y with periods L, =[9/2,3/2,1/2], and via 2-f supercritical pulsons in ¢
= [3, 3/2,1], [3, 3 3] local #maximums, and [3,3, 3] local
=[333].

pulsons in x with periods L

with periods T,

w,m,m

tminimums, the numbers of which are specified by k,, .

In agreement with (224),
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Figure 7. The wave pulson of propagation K, ,;,5 (a)—K,,3,; (x) (224),
(b)—K,, 5355 (7) (226), (0)—K,, 4345 (1) (228) for independent parameters (95).

Kuimim [x+le'mvm, 2 z,tj =Ky imim (x,y,z,t), [i,j]=[a.b].[c.d],
2 (231)

Kw,i,m,i,m = %pc Kri ezrzn (Qjm - R;m) + Kw,j,m,j,m ! [i' J] = [a’ C]’[b’d]'

Therefore, x-maximums of K correspond to x-minimums of

w,b,m,b,m

K and x-minimums of K to x-maximums of K Simi-

w,a,m,a,m w,b,m,b,m

larly, x-maximums of K correspond to x-minimums of K

w,a,ma,m*

and

w,c,m,c,m w,d,m,d,m

x-minimums of K to x-maximums of K Locations of

w,c,m,c,m w,d,md,m *

x-maximums and x-minimums of K coincide with locations of

w,c,m,c,m

xmaximums and x-minimums of K Analogously, locations of

w,a,mam °*

x-maximums and xminimums of K match locations of x-maximums

w,b,m,b,m

and x-minimums of K
Due to (226),

w,d,m,d,m *

1 ..
Kiimim (x,y+§ Ly,m,m,Z,t)= Kwyj,m’j’m(x, y,Z,t), [|, J]:[a,c],[b,d],
(232)

Kutmim =3 e 25 (@ ~Rin) + K [ 1] =[] [e.0].
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Consequently, y-maximums of K correspond to y-minimums of

w,c,m,c,m
Kyamam and p-minimums of K, . .. to y-maximums of K, . ... Analo-
gously, y-maximums of K, . . correspond to y-minimums of K, ... and

y-minimums of K, ., to pmaximums of K, . . Locations of

y-maximums and y=minimums of K match locations of y~maximums and

w,b,m,b,m

y-minimums of K . Similarly, locations of y-maximums and y-minimums of

w,a,m,a,m
Kucmem coincide with locations of p-maximums and y-minimums of K 4 4 .-
Because of (228),
1 2.,2(n2 , p? -
Kw,i,m,i,m :ch H ezm (Qm + Rm)_ Kw,j,m,j,m ! [I, J] = [a,d],[b,c]. (233)
So, locations of tmaximums of K, .4, and K, = correspond to lo-
cations of #minimums of K, .. and K, ., respectively. Analogously,
locations of #minimums of K, ,, and K, .~ to locations of
tmaximums of K, .~ and K, ., correspondingly.

4.3. The Internal Wave Oscillons

Substituting (152) in (58) results in the inhomogeneous Fourier expansion of the

internal wave oscillons (38) along the x-axis

Pe
Kw,a,m,b,m =+ Kw,c,m,d,m =?ﬂ'r$1 ezri (Qfm gx,l,m + R)fm gx,s,m)’

2 2
Kw,a,m,c,m =+ Kw,b,m,d,m =P Kn eZm Qy,m Ry,m hy,z,m ’ (234)
2 2
KW,a,m,d,m == Kw,b,m,c,m = P Hn ezm Qy,m Ry,m hy,l,m .
For any frozen y=Y,,z=2,t=ty, the first pair K .. K, nqn of in-

ternal wave oscillons is transformed into 1-f neutral oscillons in x, which is pro-
duced by a superposition of sine waves ¢,,.,0,5, Wwith wavenumber 2k, ,
amplitudes proportional to A2 and (133), and x-shifts (72). The second pair
K Kwbmdm and the third pair K K

(uniform) noncritical pulsons in x with energy shifts proportional to 2,2,

are reduced to 0-f

w,a,m,c,m? w,a,m,d,m? " *w,b,mc,m

and (153). The x-wavelength of the internal wave oscillons is given by (134).

Averages over the x-wavelength of six internal wave oscillons

I-x,m,m
Ll ! Kuimin =0, [ii]=[a.b].[c.d],
1 Lx.m,m
I Kw,i,m,j,m dx = ,Dc/('; ezé Qy,m Ry,mhy,Z,m’ [l, J] = [a, C],[b, d]' (235)
L><,m,m 0
1 bemm 1 Ly,m,m -
I KW,a,m,d,m dx=- J. Kw,b,m,c,m dx = pclumeZmnymRyymhvam
Lx,m,m 0 Lx,m,m 0

prove that the first pair of internal wave oscillons on average does not transfer
any kinetic energy along the x-axis, the internal wave oscillons of the second pair
on average transfer along the x-axis equal amounts of the kinetic energy, and the
internal wave oscillons of the third pair on average transfer along the x-axis

equal amounts of the kinetic energy of opposite signs.
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Analogously, we substitute (165) in (58) to find the inhomogeneous Fourier

expansion of the internal wave oscillons along the y-axis

Kw,a,m,b,m =+ Kw,c,m,d,m :pc lnzw EZ; Qx,m R h

X,m " 'x,2,m !
Pe

Kw,a,m,c,m =+ Kw,b,m,d,m :?Kri EZ; (Qfm gy,l,m + Rfm gy,S,m )1 (236)
Kw,a,m,d,m = Kw,b,m,c,m =P /unzw eZ; Qx,m Rx,m h><,1,m .

K

of internal wave oscillons are converted into

For any frozen X=X, Y=Y,,Z=2,, the first pair K and
the third pair K Kubmem

0-f noncritical pulsons in ywith energy shifts proportional to A2, 1, and (166).

w,a,m,b,m? ' *w,c,m,d,m

w,a,m,d,m?

The second pair K K

wamem Kupmam 1 reduced to 1-f neutral oscillons in

which is formed by a superposition of sine waves ¢,,,,d,5, Wwith wave-
number 24, amplitudes proportional to Krf] and (139), and y~shifts (81). The
y-wavelength of the internal wave oscillons is specified by (140).

The internal wave oscillons of the first pair on average transfer along the
y-axis equal amounts of the kinetic energy, the second pair of internal wave os-
cillons on average does not transfer any kinetic energy along the y-axis, and the
internal wave oscillons of the third pair on average transfer along the y-axis

equal amounts of the kinetic energy of opposite signs because

L,
1 7 .
Lymm _([ Kw,i,m,j,m dy:pc/lé ezri Qx,me,mhx,Z,m7 [|7 J]:[a’b]’[cld]'
1 e o
- [ Kuimjmdy=0, [i,i]=[a.c].[b.d], (237)
y,m,m 0
1 I—ymm 1 I—ymm
Kw,a,m,d,m dy - J. Kw,b,m,c,m dy = pc/uriezriQx,me,mhx,l,m'
Ly,m,m 0 Ly m,m 0

Substitution of (170) in (58) yields the inhomogeneous Fourier expansion of

the internal wave oscillons in time

P
Kw,a,m,b,m =+ Kw,c,m,d,m :+?/1n21 ezrzn Qmngs,m 1
K —+K — P20 R g (238)
w,a,mc,m w,b,md,m T 2 m m <m'‘mI5m?
Kuamdm =—Kupmem =+ 0 4 ez2 (Av, Dv, —Bv,Cv, ).

K

of internal wave oscillons are transformed

For any frozen X=X,, Y=Y, Z=12,, the first pair K and

w,a,m,b,m? ' *w,c,m,d,m

the second pair K K

w,a,m,c,m? " *w,b,m,d,m
into 1-f neutral oscillons in # which are formed by sine waves g;,0s, Wwith

2
m

(145), and t-shifts depending on (91). The temporal period of the first and

frequencies 2w, ,,2w,, , respectively, amplitudes proportional to k2, A2, and

second pairs are T, = and T, ., which are specified by (147). The third pair
I(w,a,m,d,m' K
shifts depending on  p,, 42, Av,,Bv,,,Cv, ,Dv,,,ez> (7).

womem 18 transformed into O-f noncritical pulsons with energy

For the same reasoning as for the internal elementary oscillons,
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+ [ Kyimimdt=0, [i, j]=[a,b],[c.d].
T2,m,m 0
T3,m,m
b= [ Kyumim =0, [ii j]=[ac][b.d],
T3,m,m 0 o (239)
1 T0‘3,m‘m
+To,3,m,m .l[ vaavm'd'm dt
To,3,m,m
== L _[ Kw,b,m,c,m dt = Pe ﬂrf] ezlf} (Avm DVm - BVmCVm )
TA3mLm 0

Similar to the internal elementary oscillons (175), the first and second pairs of
internal wave oscillons on average do not transfer in time any kinetic energy and
the internal wave oscillons of the third pair transfer in time equal amounts of the
kinetic energy of the opposite signs.

The internal wave oscillon K, ..o with L4, =2/3,L,,,=1/2T,,,=1/3
is visualized in Figure 8 for independent parameters (95). The first pair is dis-
= [4, 3/2, 2/3] , the second
and third pairs via 0-f noncritical pulsons in x with periods L

played by 1-f neutral oscillons in x with periods L

X,m,m

X,m,m *

400
2004 : :

-2001

4001

-1001 X ]
-2001

-3001

(b)

400+

2004 . .

-200+

-4004

Figure 8. The internal wave oscillon K, ,; ,5: (a)—K,,,3 55 () (234), (b)—K, 35
(») (236), (c)—K,, .35 (D (238) for independent parameters (95).
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In the p~direction, the first and third pairs are visualized by 0-f noncritical
=[9/2,3/2,1/2] and the second pair via 1-f

neutral oscillons in ywith periods L

pulsons in y with periods L, .

y,m,m *

The first pair is represented by 1-f neutral oscillons in ¢ with periods
T, mm =[13/2,1/3], the second pair via 1-f neutral oscillons in ¢ with periods
Tomm =[3/2,3/4,1/2], and the third pair in terms of 0-f noncritical pulsons in ¢

3,m,m
with periods T, ;.. =[33/2,1].

4.4. The Diagonal Wave Oscillons

Substituting (179) in (61), we convert definitions (32) into the inhomogeneous

Fourier expansion of the diagonal wave oscillons along the x-axis
Kuaman = Aumn {+Qn Q[ (K = tintt) Fromn + (K + ntty) Famn |
RMRHAA(QMM—R%MQ}
Koo = Aunn {~Qun Qun [ (K = ttnste) im0 = (K + fintt) Fomn
R, Ry n A (Fesamn + Fessmn )}

wcmcn A\Nmn{ Qmeyn m n( x2,m,n_fx,4,m,n)

+ Ry mRy n [( Kq _:um:un) 1:x,14,m,n +(KmKn +:um:un) fx,16,m,n:|}'

(240)
Kw,d,m,d,n = A\N m,n {+Qy mQy n/1 /1 ( fx 2,m,n + fx 4,m,n)
ym yn[ K K :um:un) fx14mn _(KmKn +/um/un) 1:><,16,m,n :|}’
where
1
Avmn == P €2, €7, (241)

For any frozen y=Y,,z=12,,t=t,, the diagonal wave oscillons are presented
by 2-f neutral oscillons in x, which are formed by superpositions of two pairs of
cosine waves f,, . f ., . and f ., . fi6,, with two wavenumbers
Ky mn Komn» respectively, amplitudes depending on ., x,,4,,4,, 4, &, » and
(180), and x-shifts, which depend on (181). The x-wavelength of the diagonal
wave oscillons is given by (182)-(183). If n=m, the diagonal wave oscillons (240)
are transformed by (108)-(109) into the doubled wave pulsons of propagation
(224).

Similar to (184), the diagonal wave oscillons on average do not transfer any
kinetic energy along the x-axis since

Lxmn
[ Kyimin@x=0, i=ab,c,d. (242)
0

Analogously, representation of definitions (32) in y-eigenfunctions of external

interaction f with the help of (185) and (61) yields

y,l,m,n

wa m,a,n ANm n {+QX m QX n I:(/lmﬂ’n _ﬂm:un) fy,z,m,n +(/1mﬂ‘n +#m#n) fy,4,m,nj|

Rx m Rx nKmKn ( fy,14,m,n - f)/,16,m,n )}’
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Kuomen = Aumn {=Qun Qua [ (e = ot ) Ty 2.0 = (ene + Hintte) 4|
R Rk (Fyaamn + fyasmn )}
A\Nmn{ Qun Qunns (Fyzmn = Fyama )
RonRon [ (Zan = Hntta) fysamn + (Ande + Hntte) Fyz6.m0 |}
Kug.man =Ammn{+mean K (Fy2ma + Frmn)
“RonRon [ (Andn = tintte) T samn = (A + bl t1y) fy,mm,n]}.

(243)

For any frozen X=X,,z=2,t=t,, the diagonal wave oscillons are trans-
formed into 2-f neutral oscillons in y; which are produced by superpositions of
and f f

yaamns Tyiemn With two wave-

two pairs of cosine waves f , .. f , .
numbers A, . ., 4, respectively, amplitudes, which depend on
Koy Ky Ay s Ao M 1, » and (186), and y-shifts depending on (187). The y-period
of the diagonal wave oscillons is specified by (188)-(189). If n=m, the diagonal
wave oscillons (243) are reduced to the doubled wave pulsons of propagation
(226).

Like the diagonal elementary oscillons (190), the diagonal wave oscillons are
neutral along the y-axis because

Ly,m,n
j Kuimindy =0, i=a,b,c,d.

0

(244)

Substitution of (191) in (61) and collection of like terms produce the inho-

mogeneous Fourier expansion of the diagonal wave oscillons in time

Kusman =3 £82082[+Q Q0 (No Famn + My Fumn ) + Qoo (A Famn =Ko Fne)
+R, Q, (A fromn —K 12mn)+R Ry (N framn + My, fls,m,n)],
Kusman = 5 P27 [+Q0 Q, (N S VRRE QmRn( . 6mn—Km,nfa‘m‘n)
~Rp Qo (Amn Fromn =Ko Frzmn )+ RoRo (N Framn + fm,m,n)],
Kuomon = 5 Pe0202 [ -Qn Qs (N s =Mas Fan) ~QuR (A fomn + Ko fono)
~Ry Qu (Amn fiomn + Ko fromn )= RaRo (Novo framn =Moo fig mn ) o15)
Kucmen =5 P20 [Qn Qu (N Fa - 4mn)+QmRn<Amn omn Ko )
+Ry Qu (A Fromn + lzmn) RoRy (N Fia Mmynfmm,n)],
where
Koo = K Ko = Aoy Ay + oy oy Ay = =Koy Ky + Ay Ao+ ey 1y (246)

Mm,n = Kn Ky +ﬂ’m /1n + iy Hy Nm,n =+K, K, +2‘m ﬂ“n = Hn Ky

are nonlinear amplitudes produced by various wavenumbers.
For any frozen X=X,,Y=Y,,Z=12,, the diagonal wave oscillons are con-

verted into at most 8-f neutral oscillons in £ which are generated by superposi-
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tions of cosine waves f, = with frequencies @, for 1=12,---,8, ampli-

tudes proportional to K ,A_ .M ,N_,and (192), and #shifts depending
on (193). The #period of the diagonal wave oscillons is also provided by
(194)-(195). If n=m, the diagonal wave oscillons (245) are transformed into the
doubled wave pulsons of propagation (228).

Since

Tdmn
d]’ Kyimindt=0, i=ab,c,d, (247)
0
the diagonal wave oscillons on average do not transfer in time any kinetic energy,
as well.

The diagonal wave oscillon K, with L ,,=12,L ,;=3/2,T,,,=6 is
shown in Figure 9 for independent parameters (95). The diagonal wave oscillons
Kupmpn arerepresented by 2-f neutral oscillons in x with periods
Lemn = [24,8,12] , [9,5,13] local xmaximums, and [9,5,13] local xminimums,
the numbers of which do not exceed or equal to k,, . =[11,7,13] due to

[2, 2, O] merged xmaximums and x-minimums.

1000+

4007
3007
200+
1007

-1007
-2001
-3004
-4001

8001
600+
4004
2007

-2001
-4007
-6007
-8007

(c)

Figure 9. The diagonal wave oscillon K, ;, ;5: (2)—K,,;, 55 (X) (240), (b)—K,, ;5 3
(») (243), (c)—K,, 4,45 (9 (245) for independent parameters (95).
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Along the y-axis, the diagonal wave oscillons K, .., are displayed by 2-f
neutral oscillons in y with periods L, =[9/2,9/2,3/2], [2,4,2] local
y-maximums, and [2,4, 2] local y-minimums, the numbers of which do not

exceed or equal to Kk, =[2,52] due to [0,1,0] merged y-maximums and
y-minimums.

There are three sets of frequencies with [m, n] = [l, 2],[1, 3],[2,3] for [7-f, 71,
6-f] diagonal wave oscillons, since frequencies =,27w/ 3,[57t/3,13n/ 3] are re-
peated in the first, second, and third sets, respectively. Due to smallness of am-
m,n’Amn’an >
K,, =+3.2955, K,, =+7.5680, K, , =+19.974,
Ay, =+2.9299, A,;=+8.9388, A,,;=+26.554,
M,, =+6.2198, M, , =+16.341, M, , = +46.293,

N,, =-0.0056, N,,=-0.1658, N,,=-0.2350,

plitudes N, compared with K

(248)

the diagonal wave oscillons K are visualized with a graph accuracy by

w,b,m,b,n

[6-f, 5-f, 5-f] neutral oscillons in ¢ with periods T, =[6,3,6], [9,7,15] local
t-maximums, and [9,7,15] local #minimums, the numbers of which do not
exceed or equal to kg .= [ll, 8,17] due to [2,1, 2] merged +maximums and
t-minimums.

4.5. The External Wave Oscillons

Substituting (197) in (64), we recast definitions (42) in the inhomogeneous

Fourier expansion of the external wave oscillons along the x-axis
Kuamn =2Auma[~QunQun (K = Hintts) Fesmn + RynRyatn fussma |
Kw,c,m,d,n =2A, 0 [ +QnQyadnn Frama ~ R, mRy o (K =t tty) frsamn |

wamen= Aunn | Konn (QuRyn fxsmn * RynQun Frszmn

)
+Nm n Qy m'ty,n x 6,m,n + Ry,mQy,n fx,lO,m,n ):|'

(
Kw,b,m,d,n: |: mn( y.m yn x8mn+Rmeyn lemn)
mn( y,m yn x6mn+Rmeyn xlOmn):|’
Kw,a,m,d,n = |: mn( y,m yn x7mn Ry,mQy,n fx,ll,m,n)
mn(Qym y.n x5mn +Rmeyn x9mn):|’

(249)
wbmcn A/an|: mn(Qym y,n ><7mn Rmeyn x,11,m,n

)
mn (Qym y,n x5mn + I:{y,mQy,n fx,9,m,n ):|

For any frozen y=Y,,z=2,t=1,, the first pair K, K, nq4, Of ex-
ternal wave oscillons is reduced to 1-f neutral oscillons in X, which are formed by

a superposition of sine waves f . f . = with wavenumber «x, . The
K

second pair K, ..., is transformed into at most 2-f neutral oscillons

w,b,m,d,n

in x, which are generated by superpositions of two pairs of cosine waves

feomnr fxemn and fo00 0, f 0,0, with two wavenumbers x .,%,,,, re-
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spectively. The third pair K is converted into at most 2-f neu-

w,a,m,d,n’ K
tral oscillons in x, which are produced by superpositions of two pairs of sine

w,b,m,c,n

waves f.o ., f. ., and f o f .. withtwo wavenumbers ;. ,&,. >
correspondingly.
For the first pair, amplitudes depend on «,,,x,,4,,4,, t,, &, and (180). For

M, .. N_.,and

m,n?Ymn?

the second and third pairs, amplitudes are proportional to K
(180). For all pairs, x-shifts depend on (181). The x-period of the first wave pair
is L and the x-period of the second and third wave pairsis L, thatare
defined by (182)-(183). If n=m, the external wave oscillons (249) with the help
of (108)-(109) and

x,1,m,n

w=2K0, Ay =222, My =245, N, =0 (250)

are reduced to the doubled internal wave oscillons (234).
Like the external elementary oscillons (198), the external wave oscillons are
neutral since on average they do not transfer any kinetic energy along the x-axis

as

[ Kuimin @x=0, [i,j]=[a,b] [c,d],
0 (251)

[ Ky =0, [i, i]=[a.c],[b0,d] [a,d],[b.c].

0

Analogously, writing definitions (42) in y-eigenfunctions of external interac-

tion f with the help of (199) and (64) gives

y.l,m,n

Kuamon = Aumn| Ao (QunRen framn * RenQun fyizmn)
N (QunRen fysmn + RenQun Fraomn) |
Kuoman = Auma [ #Amn (QuaRen fyomn + RinQun fyizmn )
~Ny (QuRen fyomn + RinQun Fysomn) |
Kuamen =2Aumn [ ~QunQun (Andn = 2ntte) Ty mn + RenRy oK fyismn |
Kupman =2Aumn | *QunQuakinksy fylmn RenRun (Andn =ttty 13m0 |
Kuaman Ammn[+an(me enfyzmn = RenQun fraamn)
No (QunRun frsmn + RenQen fyyg,m,n)], (252)
Am[ n (QunRen Fyzmn = RenQun Frasmn)
Now (QuaRen Frsma + RenQen froma) |

K

ternal wave oscillons is transformed into at most 2-f neutral oscillons in y; which

For any frozen X=X;,Z=12,,t=t;, the first pair K of ex-

w,a,m,b,n? " Mw,c,m,d,n

are produced by superpositions of two pairs of cosine waves f . . f o . and

fyi0mns fy1ome with wavenumbers 4, ., 4, ,, respectively. The second pair

K K

w,a,m,c,n?

superposition of sine waves f ;. f 5 . with wavenumber 4, . The third

whman 18 reduced to 1-f neutral oscillons in y, which are formed by a
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pair K Kupomen 18 converted into at most 2-f neutral oscillons in

which are generated by superpositions of two pairs of sine waves f o . f ;.

w,a,m,d,n?

and f o . f ., withwavenumbers 4, ., 4, ,,correspondingly.
M, ..N

m,n? m,n’ m,n >

For the first and third pairs, amplitudes are proportional to A
and (186). For the second pair, amplitudes depend on «,,,x,, 4, 4,, &, &, » and
(186). For all pairs, y-shifts depend on (187). The y-period of the first and third
that
are specified by (188)-(189). If n=m, the external wave oscillons (252) are con-

wave pairs is L and the yp-period of the second wave pair is L

y,m,n y.L,m,n

verted into the doubled internal wave oscillons (236).
Similar to the external elementary oscillons (200), the external wave oscillons

do not transfer any kinetic energy along the y-axis because

| Kuimga@y =0, [i.i]=[a,b][c.d].[a.d] [bi.c],
(253)

| Kuimin @ =0, [i-/]=[ac],[o.d]

0

Using (64) and (201), we compute the external wave oscillons in the inhomo-
geneous Fourier expansion via the #eigenfunctions of external interaction (117)

as follows:
Kuamon = 20 A (QuR Foa +RoQ: o)
+N, . (Qan fomn TROR fig )]
veman =PI (QuR, Fo +RoQy o)

n f1,m,n + Rm Rn f13,m,n ):|'

K

m,n

K _pezez[

w,a,m.cn

7 mn Ran fll,m,n)

@Q
n(Qn

+N m,n (Qan 1:l,m,n - Rm Rn f13,m,n ):|'
(QuR

Ko man =20 Ky (QuRy o = ReQ fu)
Noo (@@, fumn =RaR figma ).
Kuaman = 2220 My (QQ fumn = RoRy ima)
~Npuo (QuQ Fomn —RuRu i) | o5
Kuomen =22 My (QuQs Famn = RoR o)
N (@@, fomn = RoRy fiama) |-
For any frozen X=X,y = Y,,2 =2y, the first pair K, .o Kyonan Of ex-

ternal wave oscillons is reduced to at most 4-f neutral oscillons in ¢ which are
formed by superpositions of four sine waves f, ., f ., fo .. with fre-
quencies @, ., @0y Ds s @, correspondingly. The second pair

Kuwamenr Kupman 18 transformed into at most 4-f neutral oscillons in # which
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are generated by superpositions of four sine waves f, ., f, ., f, . f 0
K
converted into at most 4-f neutral oscillons in # which are produced by superpo-
2,mn? f fl

wl,m,n ’ wz,m,n ’ w7,m,n ’ w&m,n > correspondmgly,

For all pairs, amplitudes are proportional to K, ., A, ..M ,N_,and (192)

m,n £ dmon Y imno

with frequencies @, \,®, 1 1) @ @ o - The third pair K is

w,a,m,d,n? " *w,b,m,c,n

sitions of four cosine waves f fie.mn With frequencies

4,mn? '14,m,n?

and #shifts depend on (193). Temporal periods of all pairs are given by

(202)-(204), respectively. If n=m, the external wave oscillons (254) are trans-

formed by (250), (127), and (171) into the doubled internal wave oscillons (238).
Because of (205) and (64),

To,l,m,n

[ Kuimindt=0, [i,j]=[a,b],[c.d],

TO,:m,ﬂ

[ Kuimindt=0, [i,i]=[a,c],[b,d], (255)
T0,3,m,n

[ Kuimiadt=0, [i,j]=[a,d].[b.c],

0

the external wave oscillons are also neutral in time since on average they do not
transfer any kinetic energy.

The external wave oscillon K, ., . with L ,,=12,L ,,,=3/4,T ,,,=6
is shown in Figure 10 for independent parameters (95). Due to smallness of am-
plitudes N K

coincide with a graph accuracy with 1-f neutral oscillons in x, which are formed

compared with K = (248), the second pair K

m,n w,a,m,c,n! “whb,m,d,n

by cosine waves f o ., f .., with wavenumber «,,  ,periods

Lymn =[24,812], [5,5,5] local x-maximums, and [5,5,5] local x-minimums,
~[-5,-5,-5].

Along the y-axis, the second pair is reduced to 1-f neutral oscillons in y with

periods L =[9/4,9/10,3/4]. The second pair is displayed with a graph ac-

y,1,m,n

the numbers of which are specified by the magnitude of k

X,2,m,n

curacy by 2-f neutral oscillons in ¢ with frequencies @, ,,®;,,, periods
Toomn =[2,3,6], [3,7,13] local #maximums, and [3,7,13] local #minimums,
the numbers of which are specified by the magnitude of k =[-3,-7,-13].

0,2,6,m,n
5. Group Oscillons and Pulsons
5.1. The Group Oscillon of Propagation

In agreement with (53) and (206), the group oscillon of propagation of the ve-
locity potential

M
Kgim = z::lezm Quy.m SIN (Km (x +Spaym )) (256)

For any frozen y=Y,,2=12,t=t,, the group oscillon of propagation is
represented by a M-f neutral oscillon in x that is formed by M wave oscillons of
propagation, ie. the superposition of sine waves with wavenumbers

K, Ky, Ky and parameters of (206) for m=1,2,---,M .
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(o)

Figure 10. The external wave oscillon X, 1 ()—K,, 505 (3) (249), (b)—K,, ., 5

w,a,2,63°

(» (252), (c)—K,, ., () (254) for independent parameters (95).

An x-period of the group oscillon of propagation

Lg,x =LCM (Lx,l"”' Lx,m"”' Lx,M ) = kg,x,le,l'" = kg,x,mLx,m = kg,x,M Lx,M , (257)

where kg, . isanintegerand L, isgivenby (74)forall m.

Due to (53), (211), (257), the group oscillon of propagation is neutral in the

x-direction since
[ Kgimdx=0. (258)

Similarly, we use (53) and (212) to find the group oscillon of propagation
M
K!Li,m = Zezm Qw,x,m Sin(lm (y+sw,a,x,m )) (259)
m=1

For any frozen X=X,,z=12,t=t,, the group oscillon of propagation is dis-
played by a M-f neutral oscillon in y that is generated by M wave oscillons of
propagation, Ie. the superposition of sine waves with wavenumbers
Aoy Ay Ay and parameters of (212) for m=1,2,---,M .

A y-period of the group oscillon of propagation
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L,, =LCM (Ly,ll'“’Ly,mY'“’Ly,M)_k Lyy- =Ky ymbym =Ky y Ly (260)

T hoylyl g,y,m

where K, . isanintegerand L, isprovided by (82)forall m.

Due to (53), (217), (260), the group oscillon of propagation is also neutral in
the y~direction because

Loy

[ Kgimdy=0. (261)

0

Usage (53) and (218) yields
1 M
Kg:ivm = Ezezm ( _Qw,m fw,l,m + Rw,m fw,3,m ) (262)
m=1

For any frozen X=X,,y=Y,,Z=12,, the group oscillon of propagation is
presented by a 2M/-f neutral oscillon in ¢that is produced by A wave oscillons of

propagation, Ze. the superposition of sine waves f, ., f,; with frequencies

Ot @05 Oy — O, and parameters of (218) for m=1,2,---,M .

,m >

A t-period of the group oscillon of propagation

T, =LCM (T, Ty Tom ) = KgiTon =Ky Tom =Ky uToms  (263)

o,m"” a.m o,m”

where k. isanintegerand T, is specified by (93) forall m.
Due to (53), (223), (263),

[ Kgimdt=0. (264)
0
The group oscillon of propagation of the velocity potential is neutral in time,
as well.

The group oscillon of propagation K with L, =24,L,, =9T =6 is

1hg,y

shown in Figure 11 for independent parameters (95). The group oscillon of
oxo 14 local
x-maximums, and 14 local x-minimums, the numbers of which do not exceed

k

g,i,m

propagation is visualized as a 3-f neutral oscillon in x with period L

g.x3 =18 due to four merged x-maximums and x-minimums.
The group oscillon of propagation is depicted by a 3-f neutral oscillon in y
with period L, , seven local y-maximums, and seven local y-minimums, the

numbers of which do not exceed k,,, =9 due to two merged y-maximums

9.y.3
and y-minimums. The group oscillon of propagation is displayed in terms of a
6-f neutral oscillon in ¢ with period T, 10 local #maximums, and 10 local
+minimums, the numbers of which do not exceed k;; =15 due to five merged

t-maximums and ~minimums.

5.2. The Group Pulson of Propagation

Because of (56) and (132), the group pulson of propagation of the kinetic energy
Kg,i,m,i,m = pc :uri ez; (Q;m + R;,m ) = pc /uri ezri (Avri + BVé +CVr2n + Dvri ) (265)

For any frozen y=Y,,z=12,t=t;, the group pulson of propagation is re-
duced to a O-f supercritical pulson in x with an energy shift proportional to
pc'/uri’ezri(zo)’ Q;,m(yO'tO)_'_R;m(yO'tO)‘
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(b)

18' /\ A l/\/\

107 TRABK
,20_
,30.
Figure 11. The group oscillon of propagation K,,,: (a)—XK,

gIm g hLm (X) (256)
(b)—K, ., (1) (259), (c)—K,,,, () (262) for independent parameters (95).

In agreement with (56) and (135),
L
1 X,m,m

[ Kyimimdx=p, 125 €2} (Avf1 +BV; +CV2 + van). (266)

x,m,m 0

The group pulson of propagation transfers a positive amount of the kinetic
energy along the x-axis.
Using (56) and (138), we compute the group pulson of propagation as follows

Ko imim = Po M2 €22 (nym + Rfym): P, M2 ezl (Av,f] +BV2 +CV2 + Dv,i). (267)

g,,,mi,m

For any frozen X=Xx,,z=12,,t=t,, the group pulson of propagation is trans-
formed into the 0-f supercritical pulson in ywith the energy shift proportional to
P Hin» ezé (Zo):Qf,m (Xo’to)"' Rf,m (Xo’to)-

Because of (56) and (141), the group pulson of propagation also transfers the
positive amount of the kinetic energy along the y-axis since

L
1 y,m,m
—— | Kyimin 0y =p, 4 €2 (Avﬁ1 +BV2 +CV2 + Dv,i). (268)
y,m,m 0

Usage of (56) and (143)-(144) gives the group pulson of propagation in the

following form:
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1
Kgimim = 5P u ezl (Q,f] +R2 ) = p, 12 ez} (Avﬁ] +BV2 +CV2 + DV2 ) (269)

For any frozen X=Xy, Y=Y,,Z=1,, the group pulson of propagation is con-
verted into the 0-f supercritical pulson in ¢ with the energy shift proportional to
w2 and (146).

Due to (56) and (149),

.
1 w,m,m
[ Kgimimdt=p, 4222 (A2 +BV2 +Cv2 +DV2 ), (270)
w,m,m 0

Le. the group pulson of propagation transfers the positive amount of the kinetic

energy in time, as well.

5.3. The Internal Group Oscillon

Combining (59) and (152) returns the inhomogeneous Fourier expansion of the

internal group oscillon along the x-axis
Kg,i,m,j,m = pc ezri |:2Kr$1 Qy,m Ry,m hy,Z m +/12 (Qy m gxlm + R)%m gx,S,m ):| (271)

For any frozen y=Y,,z=12,t=t,, the internal group oscillon is converted
into a 1-f nonneutral oscillon in x, which is formed by a superposition of sine
waves §,,.,0,5, With wavenumber 2x, , amplitudes proportional to A2
and (133), x-shifts (72), and an energy shift proportional to K‘Ii and (153) ex-
cept h,,, (Yo.ty) - The x-period of the internal group oscillon is specified by
(134).

For the same reason as for the internal elementary oscillons,

L
1 X,m,m
_[ glmjmdx 2pcl('mez Qym y,m y2m (272)
x,mm 0

Integral (272) proves that the internal group oscillon on average is nonneutral
as it transfers a kinetic energy along the x-axis.
Similarly, we use (59) and (165) to find the inhomogeneous Fourier expansion

of the internal group oscillon along the y-axis
Kg,i,m,j,m = pc ezz |:2/12 Q x m x 2,m + Kr?\ (Qx2m gy,l,m + Rfm gy,S,m )j| (273)

For any frozen X=X,,Z=12,,t=t, the internal group oscillon is reduced to a
1-f nonneutral oscillon in y; which is produced by a superposition of sine waves
Oy1m+9ysm With wavenumber 24, amplitudes proportional to x> and
(139), y-shifts (81), and an energy shift proportional to ﬂ,é and (166) except
heim (Yo.to) - The p-period of the internal group oscillon is given by (140).

Analogously to the internal elementary oscillons, the internal group oscillon

on average is nonneutral as it also transfers a kinetic energy along the y-axis be-

cause
1 Ly,m,m
L J. Kg,i,m,j,m dy: 2/00 EZ me X,m x2m (274)
y,m,m 0

Usage of (59) and (170) yields the inhomogeneous Fourier expansion of the

internal group oscillon in time
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Kg,i,m,j,m = pc eZ; Qm Rm (ﬂ“ni g3,m - Kri gS,m ) (275)

For any frozen X=X,,Y=Y,,Z=12,, the internal group oscillon is trans-
formed into a 2-f neutral oscillon in ¢ which is generated by a superposition of

sine waves Qs,,,05, Wwith frequencies 2@

x,m?

2w, , , respectively, amplitudes
proportional to &2, 42, and (145), and #-shifts depending on (91). The temporal
is provided by (229).

The internal group oscillon on average is neutral as does not transfer in time

period of the group oscillon T,

any kinetic energy since
Tw,m,m
[ Kyimymdt=0. (276)
0
The internal group oscillon K ., with L ;33=2/3,L ,,=12,T,,,=1
is shown in Figure 12 for independent parameters (95). The internal group os-

cillons K are visualized by 1-f nonneutral oscillons in x with periods

g,i,m,j,m

Lymm =[4,3/2,2/3], in terms of 1-f nonneutral oscillons in y with periods
Lymm =[9/2,3/2,3/2] , and via 2-f neutral oscillons in ¢ with periods

Tymm =[3.3/2,1], [3,3,3] local #maximums and [3,3,3] local #minimums,
the numbers of which are specified by k,, ., =[3,3,3]

5.4. The Diagonal Group Oscillon

Combining (62) and (179) yields the inhomogeneous Fourier expansion of the

diagonal group oscillon along the x-axis
Kg,i,m,i,n =pc ezm ezn Mm,n (Qy,m Qy,n fx,4,m,n + Ry,m Ry,n fx,lG,m,n ) (277)

For any frozen y=Y,,z=12,t=t,, the diagonal group oscillon is trans-
formed into a 1-f neutral oscillon in x, which is generated by a superposition of
two cosine waves f , . f ¢ with wavenumber &,  ,amplitudes propor-
tional to M, and (180), and x-shifts depending on (181). The x-wavelength
(183). If n=m, the di-

agonal group oscillon (277) by (108)-(109) is transformed into the doubled

of the diagonal group oscillon is provided by L,, .,
group pulson of propagation (265).
The diagonal group oscillon on average also is neutral along the x-axis as

Lx,Z,m,m

K dx = 0. (278)

g.i,mi,n
0

Analogously, we combine (62) and (185) to find the inhomogeneous Fourier

expansion of the diagonal group oscillon along the y-axis
Kg,i,m,i,n = pc ezm eZn Mm,n (Qx,m Qx,n fy,4,m,n + Rx,m Rx,n fy,lG,m,n ) (279)

For any frozen X=X,,Z=12,,t=1,, the diagonal group oscillon is reduced to
a 1-f neutral oscillon in y; which is formed by a superposition of two cosine
waves f , o f 5., with wavenumber 7, ., amplitudes proportional to

M and (186), and y-shifts depending on (187). The y-wavelength of the di-

agonal group oscillon is specified by L (189). If n=m, the diagonal

y,2,m,n
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group oscillon (279) is reduced to the doubled group pulson of propagation
(267).

The diagonal group oscillon is also neutral along the y-axis since it does not
transfer on average any kinetic energy because

Ly‘Z‘m,m

K

0

gimin dy =0. (280)
Application of (62) and (191) gives the inhomogeneous Fourier expansion of

the diagonal group oscillon in time
1
Kg,i,m,i,n = Epc eZm eZn Mm,n (Qm Qn 1:4,m,n + Rm Rn f16,m,n ) (281)

For any frozen X=X,,Y=Y,,Z=1,, the diagonal group oscillon is converted
into a 2-f neutral oscillon in # which is produced by a superposition of cosine
waves f, . fg., with frequencies , . @;,, correspondingly, ampli-
tudes proportional to M and (192), and tshifts depending on (193). If
n=m, the diagonal group oscillon (281) is transformed into the doubled group
pulson of propagation (269).

1500 : -
10004 : :
5004
0 r v — T r r 1
\-/6.2 0.4 O.Gw 1 1.2 N

()
0 T T T T 1
0.2 0.4 _* 0.6 0.8 1

(b)

15007
10007
5004

0 i_A A A
VRV V\/ Vi

-15001

(©)

Figure 12. The internal group oscillon K, ;5 ;: (a)—K 5 ;5 (%) (271), (b)—K, 5 ;5
(7 (273), (€)—K, ;5 ;5 (9 (275) for independent parameters (95).
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A temporal period of the diagonal group oscillon

Tg,d,m,n = LCM (Tz,m,n ’T8,m,n) = kg,d,Z,m,n Tl,m,n = kg,d,S,m,n T8,m,n’ (282)
where Kg ;00K agmn areintegersand T, Ty . are specified by (194).
Integral over the #period of the diagonal group oscillon
Tg,d,m,m
Kgimin dt=0. (283)

0

The diagonal group oscillon on average is neutral in time, as well, because it
does not transfer any kinetic energy.

The diagonal group oscillon K ;,;; with
Li2os=12/5,L,,,5=3/2,T, 4,5 =6 is shown in Figure 13 for independent

parameters (95). The diagonal group oscillons K are displayed in terms

g,I,m,,n
of 1-f neutral oscillons in x with periods specified by the magnitude of
Ly 2mn =[—24/5,—8/4,-12/5], via 1-f neutral oscillons in y with periods indi-
cated by the magnitude of L, . =[-9/2,-9/8,-2], and by 2-f neutral oscillons
in ¢ with periods T, . =[6,36], [5,55] local #maximums and [5,5,5] lo-
cal f-minimums, the numbers of which are specified by the magnitude of

kg,d,z.m,n = [_5; _5, —5] .

(b)

(©

Figure 13. The diagonal group oscillon K, (a)—K,;,;; (2 (277),

(b)—K;,,,-,Z,,;3 (» (279), (c)—I(;,,,-,z,,;3 (9 (281) for independent parameters (95).
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5.5. The External Group Oscillon

Substituting (197) in (65), we recast definition (43) in the inhomogeneous

Fourier expansion of the external group oscillon along the x-axis
I‘(g,i,m‘j.n = pc ezm ezn |:Km,n (Qy,m Ry,n fx,8,m,n + Ry,m Qy,n fx,lZ,m,n)
+ Am,n (Qy,m Qy,n f><,1,m,n + Ry,m Ry,n f><,l3,m,n) (284)

_Nm,n (Qy,m Ry,n f><‘5‘m,n + Ry,m Qy,n fx,9,m,n )j|

For any frozen y=Y,,z=12,,t=t;, the external group oscillon is reduced to
a 2-f neutral oscillon in x, which is generated by a superposition of four sine
waves f,o o fsnn fomns feismn with wavenumber ;. and two cosine

waves f g f1,,, Wwith wavenumber «, ., amplitudes proportional to
KyniAnni N> and (180), and x-shifts depending on (181). The x-wavelength
emn (182)-(183). If n=m, the

external group oscillon (284) is transformed by (108), (109), (250) into the

of the external group oscillon is specified by L

doubled internal group oscillon (271).
Like the external elementary oscillons, the external group oscillon on average
does not transfer any kinetic energy along the x-axis as

Lymn

[ Kgimjndx=0. (285)
0
Similarly, writing definition (43) in y-eigenfunctions of external interaction

f with the help of (199) and (65) yields

y,l,m,n

Kg‘i,m,j,n = pc ezm ezn |:Am,n (Qx,m Rx,n fy.a,m,n + Rx,m Qx,n fy,lZ,m.n)
+Km,n (Qx,m Qx,n fy,l,m,n + Rx,m Rx,n fy,lS,m,n) (286)

_Nm,n (Qx,m Rx,n fy,5,m,n + Rx,m Qx,n fy,9,m,n )j|

For any frozen X=X,,z=12,t=1,, the external group oscillon is converted
into a 2-f neutral oscillon in y, which is produced by a superposition of four sine
waves f .. f 500 fonn fyiam, With wavenumber 4, and two cosine
waves f g f ., with wavenumber 4, , amplitudes proportional to
KyniAnni N> and (186), and p-shifts depending on (187). The y-wavelength

ymn 18 defined by (188)-(189). If n=m, the
external group oscillon (286) is reduced to the doubled internal group oscillon
(273).

Because

of the external group oscillon L

I-y,m,n

[ Kgimiady=0, (287)
0
the external group oscillon on average does not transfer any kinetic energy along
the y-axis, as well.
Substitution of (201) in (65) and collection of like terms produce the inho-

mogeneous Fourier expansion of the external group oscillon in time
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ngivm,j,n = %ezm ez, [Am,n <+Qm Rn f5,m,n + Ran fg,m,n)
+Km,n <_Qm Rn f7,m,n + Ran f11,m,n) (288)
+Nm,n <_Qan f2,m,n + Rm I:zn f14,m,n )]

For any frozen X=X,y =Y,,Z=1,, the external group oscillon is converted

into at most sextet-frequency (6-f) neutral oscillon in # which are formed by a
f f f

superposition of four sine waves f Timn
Oy 0y Dy oy D5y Og ny and two cosine waves  f

with frequencies

5mn?! "7,mn?’ '9,mn?

flamn Wwith frequencies
m,n'Am,n 'Nm,n 4 and

(192), and #-shifts depending on (193). If n=m, the external group oscillon (288)
is transformed by (127) and (250) into the doubled internal group oscillon (275).

2,m,n?

@ oy @ o > Tespectively, amplitudes proportional to K

A temporal period of the external group oscillon

T mn = LCM (T, mn’”"T mn””'T m,n
g.e,m, ( 1m, I,m, 7,m, ) (289)
= kg,e,l,m,n Tl,m,n = I(g,e,l,m,n Tl,m,n = kg,e,?,m,n T7,m,n'
where K., , isanintegerand T, . isspecified by (194) for 1=1,34,56,7.

The external group oscillon on average does not transfer in time any kinetic

energy since

Tg .e,mm

dt=0. (290)

g.i,m,j,n

The external group oscillon K, with L ,,=12,L ,,=3/2,T ,,,=6

1 y,2,3
is shown in Figure 14 for independent parameters (95). The external group os-

cillons K are visualized by 2-f neutral oscillons in x with periods

g.i,m,j,n

Lx‘m‘n:[24,8,12] , [11,7,13] local x-maximums, and [11,7,13] local

x-minimums, the numbers of which are specified by k =[11,7,13].

x,1,m,n
The external group oscillons are depicted by 2-f neutral oscillons in ywith pe-
riods L, =[9/2,9/2,3/2], [14,2] local y-maximums, and [1,4,2] local

y-minimums, the numbers of which do not exceed or equal to k,, =[2,5,2]
dueto [1,1,0] merged y-maximums and p-minimums.

Because of smallness of amplitudes N, compared with K A, (248)
and repeated frequencies, the external group oscillons are displayed with a graph
accuracy as 4-f neutral oscillons in ¢ with periods T, . =[6,36], [9,7,17]
local #maximums and [9,7,17] local #minimums, the numbers of which do
not exceed or equal to Kk =[11,8,17] dueto [2,1,0] merged ~maximums

g.e,5,m,n

and ~minimums.

6. Energy Oscillons and Pulsons

6.1. The Energy Pulson of Propagation

Due to (30) and (265), the cumulative energy of all group pulsons of propagation

along the x-axis is given by the energy pulson of propagation
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Figure 14. The external group oscillon K, ,, : (a)—K,;, ;5 (%) (284), (b)—K, ,, ;5
() (286), (c)—K,;,,;5 (D) (288) for independent parameters (95).

M
Keimim =00 O 15 €25 (AV2 + BV +Cv2 + DV2 ). (291)
m=1

For any frozen y=Y,,z=2,t=t,, the energy pulson of propagation is
formed by the superposition of M 0-f supercritical pulsons in x with energy
shifts of (265).

A global x-period of internal interaction

Le,x,i =LCM (Lx,l,ll'”’ I-x,m,m’”" Lx,M,M ) (292)

= ke,x,l,l Lx,l,l = I(e,x,m,m I‘x,m,m = ke,x,M,M I‘x,M,M )

where Kk, . is specified by (134) for all m.

The energy pulson of propagation transfers a positive amount of the kinetic

is an integer and L, .

energy along the x-axis as

Le,x.i M
1 [ Keimimdx=p, > s ezh (Av2 +BV, +CV2 +DV2 ). (293)
exi 0 m=1

Because of (30) and (267), the cumulative energy of all group pulsons of
propagation along the j-axis is also given by (291). For any frozen
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X=X%y,Z =12yt =t,, the energy pulson of propagation is produced by the super-
position of M 0-f supercritical pulsons in ywith energy shifts of (267).
A global y-period of internal interaction

Le,yi —LCM (Lyll,...,Ly'mvm,...,Lva'M)

eyll vl T Reymm Bymm e,y,.M,M

(294)
L

y.M,M 1

where K, .. isanintegerand L

is defined by (140) for all m.
The energy pulson of propagation also transfers a positive amount of the ki-

y,m,m

netic energy along the y-axis since

Leyi
l e M
—— | Keimindy=p, > uezs (AV2 +BV2 +CV} + DV, ). (295)
i 0 m=1

In the view of (30) and (269), the energy pulson of propagation in time is once
more described by (291). For any frozen X=X,,Y =Y,,Z = Z,, the energy pulson
of propagation is generated by the superposition of M 0-f supercritical pulsons
in twith energy shifts of (269).

A global t-period of internal interaction

T = LCM (Tano = T Tum )

(296)
=Koz Twar = Keimm Twmm = Keinm T
where k. ;. . isanintegerand T, - isgiven by (229) forall m.
Because
1% v
[ Keimim Gt =p, Y u €22 AV +BV2 +CV2 + DV2 ), (297)
ei 0 m=1

the energy pulson of propagation transfers a positive amount of the kinetic

energy in time, as well.

6.2. The Internal Energy Oscillon

In agreement with (40) and (271), the cumulative energy of all internal group

oscillons along the x-axis is described the internal energy oscillon
elm j,m pc ZGZ I:ZK Qym Rym y,2,m +ﬂ“2 (Qym gxlm + Rsm gx,5,m)j|' (298)

For any frozen y=Y,,7=12,,t=1,, the internal energy oscillon is represented
by an M-f nonneutral oscillon in x that is generated by M internal group oscil-
lons, ie. the superposition of sine waves @,;.,0,5, for m=12,--.M with
wavenumbers 2k, 2k,,, -, 2k, , parameters of (271), and x-period (292).

Average of (298) over the global x-period of internal interaction

Le><|
1 B
L J. elmjmdx_zchK eZ Qym y,m y2m (299)
exi 0

due to (292), (272), and the additive interval property. The internal energy os-
cillon on average is nonneutral since it transfers the kinetic energy along the

X-axis.
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In the view of (40) and (273), the cumulative energy of all internal group os-

cillons along the y-axis is given the internal energy oscillon
M
Ke,i,m,j,m = pc Zezi [Zﬂé Qx,me,mhx,Z,m + K; (Qfm gy,l,m + Rf,mgy,s,m )j| (300)
m=1

For any frozen X=Xx,,z=12,t=t,, the internal energy oscillon is displayed
by an M-f nonneutral oscillon in y; which is produced by A internal group os-
cillons, namely, the superposition of sine waves 9y1m Yysm for m=12,---,M
with wavenumbers 24,,---,24,,---,24,, , parameters of (273), and y-period
(294).

The internal energy oscillon on average is also nonneutral along the y-axis
because it transfers the kinetic energy as average of (300) over the global
y-period (294)

1 ey M
= | Keimim @ =20, 22762, QR o o . (301)
Leyi o m-1
Because of (40) and (275), the internal energy oscillon takes the following

t-form:
M
Ke,i,m,j,m =P Zezri Qm Rm (lég3m _Kri gS,m ) (302)
m=1

For any frozen X=X,,Y=1Y,,Z=12,, the internal energy oscillon is at most
2M-f neutral oscillon in £ which is formed by A/ internal group oscillons, viz. the
superposition of sine waves g, and gs, with frequencies
20, 20,y and 20,,,20,,, 20, , respectively, param-
eters of (275), and t-period (296).

Integral of (302) over the global #period of internal interaction

12

X,m?

Te,i
j Keimjmdt="0 (303)

0

shows that K on average does not transfer in time any kinetic energy.

with L, =12,L,,;,=9/2,T,, =3 is

ei,m,j,m e, X,i

e,i,m,j,m

The internal energy oscillon K

shown in Figure 15 for independent parameters (95). K is displayed by

e,i,m,j,m
a 3-f nonneutral oscillon in x with 18 local x-maximums and 18 local
x-minimums, the numbers of which are specified by k., 3,=18. K, ;. is

depicted as a 3-f nonneutral oscillon in y with nine local y=maximums and nine
local y-minimums, the numbers of which are given by K, ,;=9. Due to the

repeated frequency 4w, K is visualized by a 5-f neutral oscillon in ¢

e,i,m,j,m
with nine local #maximums, and nine local #minimums, the number of which

are specified by m,;,;,=9, where m (147) in

T. for k=12,3,4.

el

are multipliers of T,

e,i,k,mm m,m

6.3. The Diagonal Energy Oscillon

Due to (35) and (277), a cumulative energy of all diagonal group oscillons along

the x-axis is expressed via the diagonal energy oscillon
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Figure 15. The internal energy oscillon X, . x) (298),

(0) =K, 1n;m (7) (300), ()—K,; ,.m (8) (302) for independent parameters (95).

M-1 M
Ke,i,m,i,n = pc Z Z eZm ezn Mm,n (Qy,m Qy,n f><,4,m,n + Ry,mRy,n fx,lﬁ,m,n) (304)

m=1 n=m+1
with a global x-period of diagonal interaction

Le,x,d =LCM (Lx,z,l,z-"'- Lx,z,m,n"”' Lx,Z,M—l,M )

(305)
= ke,x,2,1,2 Lx,2,1,2 = ke,x,z,m,n Lx,z,m,n = ke,x,Z,M—l,M Lx,Z,M—l,M )

where k is an integer and L is specified by (183) forall m,n.

e,Xx,2,m,n

For any frozen y=Y,,z=12,t=t,, the diagonal energy oscillon is trans-

X,2,m,n

formed into at most M(M-1)/2-f neutral oscillon in x that is formed by
M (M —1)/2 diagonal group oscillons, Ze. the superposition of cosine waves
feamnr feiomn With wavenumber «, . for n=m+lm+2,..-M,
m=12,---,M —1, and parameters of (277).

Because integral of (304) over the global x-period of diagonal interaction

Le.x.d
[ Keimindx=0, (306)

0

the diagonal energy oscillon on average does not transfer any kinetic energy
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along the x-axis.
In agreement with (35) and (279), a cumulative energy of all diagonal group

oscillons along the y-axis is described by the diagonal energy oscillon

M-1 M
Ke,i,m,i,n =P z Z eZm ez (Qx,m Qx,n fy,4,m,n + Rx,me,n fy,16,m,n) (307)

m=1 n=m+1
with a global y-period of diagonal interaction

=LCM (L 5100y pmmre s Lot
Le,y,d ( y,2,1,2 y,2,m, y,2,M-1M ) (308)
:k L ':k

L

e,y,21,.2 Ly,z,i,z"':ke,y,z,m,n y.2mn "’ e.y,2M-LM “y2,M-1M

is an integer and L is defined by (189) for all m,n.

For any frozen X=X;,Z=2,,t=t,, the diagonal energy oscillon is converted
into at most M(M-1)/2-f neutral oscillon in ythat is generated by M (M —l)/2
diagonal group oscillons, viz. the superposition of cosine waves f , . ., f .,

with wavenumber Ay for n=m+1m+2,---,M, m=12,---,M-1, and

where Kk

e,y,2,mn y,2,m,n

parameters of (279).
The diagonal energy oscillon on average also does not transfer any kinetic

energy along the y-axis since
Le

\y.d
f Keimindy=0. (309)
0
Because of (35) and (281), the diagonal energy oscillon takes the following
t-form:
pc M-1 M
eqmin = ? mz:l n:zrmlezm eZn Mm,n (Qm Qn 1:4,m,n + Rm Rn flﬁ,m,n) (310)

with a global #period of diagonal interaction
Te,d =LCM (Tg,d,l,z"“’Tg,d,m,n"“'Tg,d,M—l,M )
=K T =k

g,dmn’’

(311)
T

e,d 1,2 Tg,d,l,2 = ke,d,m,n e dM-1LM 'g.d,M-1M 1

where k is an integer and T is given by (282) for all m,n.

e,d,m,n

For any frozen X=X,,Y=Y,,Z=2,, the diagonal energy oscillon is reduced
to at most M(M-1)-f neutral oscillon in  which is produced by M (M —l)/2
diagonal group oscillons, specifically, the superposition of cosine waves
f

m=12,---,M -1, respectively, and parameters of (281).

g.d,mn

amns f16.mn With frequencies @, @5, for n=m+lm+2,-- M,

Since
[ Keimindt=0, (312)

the diagonal energy oscillon on average does not transfer any kinetic energy in
time, as well.
The diagonal energy oscillon K with L, ,=24/51L,, ,=9/2T,=6

is shown in Figure 16 for independent parameters (95). K

e,i,m,i,n

eimin 1S represented

by a 3-f neutral oscillon in x with three local xmaximums and three local

x-minimums, the numbers of which are specified by the magnitude of
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Kex213=—3- K is displayed as a 3-f neutral oscillon in y with three local

y-maximums and three local jminimums, the numbers of which do not exceed

e,i,m,i,n

the magnitude of K, ,,;=-4 due to a single merged y-maximum and

J-minimum. As the frequencies —5m/3,—n/3 are repeated, K., ., is visualized
via a 4-f neutral oscillon with nine local #maximums and nine local #minimums,
the numbers of which do not exceed the magnitude of m,;,,;=-10 due to a
single merged #maximum and #minimum, where m

Ty (194)in T,, for 1=28.

edimn are multipliers of

6.4. The External Energy Oscillon

Combining (45) and (284), we find the cumulative energy of all external group

oscillons along the x-axis that is given by the external energy oscillon
M-1 M
Ke,i,m,j,n = pc Z Z ezm ezn |:Km,n (Qy,m Ry,n fx,S,m,n + Ry,m Qy,n fx,lz,m,n)

+ Am,n (Qy,m Qy,n fx,l,m,n + Ry,m Ry,n fx,la,m,n) (313)
_Nm,n (Qy,m Ry,n fx,5,m,n + Ry,m Qy,n f><,9,m,n )j|

m=1 n=m+1

(b)

(c)
Figure 16. The diagonal energy oscillon K, (@) — K in (0) (304), (b)—K,

351 L0"

(» (307), (c)—K, :n (O (310) for independent parameters (95).

s 540
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with a global x-period of external interaction
Le,x,e =LCM (Lx,l,z!"" I-x,m,n"“' Lx,M—l,M )

(314)
= ke,x,l,z Lx,1,2 = ke,x,m,n Lx,m,n = ke,x,M—l,M Lx,M—l,M )

where Kk, . is provided by (182)-(183) for all m,n.

For any frozen y=yY,,z=2,t=t,, the external energy oscillon is trans-

isanintegerand L, .,

formed into at most M(AM-1)-f neutral oscillon in x that is formed by

M (M —1)/2 external group oscillons, Ze the superposition of sine waves

feimns fesmn fxomns fxiamn With wavenumber «, =~ and cosine waves
fiomns fxiomn With wavenumber «, . for n=m+lm+2,---,M,
m=12,---,M —1, and parameters of (284).
Because
Lexe
KeimjndX=0, (315)

0
the external energy oscillon on average does not transfer any kinetic energy
along the x-axis.

In the view of (45) and (286), the external energy oscillon along the y-axis
takes the following y—form-

elmjn pcz_l zlez €z |: (meRxn y8mn+Rmexn ylZmn)
+Km,n (Qx,m Qx,n fy,l,m n + R Rx n 1:y 13,m, n) (316)
_Nmn(meRxn y5mn+Rmexn y9mn)j|

with a global y-period of external interaction

I-ey,e :LCM(Ly,l,Z""’Ly,m,n’ T yM 1M)
=k L =K L, =k

e,y,1,2 y‘l,Z'”_ e,y,m,n —y,mn e,y,M-1M

(317)
L

y,M-1,M
where K, .. isanintegerand L, isdefined by (188)-(189) forall m,n.
For any frozen X=X,,Z=12,,t=1,, the external energy oscillon is converted
into at most M(M-1)-f neutral oscillon in y; which is produced by M (M -1) / 2
external group oscillons, namely, the superposition of sine waves
fyimn fysmns fyomns fyiamn With wavenumber 4, , and cosine waves
f emns fy1ome with wavenumber 4, = for n=m+lm+2,.-- M,
m=12,---,M —1, and parameters of (286).
The external energy oscillon is also neutral along the y-axis since

Leye
f Keimjndy=0. (318)

0
We use (45) and (288) to compute the inhomogeneous Fourier expansion the

external energy oscillon in time

e imj.n = pc Z Z ez ez |: m,n (+Qm Rn f5,m,n + Ran f9,m,n)

m=1 n=m+1
I<m,n (_Qm Rn f7,m,n + Ran I:11,m,n) (319)
Nm,n (_Qan fz,m,n + Rm Rn f14,m,n ):|
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with a global #period of external interaction
Te,e =LCM (Tg,e,l,Z""’Tg e,m n""’Tg,e,M—l,M )
=Kee1o T, =k

eel2 'gel2’ e,e,m,n g emn T I(e,e,M—l,M Tg,e,M—l,M )

(320)

where k... isanintegerand T

gemn 1S specified by (289) forall m,n.

For any frozen x=Xxy,y =Yy, Z=12,, the external energy oscillon is trans-
formed into at most 3M (M — 1)-f neutral oscillon in ¢ which is generated by
M (M —1)/ 2 external group oscillon, viz. the superposition of sine waves
fomm | f

waves f

fymn with frequencies ., @, '@y, @, and cosine

7,m,n? "9m,n?

flamn with frequencies @, ., @, ,for n=m+1lm+2,..-.M,

2,m,n?
m=12,---,M -1, respectively, and parameters of (288).
For the reason that

Tee

f Keimjndt=0, (321)

0

the external energy oscillon on average does not transfer any kinetic energy in
time, as well.
The external energy oscillon K, .=~ with L . =24L, . =9/2T =6 is

€,nL,m,j,n e,X,e

shown in Figure 17 for independent parameters (95). is displayed by a

Ke,i,m,j,n

6-f neutral oscillon in x with 26 local x-maximums and 26 local x-minimums,

the numbers of which are specified by m,,,,,=26, where m, =~ are multi-

(183) in L for 1=1,2. K,;, :, is visualized by a 6-f

e,X,e e,nLm,j,n

pliers of L, ..
neutral oscillon in y with six local p-maximums and six local y-minimums, the
numbers of which are specified by m,,,,,=6, where m
of Ljn, (189)in L, . for 1=12.

e,Y,e
Due to repeated frequencies w,77/3,13n/3, K

ey imn are multipliers

eimjn 18 represented via a
15-f neutral oscillon with 16 local #maximums and 16 local #minimums, the
numbers of which do not exceed m,,;,;=17 due to a single merged
tmaximum and #minimum, where m,, . are multipliers of T, =~ (194) in
T . for 1=1345,6,7.

ee

6.5. The Cumulative Energy Pulson

We then use (66), (291), (298), (304), and (313), to find the inhomogeneous

Fourier expansion of the cumulative pulson of the kinetic energy along the x-axis
2 2 2 2 2
Keim in pC{Zez [ m(Avm +BV2 +CV2 + Dvm)

+2Kr$1 Qy,m Ry,m hy,z,m +ﬂ’r§ (Qjm gx,l,m + ij gx,5,m ):|

+M71 i ez, €z, [an(Qmeyn x4mn+RymRynfx16mn) (322)
m=1 n=m+1
+Kmn(QymRyn X8mn+Rmeyn Xlzmn)
+ Ao (Qn Qi Frsmn + Ry Ryn frssmn )
“Nova (Q Ry Fesna + Rym Qi Froma ) ]}
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Figure 17. The external energy oscillon K, (@A)—K,;,;, (x) (313),
(B)—=K, ;1m0 (1) (316), ()—K, ;. (1) (319) for independent parameters (95).

where p, is the constant density, [x,,,A,, /,] are the wave numbers in the
(x,y,2) directions, [Av,,Bv,,Cv,,Dv,]| are functional amplitudes of the 3-d
DSK functions (48), [Qy,m’Qy,any,mlRy,n:I are trigonometric amplitudes (68),
h,,n isenergy shift (109), I:gx,l,m : ngsvm] are sine waves (109) with wavenumber

Ko » [Km,nlAm,n M, le,n:I are nonlinear amplitudes (246),

I:fx,4,m,n’ fesmn Feazmn fx,16,m,n:| are cosine waves (101) with wavenumber
K, —K,, and I:fx,l,m,n' fesmns Fomn fx,13,m,n:| are sine waves (101) with wave-
number «, +x,.

For any frozen y=Y,,z=12,t=t,, the cumulative energy pulson is con-
verted to at most M *-f supercritical pulson in x, which is formed by the super-
position of the energy pulson of propagation K,; ;.. the internal energy os-
cillon K im»
oscillon K,; . .. The total number of various wavenumbers is at most M ? since
there are M wave numbers 2k, and M(M-1)/2 wavenumbers

the diagonal energy oscillon K_; .., and the external energy

[K = K K + 5 |-
A global x-wavelength of the cumulative energy pulson

=LCM (LexHLexd’Lexe) exi e><| :ke,x,dLe,x,d :ke,x,eLe,x,e’ (323)
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where k_,;,K K are integers, L,

e, x,i? e, x,d e, x,e e, X,

is the global x-period of internal
interaction (292),
and L,,,

Combining (323), (292), (305), and (314) yields the global x-wavelength of
K

e

is the global x-period of diagonal interaction (305),

Le,x,d

is the global x-period of external interaction (314).

=LCM(---,L L L e
Le ( X,m,m x,1,m,n X,2,m,n ) (324)
= Ie,x,m,mLx,m,m = Ie,x,l,m,an,l,m,n = Ie,x,2,m,n Lx,2,m,n T
where |, oo leximnilexomn areintegers, L, . (134) is the local x-period of
internal interaction for m=212,---,M, L, . and L, . (183) are the local

x-periods of external interaction for n=m+1,m+2,---,M, m=12,..- M -1.
The cumulative energy pulson on average transfer a positive amount of the

kinetic energy along the x-axis since

L—j K, dx = PCZGZ [ym(Av +BV, +Cv2 +DV) )+ 25 Q

e, X

y,m ym yZm] (325)

in the view of (66), (293), (299), (306), (315), (323), and the additive interval

property.
Combining (66), (291), (300), (307), and (316) yields the inhomogeneous
Fourier expansion of the cumulative energy pulson along the y-axis

Keimin pC{Zez [ ri(Avi+Bvr2n+Cv§1+va1)

+2&2Q xm x2m+K§1 (Qx2m gy,l,m+Rf,m gy,s,m ):|
M-1

M
+ Z eZmezn|:1v[mn(Q><man y4mn+Rmexnfy16mn) (326)
m=1 n=m+1
+ n(meRxn y8mn+Rmexn ylZmn)
(me an y,Lm,n + Rx,m Rx,n fy,l:%,m,n)

_Nm,n(meRxnfySmn+Rmexn y9mn):|}

where [vam,Qxyn,nym,van] are trigonometric amplitudes (77), h

E

+ m,n

om is the
energy shift, [gyvlym +Oysm | are the sine waves with wavenumber 24,
[ fyamn Fyamn fyazmas fy,16,m,n:| are the cosine waves with wavenumber
Ag=Aysand | fo o f o f o fy,13,m,n] are the sine waves with wave-
number A +4,.

For any frozen X=X,,zZ=12,t=t,, the cuamulative energy pulson is trans-
formed into at most A >-f supercritical pulson in y;, which is generated by the
K K
ous wavenumbers is at most M? since there are M wavenumbers 24, and
M (M -1)/2 wavenumbers [A, -4, 4, +4,].

A global y-wavelength of the cumulative energy pulson

Ly =LCM (L, i Loy Loy ) =Koy iLoyi =k

e,y,i’ ey d Teye

K.. .. The total number of vari-

superposition of K eimins Keim jn

e,i,m,i,m? " Ne,i,m, j,m?

e,y,d eyd:keye e,y,e’ (327)

where K, K., 4K, . are integers, L, ; is the global y-period of internal
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interaction (294), L, , is the global y-period of diagonal interaction (308),

ey,
and L is the global y-period of external interaction (317).

€,y.e

We then use (327), (294), (308), and (317) to compute the global y-wavelength
of K,

Le _LCM( ! ymm’ : ’Ly,l,m,n’”"Ly,Z,m,n!"')

(328)

= Ie,y,m,m I-y,m,m = Ie,y,l,m,n Ly,l,m,n = Ie,y,2,m,n Ly,z,m,n T
where |, o oileyimnileyome areintegers, L (140) is the local y-period of
internal interaction for m=1,2,---,M, L, and L, . (189) are the local

y-periods of external interaction for n=m+1,m+2,.--- M, m=12,---M -1.
The cumulative energy pulson on average also transfer a positive amount of

the kinetic energy along the y-axis because

L_ j K,dy= pCZez [ym(Av +BV2 +CV2 + DV )+2/12me m ><2m:| (329)
ey 0
due to (66), (295), (301), (309), (318), (327), and the additive interval property.
Usage of (66), (291), (302), (310), and (319) gives the inhomogeneous Fourier

expansion of the cumulative energy in time
e i,m,j,n pc {ZEZ |: r121 (AV; + BV; +CV§1 + DV;)_"QmRm (ﬁ’rfmgSm _Krig&m ):|

lM -1
R Z Z eZ €z I: m,n (+Qm Qn f4,m,n+RmR flﬁmn

m=1 n=m+1

)
+ Ao (FQuRy s e + R Qo o) (330)
Koo (“QuRo Frmn + RuQ, frimn )
Novn (-QuQn Fomn + RoRy Framn ) I}

where [Q,,Q,,R,.R,] are trigonometric amplitudes (87), [galm, g5,m} are
sine waves (126) with frequencies [wa,m , Zwyvm] , respectively,

[ fymn fomns famn fle’m'nJ are cosine waves (117) with frequencies
[a)l,m,nlwz,m,nla)7,m‘n’a)8,m,n]’ and [fs‘m,n’ f7 o fomns fll,m,n:| are sine waves (117)
with frequencies |:a)3’m‘n '@ s Doy O J , correspondingly.

For any frozen X=X,,Y=Y,,Z=12,, the cumulative energy pulson is re-
duced to at most 2M (2M — 1)-f supercritical pulson in ¢ which is produced by
the superposition of K; i Keinin Keimins Keimjn- The total number of
various frequencies is at most 2M (2M —1) because there are M frequencies
[wa'm,Za)y‘m] and M (M -1)/2 frequencies @, for 1=12,-,8.

A global t-wavelength of the cumulative energy pulson

T _LCM (T Ted’T ) k T kE,dTed keeTee’ (331)

e’ e,i e

where K, ;,K, 4, K, are integers, T, ; is the global #period of internal interac-
tion (296), T,, is the global fperiod of diagonal interaction (311), and T, is
the global #-period of external interaction (320).

Using (331), (296), (311), and (320) returns the global #wavelength of K,
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Te=LCM (."lTk,m,rnl"‘:TI,m,n!'“) =1 Tk =1 TI -, (332)

ekmm "kmm " elmn 'I,mn’

where I, . ..l ., areintegers, T, = (147) are the local #periods of internal
interaction for k=2,3, m=12,---,M, T, (194) are the local #periods of
external interaction for 1=1,2,---,8, n=m+1m+2,---,M ,
m=12,-,M-1.

In agreement with (66), (297), (303), (312), (321), (331), and the additive in-

terval property,

Te
% _([ K, dt = p, mily; (Avnz1 +Bv2 +CV2 +DV2, )ezfn. (333)

Indeed, the cumulative energy pulson remains positive for all (X, Y, Z,t) de-
spite numerous oscillons of internal and external interaction, which locally may
transfer negative amounts of the kinetic energy.

The cumulative energy pulson K, with L, =241, =9/2T =6 is
shown in Figure 18 for independent parameters (95). K, is visualized by a 9-f
supercritical pulson in x with 23 local x-maximums and 23 local x-minimums,
the numbers of which do not exceed |I,,,;=36 due to 13 merged x-maximums
and x-minimums. By the reason of repeated frequencies 4n/3,4n/9, K, is
depicted by a 7-f supercritical pulson in y with six local y-maximums and six
local y-minimums, the numbers of which do not exceed |,,,,=9 due to three
merged y-maximums and y-minimums.

Because of smallness of amplitudes N = compared with K A M,
(248) and repeated frequencies w/3,2n/3,m,4n/3,57/3,7n/3,4n,13n/3, K,
is displayed with a graph accuracy as a 19-f supercritical pulson with 15 local
tmaximums and 15 local #minimums, the numbers of which do not exceed

le235=18 due to three merged ~maximums and #minimums.

7. Discussion

The elementary pulsons of propagation, the internal elementary oscillons, the
diagonal elementary oscillons, and the external elementary oscillons describe
various scalar interactions between the scalar fields a,,b,,c,.d,.a,,0,,¢c,.d,
of the velocity potential of the elementary oscillons of propagation. The wave
pulsons of propagation, the internal wave oscillons, the diagonal wave oscillons,
and the external wave oscillons express different vector interactions between the
velocity fields of wave groups a,,b,,c,,d,,a,,b,,C,, d, . Superpositions of the
various vector interactions with frozen m and n are represented by the
group pulsons of propagation, the internal group oscillons, the diagonal group
oscillons, and the external group oscillons. Summation of the group pulsons of
propagation, the internal group oscillons, the diagonal group oscillons, and the
external group oscillons with respect to all m and n results in the energy
pulson of propagation, the internal energy oscillon, the diagonal energy oscillon,
and the external energy oscillon. The superposition of the energy pulson of
propagation, the internal energy oscillon, the diagonal energy oscillon, and the

external energy oscillon generates the cumulative energy pulson.
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Figure 18. The cumulative energy pulson K: (a)—X, (x) (322), (b)—K_ () (326),
(c)—K, (9 (330) for independent parameters (95).

Classification of various types of pulsons and oscillons, which are decomposed
in the inhomogeneous Fourier expansion, is considered in Section 3.5. The
nested structure of the deterministic quantization of the kinetic energy of deter-
ministic chaos of the elementary pulsons of propagation, the internal, diagonal,
and external elementary oscillons, the wave pulsons of propagation, the internal,
diagonal, and external wave oscillons, the group pulsons of propagation, the in-
ternal, diagonal, and external group oscillons, the energy pulsons of propagation,
the internal, diagonal, and external energy oscillons, and the cumulative energy
pulson is considered in Section 2.7. The nested structure of the deterministic
quantization resembles the nested structure of objects of quantum mechanics:
elementary particles, atoms, molecules, etc. This resemblance correlates with the
quantum-like properties of the scalar and vector kinematic structures that are
considered in [3]: the scalar-vector duality, the quadrality of the theoretical DSK
and DVK structures, and the equiprobability the experimental DSK and DVK
structures.

Amplitudes of the wave pulsons and oscillons are larger than amplitudes of

the elementary pulsons and oscillons, amplitudes of the group pulsons and os-
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cillons exceed amplitudes of the wave pulsons and oscillons, amplitudes of the
energy pulsons and oscillons surpass amplitudes of the group pulsons and oscil-
lons, and amplitudes of the cumulative energy pulson go above amplitudes of
the energy pulsons and oscillons. Consequently, the elementary, wave, group,
and energy pulsons and oscillons constitute also nested structures in amplitudes.

The x-, y-, t-periods of the wave pulsons and oscillons are larger or equal to
the x-, y=, t-periods of the elementary pulsons and oscillons. Similarly, the x-, y-,
t-periods of the group pulsons and oscillons exceed or equal to the x, y-,
t-periods of the wave pulsons and oscillons. Analogously, the x-, y=, #-periods of
the energy pulsons and oscillons surpass or equal to the x-, y=, #-periods of the
group pulsons and oscillons. Eventually, the x-, y-, #-periods of the cumulative
energy pulson go beyond or equal to the x-, y-, -periods of the energy pulsons
and oscillons. Therefore, the elementary, wave, group, and energy pulsons and
oscillons constitute nested structures with respect to the x-, y-, t-periods, as well.

Topology of the elementary pulson of propagation, the wave pulson of
propagation, and the cumulative energy pulson in Figure 2, Figure 7, and
Figure 18, respectively, is the same as of the solitons on shallow water, the
solitary waves on shallow water with uniform [4] and linear [5] vorticity, the
solitary waves generated by crossed electric and magnetic fields [6], and the
pulsatory waves of the Korteweg-de Vries equation [7]. Topology of the diagonal
elementary oscillon, the external elementary oscillon, the diagonal wave oscillon,
the external wave oscillon, the diagonal group oscillon, the external group oscillon,
the diagonal energy oscillon, and the external energy oscillon in Figure 4,
Figure 5, Figure 9, Figure 10, Figure 13, Figure 14, Figure 16, and Figure 17,
correspondingly, resembles the topology of nonlinear waves and solitons on
deep water [8].

Pulsatory and oscillatory structure of the wave pulsons and oscillons is less
complicated than the structure of the elementary pulsons and oscillons. Pulsato-
ry and oscillatory structure of the group pulsons and oscillons is also less sophis-
ticated than the structure of the wave pulsons and oscillons. This simplification
is produced by compensation of undulations of complementary structures
caused by the Pythagorean resonance, ie. the Pythagorean identity. Oscillatory
structure of the energy oscillons is more complex than the structure of the group
oscillons due to a substantial growth in number of independent wavenumbers
and frequencies.

Since chaos of physical systems could be explained by superposing a large
number of deterministic solutions [9], it looks interesting to explore the effect of
independent parameters on the rate of chaotization of the exact solution for de-
terministic chaos [3]. It also looks appealing to consider the Lagrangian and the
Eulerian properties of the elementary, wave, group, energy pulsons and oscillons
in the view of various types of wave lattices [2].
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