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Abstract

This article aims to derive, analyse, and implement an efficient one-step im-
plicit hybrid method with block extension comprised of seven off-step points
to directly solve Initial Value Problems (IVPs) of general four-order ordinary
differential equations. For the resolution of the fourth-order IVPs, the exact
was approximated by a polynomial termed basis function. The partial sum of
the basis function and its fourth derivative were interpolated and collocated
at some selected grid and off-grid points for the unknown parameters to be
determined. The derived method, when tested, is found to be consistent,
convergent, and zero-stable. The method’s accuracy and usability were expe-
rimented with using specific sample problems, and the findings revealed that
it surpassed some cited methods in terms of accuracy.

Keywords

Implicit, Absolute Stability, Grid Points, Off-Grid Points, Convergence,
Interpolation, and Collocation

1. Introduction

This paper proposed a one-step hybrid method for directly solving fourth-order

initial value problem of ordinary differential equations of the form:
YO = 0Ly Y)Y (%) =80 Y (%) =8y (%) =8y (%) =2, (1)

where, fis a given continuous real value function. High-order linear and nonli-
near IVPs have been used to represent engineering and other areas’ problems.

The static deflection of a uniform beam or a cantilever beam (with the left end

DOI: 10.4236/ajcm.2022.124026 Dec. 27, 2022

355 American Journal of Computational Mathematics


https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2022.124026
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2022.124026
http://creativecommons.org/licenses/by/4.0/

M. K. Duromola et al.

embedded and the right end free giving birth to fourth-order IVPs) is one of the
applications of fourth-order problems (see [1]).

Traditionally, the reduction approach is adopted for numerically solving eq-
uation (1), as reported by [2] [3] [4] [5] and many others. Although this strate-
gy has had much success, it does have certain disadvantages. For example,
computer programs related to the method’s implementation are frequently
complex, particularly the subroutines that supply the starting values of the me-
thods, resulting in longer computer time and computational work. However, [6]
found that these approaches do not consider extra information connected with
a particular ordinary differential equation, such as the solution’s oscillatory na-
ture.

A direct approach is introduced as an alternative method to overcome the
setback inherent in the reduction approach. Several direct numerical methods
exist in the literature, but a few are specially designed to solve fourth-order or-
dinary differential equations. For instance, [7] developed a Block Hybrid Collo-
cation Method (BHCM) and applied it to solve fourth-order IVPs. Three
off-grid points are utilized with the collocation. [8] developed a four-step impli-
cit block method with three generalized off-step points and applied it to solve
fourth-order IVPs directly. In a work by [9], an algorithmic collocation ap-
proach was presented for obtaining the approximation of fourth-order IVPs. [1]
suggested Runge-Kutta type method for directly solving this kind of problem.

According to [10] [11], single-step methods are efficient in terms of accuracy
due to the hybrid points incorporated into the method. The proposed method’s
efficiency is measured by the number of hybrid points included, either as solu-
tions or function values. The success of [11] motivates this work where the ap-
proximation of (1) is sorted in the interval [Xn,Xml] with seven (7) interme-

diate points.

2. Mathematical Formulation

Let’s start by allowing the exact y(x) of the fourth-order IVP of ordinary dif-
ferential Equation (1) to be approximated by a partial sum of the polynomial
p(X) of the form:

8k+5

y(x)= p(x)= ;)arxr. (2)

Equation (2) is differentiated four times to obtain its fourth derivative given
as:
8k

yO(x)= p? (x)= Y r(r-1)(r-2)(r-3)ax*. (3)

r

¥
o

]
EN

Equating (3) and (1) yields the differential system:

(000, (0.5 ()" () = 3 r(r-D)(r-2)(r-3)ax " @
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Note that xis continuously differentiable, parameters a,’s in (2), (3), and (4)

are linear terms to be determined. By applying, X=X

and xX=x,,,,r :O(%jl to (4) yields the following system of algebraic equa-

tions:
13 4567
= r, =y Ty Ty T 5
yn+r ;arx r 8 8 8 8 ( )
13 1
foor =2 r(r=1)(r-2)(r-3)ax*, r:O(gjl. (6)
r=4

By allowing x , =X, +%h and x, =0, (5) and (6) are written as matrix
n+

equation and solved using CAS in Mathematica to obtain the parameters a,’s
8
for r=0,1,2,---,1 which were substituted into (2) and yields the following con-

tinuous scheme after some simplifications:

7 8
y(t)=20&(t)yn r(t)+h4zﬂr (t)f r(t) 7)
=4 g 3 r=0 g "g
where, X=X, =X, +th, a, (t)’sand g, (t)’s are the coefficients that defined

=

the scheme and are given as: 8

2 8

a, (t) :%(105—428t+576t2 —256t°), a (t) = 4(—21+94t 136" +64t°),

4 8

a, (t) = -2(-35+166t - 256t* +128t°), o, (t) :%(—15+74t ~120t* +64t°),

4
By (t) = h—(—125875 — 7186478t + 232909496t° — 2931938944t°
490497638400

+20437401600t* —88873500672t° + 255465357312t°

—498906169344t" + 665831079935t% —597939978240t°

+345467431872t"° —115964116992t™ +17179869184t* ) ,

h4
A= 3312200800

—32699842560t° +149796421632t® — 362293493760t’
+546450702336t° —530579456000t° + 323330506752t™°
—112742891520t™ +17179689184t" ) ,

(—2558325 +58784710t —528368824t* + 2030364160t°

h4
~ 122624409600
—114449448960t° + 67688740992t° —1905207017472t’
+3174272335872t° —3303433830400t° + 2117150441472t"
—766651662336t" +120256084288t" ) ,

Bi (1) (39090975 — 476020370t +1697474216t* —86879232t°
4
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By (t)= —ngm(—sszzoms +543730330t —1591532296t>
+2867507456t° — 76299632640t° + 485168775168t°
—1489244258304t" + 2670798569472t° — 2948176281600t°
+1979845705728t™° — 744103084032t 120259084288t ) ,
h4
49049763840
+146591104t° —57224724480t° + 376593186816t°
—1209997983744t" + 2282345201664t° — 26427470643t°

+1851399340032t" — 721554505728t"" +120259084288t" ) ,

(127767255 — 764794898t +1418313224t*

h4
122624409600
—323121920t* - 38149816320t° + 259539861504t°
—873552936960t" +1745860165632t° — 2159227699200t°

+1621081718784t" —676457349120t" +120256084288t" ),

(103817175 —509826050t + 7510153512t°

h4
~ 61312204800
— 4671406080t° + 32076988416t° —109414711296t"
+222566547456t° — 281437798400t° + 217030066176t

— 93415538688t +17179689184t* ) ,

(768075 — 3551450t — 3513592t + 897994424t

h4
490497638400
—4087480320t° + 28262006784t° —97372864512t’
+200766652416t° — 258369126400t° + 203742511104t*°

—90194313216t™ +17179869184t" )

B(t)= (594825 — 2755790t — 3575368t° + 78427008t°

113
Evaluating (7) at t= 0,5,2,5,1 to obtain the discrete one-step formula,

y,—35y ,+84y . -70y ,+20y ,
n+5 n+— n+Z n+—

8 8

~ 424673280 ik

8 4

_h4
h (109fn—17720f . —135380f , —472520f , (8a)
n+§

n+= n+= n+= n+—
2 8 4 8

~1106210f , —1542344f  —359540f , +5320f —515fn+1]

y ,—-20y ,+45y -36y ,+10y ,
n+E n+— n+— n+—

n+=
8

8 4 8
_h4
= _|125f —1144f , —34660f , —332440f , (8b)
990904320 el ek el

-1087810f , —1758760f . —4197f , +6200f ,—595 fMJ
n+- n+— n+— n+—
2 8 4 8

DOI: 10.4236/ajcm.2022.124026 358 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2022.124026

M. K. Duromola et al.

y ,-10y ,+20y -15y ,+4y .,
n+E n+g n+Z n+—

n+=
8

—h*

=—— __1205f —1880f ,-7228f ,-130280f , (8¢)
2972712960

n+= n+= n+=
8 4 8

n+= n+= n+= n+—
2 8 4 8

-973010f , —2032040f . -506180f ,+7912f ,—755 fMJ

y 3_4y 1+6y 5_4y 3ty 4
n+g n-v-E n+g n+Z n+g

_h4
— " 411 —328f ,+908f ,+152f ,—125722f ,  (8d)
2972712960 el et 2 ek

~475288f , —127444f ,+2120f ,—199 fmj
n+§ n+7 n+§

Yo —4Y ;+6y 3-4y 5+y
n+§ n+z n+§ n+E

h4
" 2972712960

n+= n+= n+2
8 4 2

[199fn—1832f ,+T492f | ~17624f 4249221 | (8¢)

n+— n+= n+—
8 4 8

+100648f , +492004f ,+120280f , —329 fMJ

Derivation of the Block Method
In the spirit of [12], the normalized form of the general block method is given by
AY, = Ey, +h*7df (yn)+h”’”BF(yn) 9)

By combining the formulas in (8) and the additional first, second, and third de-
rivatives formulas obtained from (7) and writing in block form, using the definition

of the implicit block method in (9) to get the block formula described as follows:
9 9 q
haz¢m,rynp+r =hpzvm,ryr’:+hp_p (ZAF{]I’ n Z m,r n+r] (10)
r=0 r=0 r=0

where o is the power of the derivative of the continuous method and p is the

12
order of the problem to solve. Equation (10) is solved for r =O,§,§,~~,1 to

obtain the following proposed Single-step Hybrid Multistep Method (SHMM):

1 h*
+ h +—h2 hiy" + 24396497 f
Vo =Ygt gt g7 Y 3923981107200( "
+36501816f , —52883276f , +67126376f ,—-61500210f
n-v-g n+— n+g n+E

+38838088 , —16041916f , +3904536f —425111fn+1],
n+= n+— n+—
8 8

4

y yn +— hyn +_h2yn L h3ym+h—[1035731fn
4

384 1532805100
+2719504f |, —3139836f , +3933392f ,-3577790f ,
n+g n+ neo n+

n+— n+7 n+—
8 8

+2249904F , —926764f , +225136f , —24477 fml],
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Y 3
n+=
8

4
=yn+§hy;+ih2yn”+ 2 ey h (4104531f,
8 128 1024 16148070400
+13764168f |, —12476916f | +16614360f , -15168870f ,
n+g n+y ne ne
+9553464f , —3938148f , +957096f , —104085 fnﬂj,
n+§ n+7 n+§
1 1 1 h*
=y +=hy, +=h’y"+—h®y"+ ——| 38084 f
i T hrh gt gty 59875200( ”
+145056f | —104780f , +160352f ,-144375f |
H+§ n+z n+§ n+§
+90976f —37516f ,+9120f —992fn+1],
n+§ n+z n+§
4
=y, += hyn 25 hzyn”+£h3y"’+h— 2014216251,
128 3072 156959244288
1+828115000f | —490807500f | +895985000f , — 766681250 f |
I‘l+§ n+z n+§ nJrE
1487389000  —201077500f , +48895000 f 7—5319375fn+1],
”*g n+Z n+g
Y 3=Vt hy +—h2y 9 hs'y”’+L 142929 f
ERA 128 63078400 "
+618192f |, —308772f | +672912f ,-532170f |
n+§ n+— n-¢-g n+E
+351216f . —143892f , +34992f , —3807 fmj,
n+§ I'I+Z n+g
4
=y, +— hyn 49, h?y! + 343 h3y’"+h— 2048300303 f,
3072 560568729600
+9184285992f | —3949712228f | +10148873336f
n+2 n+g n+2 )

—7344827070f | +5205732952f . —2050386772f ,

n+= n+= n+=
2 8 4

+504037128F —54841241fn+1}

n+—
8

1 h*
+h h2 "+ =h%y" + ————| 20648 f, +95104 f
Yoo = Yo £ 5 4 g MY 72200 ( " g

- 35808 l+108880f ,—70760f | +54912f

n+= n+= n+= n+=
4 8 2 8

~19744fF , +6248f —555fn+1J,

n+y n+—
8

3
=Yi+g Loyre Lpeyre M 36100031 467798861 |
128 20437401600

8
~9359135f , +11774146f ,-10745445f | +6771082f
n+= n+= n+> ne
4 8 2 8

~2792861f , +679110f , —73886 fmj,

n+y n+—
8
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1 h?
+= h + NPy ————| 286967 f, + 911204 f
Y, o gy 319334400{ " "

8
—926646f | +1173140f ,-1067950f , +67162f |,
n+2 n+§ n+E n+5

~276634f , +67196f , —7305 fMJ,
n+2 n+s

3

y =Y +§hyn"+ih2y'"+h— 550152 f, + 2135754 f
n+g 8 128 252313600 n+o
—-1563651f | +2298870f ,—-2099655f , +1323918f |
n+z n+§ n+E n+§

n+= n+—
4 8

~546129f , +132786f , —14445 fM],
! ' l " 1 2.,m h3
y' =y, +=hy +=h°y"+———| 80293f +342816f ,
n+s 2 8 19958400 nig

-188120f , +358816f ,—-310800f , +196192f .
n+z n+§ n+E n+§

~80936f ,+19680f -2141fMJ,

n+= n+—
4 8

y =y += hy 25 hzy’”+h—3
" 128 817496064

—-10296375f | +25537250f , -19680625f
n+z n+§ n+E

(5253125 f, +23702750f |
n+=
8

n+= n+= n+—
8 4 8

+129202250f , —5327125f , +1295750f , —141000 fMJ,

3

Y 3 =Y +§hyg+ih2y'"+h—[37017 f +173124f

e 4°" 32 3942400 =
~61830f | +192564f ,—129330f , +95148f
n+2 n+> n+> n+=
8 8

~37674f ,+9180f ,—999 fMJ,
n+— n+§

3
y =y +— hyn +£h y" +h— 37701874 f +180838518f |
= 128 2919628800 nes

8

—-54639557f | +206894170f ,-122270925f | +104842066f
n+— n+— n+- n+—
4 8 2 8

~35782103f , +9423582f , —1020425 fm],

n+y n+—
8

"

YS+1=y;+hy;’+%h2y + [21203fn +103616f ,

h3
1247400 ned
~27024f | +121280f ,—63820f , +63552f (12)

n+7 n+- n+= n+—
8 2 8

n+= n+—
4 8

~16816f , +6464f | —555fn+1J,
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2
' =Y +1hy”’ +h— 16245051, +4124232f |
nes 8 464486400 n+

8
—5225624f | +6488192f ,-5888310f
n+= n+= n+=
4 8 2

+3698920f , —1522672f , +369744f , —40187 fMJ,
ﬂ+§ n+z ”+§

2
v =yr+ihyme U Isg03t +235072f , ~183708f |
il 4> 7257600

8 4
+247328f ,-227030f , +143232f . —59092f ,

n+= n+= n+= n+=
8 2 8 4

+14368f —1563fn+lj,

n+—
8

2
Y s =Yn +§hy”’+h—[7166lfn +328608f , —150624f |
8

5734400 "*g ”*Z
+315000f , —281430f , +177264f , —73128f |,
n+= n+= n+= n+=
8 2 8 4

+17784f 1935 fM],
n+§

453600

8 4

+40064f ,—29610f , +19072f . —7888f ,
n+= n+= n+— n+=
8 2 8 4

2
yr’]’+£ = y({+%hy"’+h—(7703fn +37248f | -11600f ,
2

+1920f , —209 fMJ,
n+g

2
Y s=Yn +ghy"’+h—(398825 f,+1987000f , —465000f ,
8

18579456 n+g "y
+2294000f ,-128350f , +1020600f . —412000f |,
ﬂ+§ n+E n+g n+Z

n+—
8

+100000f , —10875 fmj,

3 h?
"o =y'+—hy"+——| 2325f +11808f , —2196f , +14208f
yn+% Yn 4 y 89600 ( n et et e

8 4 8

~6390f , +7200f ,—2268f ,+576f —63fn+1J,
n+E n+§ n+z n+§

2
Y 1= +ghy"'+h—(2019731fn +10388784f | ~1575056f |
8

66355200 net ng
+12811736f , —4826010f | +7068544f . —-1018024f |,
n+§ n+E n+§ n+z

+589176f , — 57281fn+1j,

n+—
8
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hZ
"o=y'+hy" + 989f +5152f , —696f , +6560f
yn+l yn y 28350( n n+% n+1

3
n+>

(13)
~2270f , +3936f ,-232f ,+736f 7}

n+= n+= n+=
2 4

Y7 =y" 10700171, + 44670041 , - 46045941 |
el 29030400

n+= n+=
8 4

+5595358f ,-5033120f , +31463388f . -1291214f |,

n+> n+= n+= n+=
8 2 8 4

n+—

+312874f , —33953 fMJ,

n+> n+= n+-
8 4 8

Y7 —y"+— (303771 11825841 , —42494f | +120088 |
= 907200

n+= n+-
2

~116120f , +74728f ,—31154f , +7624f | —833fMJ.

n+= n+—
4

n+> n+= n+-
8 4 8

h
"=y 128811, + 700021 , +34381 , +79934f
Vs =Y 358400( “ 1 : :

n+= n+= n+= n+—
2 8 4 8

~56160f , +34434f 14062 ,+3402f ,—369 fnﬂ}

y' o =y"+ h 4063f, +22576f | +244f | +32752f |
e 113400 2

n+= n+ n+=
8 4 8

n+= n+= n+=
2 8 4

~9080f , +9232f ,-3956f ,+976f 7—107fn+1J,

n+—
8

y" . =y"+—" | 417051, +230150f , +7550f , +3183501 |
e 1161216

n+= n+= n+=
8 4 8

n+= n+= n+=
2 8 4

~4000f , +170930f , —49150f ,+11450f , 1225 fMJ,

n+—
8

h
"=y | 401f, +2232f | +18T | +3204f
Yo =Y 11200[ ” LT

3
n+= n+2
4 8 4 8

n+= n+= =
2 8

4

~360f ,+2664f ,+158f ,+72f 7—9fMJ,

Yy [ 1495271 4816634 |, +48706f , +1085938f |
el 4147200

n+= n+= n+=
8 4 8

+54880f , +736078f . +522046f ,+223174f ,-8183 fn+1),
n+ n+g n+ n+g

3
n+= n+=
8 4 8

h
=Y +———| 989, +5888f | —928f , +10496f
Ya =Y 28350( " : "

(14)

n+= n+= n+= n+—
2 8 4 8

—4540f | +10496f ,—928f ,+5888f +989fn+1J.
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3. Analysis of the Properties of the Method

This section presented the analysis of the basic properties of the proposed sin-

gle-step hybrid multistep method.

3.1. Order of the Method

Since y(x) is continuously differentiable, following [2], the linear difference

operator associated with formulas in (11) is defined by:

Yg{y(x):h}

_ Tt (Bl ane —hts 8 [ ly@ (x +Fn) r o
_y(x”+8h) {%a{sjy (x)h h%ﬂb(sjy (xn+8h),r 1,2,3}.

Taking y(x) as the valid solution of (1), the Taylor series expansion about

(16)

the point x after using (16) gives a formula for the local truncation error written

as:
YAy (X): 0} =Y (X)+chy’ (X)+ Gy (X) ++++ ¢, h ™y P9 (x)
8 (17)
+C,,sn" Y ().
The term c,,, is called the error constant and implies that the local trunca-
tion error is given by:
Y, {y(x):h}=c,,,hP*yP (x, )+ OhP* (18)
8
Since ¢, =¢, =---=¢,,;=0,c,,, #0, refer to [13]; then formulas in (11) have
uniform order p=9 with error constant given by
3 ( 100009549 100009549
P41 143780317296063204556800 ' 143780317296063204556800
2851897 8093367
280820932218873446400 ' 197229516181156659200
14479 1243375625
137119595809996800 ' 5751212691842528182272°
148383 1833526051 8123 )
385213898791321600 ' 2934292189715575603200 8569974738124800

This procedure can be repeated for the formulas in (12)-(14) to obtain their

respective error constants.

3.2. Zero Stability of the Block Method

According to [3] and [14], a block method is zero stable if the zeros of the characte-
ristic polynomial satisfy |77i| <1 and the root |77i| =1 has multiplicity not exceed-
ing the order of the differential equation. Moreover, this kind of stability tells the
behaviour of the numerical method as h” — 0. Setting 4 to zero in the formulas
(11)-(14), its reduced to the form that satisfies H(?]i ) = |77i (¢m’r)—mer , whose
the characteristics equation is 77 (m, —1)4 =0. It is evident that the SHMM is

zero stable since the multiplicity of roots |77i| =1 does not exceed the order of
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the differential equation understudy.

3.3. Convergence

According to [15], the necessary and sufficient condition for a numerical me-
thod to be convergent is to be consistent and Zero stable. The satisfactory condi-
tion for the proposed method SHMM to be consistent is that it must have order
p=1 (see [16]). Section 3.2 established zero stability of the proposed SHMM,

and it is correct to conclude that SHMM is convergent.

3.4. Region of Absolute Stability of the Method SHMM

This section studies the region of absolute stability of the proposed Single-step
Hybrid Multistep Method (SHMM). Substituting the test problems:

y/ =y, y// _ —sz, yw _ _Vay' y(4) _ _V4y
into formulas in (11) and then combined as a block:
UpY,,, =U.Y, +hU,Y, +h?U,Y,"+ h*U,Y+h* (B,F, + B,F,.,). (19)

n+r

where vectors,

T
Your =[Y 00Y 20Y 3Y &Y 5. Y 60V 7vyn+1J >
n+— = = - n+— n+— n+—

8 8 8 8 8 8
T
Yn: Y 0¥ ¥ Y Y 50 0¥ 2Vafo
n-= "n-= "n-= "n— "n-= "n— "n—
8 8 8 8 8 8 8
T
r__ ’ ’ ! ’ r ’ ’ !
Yo=Y Y 2 Y oY s Y oY 7Y |
n-= "n-= "n-= — “n—= "n-—= "n—
8 8 8 8 8 8 8
T
" __ n ”n " " ”n n ”n "
Yo=Y Y oY Y Y s Y 6 Y 2 Ya | o
n-= " n-= -= — “n—= "n-——= "n—
8 8 8 8 8 8 8
T
"m__ m "m n " " " " "
Yo=Y Y oY e Y Y s Y 6 Y Y |
n-= "n-= "n-= "n— "n-= "n— "n—
8 8 8 8 8 8 8
T
Fn_(f 1'f z’f vf 4,f ,f G!f :fn >
n-~ n-= n-= n— n-= n-— nN—

U,, U, U,, 03 , Uy, B,, and B, are matrices of dimension eight (8)
whose entries are the coefficients of formulas in (11). Regarding (19) the ampli-

fication matrix obtained is:
M(¢)=T"Z (20)
where T = (ljo _B1) and Z = (ljl +U, +U, +U, + BO) . Further analysis of the

amplification matrix M ({) give the eigenvalues
(707207374075 761 72,7 ={0,0,0,0,0,0,0,7, } . The dominant eigenvalue y,
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is a function of ¢ where ¢ =V'h*. Figure 1 shows the absolute stability re-

gion where the proposed method exhibited the behaviours of the true solution.

4. Numerical Experiments

Four sample problems are considered as numerical examples to test the usability
of the proposed SHMM. The accuracy of the method was evaluated by calculat-
ing the absolute error generated when applied to the sample problems.

4.1. Test Problem 1
The general fourth-order IVP of ordinary differential equation
YO =y y ey 42y, y(0)=1 y(0)=0, y"(0)=0, y"(0)=30

whose exact solution is reported as y(X)=2e** —5¢™* +3cosx—9sin X is con-
sidered as the first test problem. The solutions to problem 1 were obtained
within [0, 1] over 20 iterations and are compared with the exact solution, as pre-
sented in Figure 2(a). It is clear from Table 1 and Figure 2(b) that SHMM
shows good performance over the methods in [7] and [8] up to at least seven de-
cimal digits.

Figure 1. Stability plot of SHMM.

Table 1. Solution of problem 2 obtained using the proposed method.

x y-computed y-exact Error SHMM Error in [8] Error in [7]
0.2 8.229478917040623 8.229478917040623 1.5152 E-20 3.5129E-13 2.319E-13
0.4 7.0610999883939325 7.061099988393933 1.4159E-19 4.1833E-12 2.2603E-12
0.6 6.778516610116943 6.778516610116943 5.6530E-19 1.4302E-11 1.9651E-11
0.8 7.786624979322129 7.786624979322128 1.6039E-18 3.5924E-11 9.9145E-11

1. 10.665177458051863 10.665177458051861 3.7919E-18 7.2762E-11 3.3114E-10
1.2 16.251045310569197 16.251045310569197 8.0188E-18 1.3360E-10 9.0000E-10
1.4 25.763132220706712 25.76313222070671 1.5750E-17 2.2345E-10 2.1176E-09
1.6 40.99078198991456 40.99078198991457 2.9382E-17 3.5796E-10 4.5506E-09
1.8 64.57672836648089 64.57672836648088 5.2804E-17 5.4334E-10 9.1180E-09

2. 100.44085913139898 100.44085913139897 9.2291E-17 8.0796E-10 1.7409E-08
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Figure 2. (a) Curves of solutions and behaviour of absolute errors on test prob-
lem 21 using the SHMM; (b) Efficiency curves of the maximum absolute errors
against grid-values for problem 1.

4.2, Test Problem 2

The second example considered as a test problem is another fourth-order IVP of

ordinary differential equation

-1.1 1 1.2

(4)= /r, 0=0| "(0) = ' "(0) = , "(0) = ,
y y y( ) y( ) 72-501 y ( ) 144 -1007 y ( ) 144 -100x
1.2sin x
. . . :1_ _ —_y" 0 — — -
whose exact solution is given as y(x) X—COSX—Y ( ) 142 —100m Prob

lem 2 was iterated within [O,l] for 320 steps. The results are as presented in
Table 2 and Figure 3(a) and Figure 3(b). Table 2 and Figure 3(b) make it evi-
dent that SHMM outperforms the approach in [17] up to at least seven decimal
digits.

4.3. Test Problem 3: Application: Ship Dynamic Problem (See [8])

We applied the proposed method to solve a physical problem that occurs in ship
dynamics. In particular, this problem has been studied and solved numerically
by [18], and [19], which describes how the sinusoidal wave of frequency V
passes along a ship or offshore structure to lead to a fourth-order differential

equation relates to the action of the fluids with time x as below
y = -3y"—y(2+gcos(Vx)),y(0)=1,y'(0)=0,y"(0)=0,y"(0) =0,

whose exact solution is y(x) = ZCOSX—COS(X\/E) for when ¢=0. This
problem was solved within [0, 15] over 150 iterations. The results are reported
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in Table 3 and Figure 4. The results of the problem for h=0.25 and 0.1 are
compared with those of cited [7] [8] and [18], the suggested method compares
well with the cited works (see Table 4).

4.4. Test Problem 4

The following nonlinear fourth-order IVP of ordinary differential equation
y 9 =y -y - 4xt + e (1+ X2 —4x),
y(0)=1y'(0)=1y"(0)=3,y"(0)=1[0,1]

with the exact solution y(x) =x*+€" isalso considered as a test problem. The

test problem was approximated using SHMM within [0, 1] over 5 and 10 itera-
tions, respectively. See Table 5 for the results as compared with some cited

works in the literatures.

0.0
L £ 15x10
0.2 S
- o xto
ol =4
% 2
-0.4 g &0
0.5 0
00 02 04 06 08 1.0
00 02 04 06 08 1.0 Grid values
x
(a)
10 |
. 10®F
S
g 10710
_8’: 10'12 L
b '/./.___o-—-‘—“_"—*_“
10718 1
0.0 0.2 0.4 0.6 0.8 1.0
Grid-values
(b)

Figure 3. (a) Curves of solutions and behaviour of absolute errors on test prob-
lem 2 using the SHMM; (b) Efficiency curves of the maximum absolute errors
against grid-values for Example 2.
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Figure 4. Curves of solutions and behaviours of absolute errors on test
problem 3 using the SHMM.
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Table 2. Solution of test problem 2 obtained by the proposed method.

X y-computed y-exact Error in SHMM Error in [16]
0.103125 —0.09708635645894467 —0.09708635645894448 1.9429E-16 2.116E-13
0.206250 —0.18361153147140596 —0.1836115314714053 6.6613E-16 5.6987E-12
0.306250 —-0.2575947017186572 —-0.2575947017186555 1.7208E-15 6.8031E-10
0.406250 —0.3220723501790842 —0.3220723501790812 2.9976E-15 2.2072E-9
0.506250 —0.3773994044471421 —0.37739940444713743 4.6629E-15 1.2741E-8
0.603125 —0.4226919296391457 —0.4226919296391385 7.2165E-15 3.4561E-8
0.703125 —0.46139027951012934 —0.4613902795101199 9.4369E-15 6.5534E-6
0.803125 —0.492512293357425 —0.4925122933574131 1.1935E-14 9.5865E-6
0.903125 —-0.5167461772506352 —-0.5167461772506207 1.4544E-14 1.0493E-6

1. —0.5343680701999484 —0.5343680701999309 1.7431E-14 5.6962E-6

Table 3. Solution of the applied example obtained using SHMM.

b's y-computed y-exact Error

1. 0.92466091697090490 0.9246609169709051 2.3651E-21
2. 0.11906945503156266 0.11906945503156263 2.1163E-20
3. —1.5273231359085384 —1.5273231359085389 2.6887E-20
4. —2.1174708448420190 —-2.1174708448420194 4.3095E-20
5. —0.13802353538198978 —0.13802353538198964 1.1155E-19
6. 2.510535059206008 2.5105350592060085 8.3824E-21
7. 2.3972266325194904 2.3972266325194904 1.8763E-19
8. —-0.603795009129371 —-0.6037950091293718 1.4646E-19
9. —2.809239445368881 —2.8092394453688807 1.6758E-19
10. —-1.6731743960203111 -1.6731743960203105 2.9449E-19
11. 0.9973799806376236 0.9973799806376238 3.4453E-20
12. 1.9910488550789984 1.9910488550789966 3.5679E-19
13. 0.920973191409115 0.9209731914091138 1.3780E-19
14. —-0.3086689923111189%4 —-0.3086689923111189%4 3.1111E-19
15. —0.8070186485444422 —-0.8070186485444416 2.6094E-19

Table 4. Comparison of the absolute error on test problem 3.

h Method Error at x, =15
SHMM 2.48E-15
(8] 8.15E-08
0.25
[7] 5.40E-07
[19] 1.90E-04
SHMM 2.61E-19
(8] 3.60E-11
0.1
[7] 2.80E-10
(18] 3.7E-05
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Table 5. Comparison of the absolute error on test problem 4.

h Method Errorat x, =15
SHMM 9.45E-23
[20] 1.10E-16
0.2 BHCM4 [20] 5.20E-12
Adams [20] 5.01E-07
(9] 5.84E-04
SHMM 9.71E-20
[20] 1.77E-11
0.1 BHCM4 [20] 1.95E-14
Adams [20] 2.44E-06
(9] 9.26E-05

5. Conclusion

This work proposes a single-step, linear multistep formula (LMF) with block ex-
tension for the direct solution of fourth-order ordinary differential equations.
The ship dynamics problem and three other standard fourth-order ordinary dif-
ferential equations are considered test problems to establish the methods’ use-
fulness. The analysis and numerical experiments revealed that the proposed me-
thod is efficient with a better degree of accuracy for handling the direct solution

of fourth-order ordinary differential equations.
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