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Abstract 
Theoretically, it is plausible to assume for a chosen charge distribution the 
electric field can be calculated. However, in practice depending on the geo-
metry of the distribution one faces mathematical challenges. In this research- 
oriented project, we select a set of related familiar 2D geometric curves ad-
dressing the mathematical issues. Specifically, we consider a family of curves 
that evolved via step-by-step “evolution”. The evolution begins from a seg-
ment of a circular arc to a complete circle. The electric fields are formulated, 
evaluated, and graphed. Accomplishing these objectives relied heavily on uti-
lizing a Computer Algebra System (CAS), specifically Mathematica [1]. The 
CPU’s expensive runtimes are circumvented by introducing mathematical 
procedures. 
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1. Introduction 

At the outset, one might envision a given charge distribution creating an elec-
trostatic potential, φ , and that creates the electric field, E , via the global rela-
tionship, φ= −E ∇ , [2]. If the mere objective is to hunt for the electric field na-
turally the latter equation is less mathematically challenging that is because once 
the scalar potential function, φ , is formed evaluation of its gradient is straight- 
forward. However, although one of our objectives is to hunt for the field, we 
wish not to apply the latter procedure. That is to say directly by utilizing the 
charge distribution to evaluate the field. We realize this potentially may pose 
mathematical difficulties, meaning one needs to wrestle with vectors, however, 
we foresee with the advances in Computer Algebra System (CAS) the mathe-
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matical challenges might be at ease. 
For the sack of demonstration in this research-oriented project, we consider a 

family of related continuous charge distributions. We begin with a basic building 
“cell” and explore the impact of its evolution while morphing to a circular com-
pletion.  

With this plan, we craft our report which is composed of three sections. In 
addition to the Introduction in Sect. 2, we describe the details of the project 
showing the evolution of the distribution, and the formulation of the problem. 
This section shows the CAS in action, specifically Mathematica and on occasion 
Maplesoft. The output of the codes for visual understanding is accompanied by 
an atlas of the graphs. We conclude the article with the last section, Conclusions 
and Comments.  

2. Formulation and Analysis 

Figure 1 depicts the systematic evolution of a circular arc. It shows it begins 
with a 45˚ arc and in eight successive steps completes a full circle. Assuming 
each arc length sustains the same charge density, this assists in paving the road 
yielding the formulation of the electric field at an exterior point along the hori-
zontal axis.  

Table[ParametricPlot[{rCos[θ],rSin[θ]}/.r->1.,{θ,0,nπ/4},PlotRange-> 
{{-1.2,1.2},{-1.2,1.2}},PlotLabel->StringJoin[θ^°”=“,ToString[n45]],PlotStyle-
>Red],{n,1,8}] 

Figure 2 shows the issue on hand. Point p is a typical exterior point of inter-
est. The charged element on the rim of the circular curve contains a minuscule 
charge, dq, in the first quadrant. It generates a differential E_field, dE , with 
orientation as shown. 

 

 
Figure 1. Evolution of a charged circular arc from 45˚ to completion to a complete circle.  
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Figure 2. The semi-circular curve of radius R is in red. An element 
of a charge, dq, is depicted by the thick red segment. The point of 
interest, p, is at distance x away on the horizontal axis.  

 
One of our objectives is to identify (evaluate) the field due to the entire charge 

on the circular arc. The steps needed are: 
As shown in Figure 2 assuming the differential charge dq is small as such it 

acts as a point charge, the overall E field comes about by adding pieces originat-
ing from the distributed charge on the rim of the curved line, 

2

dqE k
dist

= ∫                           (1) 

The denominator of (1) is the distance from dq to p and the value of K in SI 
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where the λ is the linear charge density, qλ =


. As shown in Figure 1 the lower  

limit of the integrations is always zero, however, the upper limits in radian, θup, 
correspond to the selected curve.  

We begin with the case where the upper limit of (2) is a π. This corresponds to 
the fourth diagram on the first row of Figure 1. We intend to apply CAS, specif-
ically Mathematica to evaluate most of the needed integrations. For an exterior 
point, p, i.e. for x > r, (1) is coded as,  

intxπ=Integrate[(x-rCos[θ])/(x^2+r^2-2xrCos[θ])^(3/2),{θ,0,π},Assumpt
ions→x>r] 

((EllipticE[(4 r x)/(r+x)2]/(-r+x)+EllipticK[(4 r x)/(r+x)2]/(r+x)) Sign[r+x]) 
/x if r+x!=0 
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We noticed 1) on an Intel COREi5, Mathematica V13.0 takes eight minutes to 
produce the shown output, and Mathematica V13.1 fails to produce an output. 
And 2) the second integration is somewhat, and its run time is short.  

intyπ=Integrate[(Sin[θ])/(x^2+r^2-2xrCos[θ])^(3/2),{θ,0,π},Assumption
s→x>r] 

(r-x+Abs[r+x])/(rx(-r+x)Abs[r+x]) 
With these observations we have devised an approach circumventing these 

issues, we propose replacing the integrands with reasonably ordered Taylor ex-
panded polynomials. Knowing the exact output of the upper limit of the case, π, 
we establish the appropriate order for the Taylor expansions. What follows is the 
result of our investigation.  

By trial and error we realized low ordered polynomials for short distances es-
timate the exact electric fields however, they agreed at far distances. We optimize 
the order by expanding the integrand to higher orders. As such 20-ordered po-
lynomial yields a reasonable output, needless to point out the quality of the out-
put stays as good for longer distances. Aiming for a perfect result requires higher 
than 20 ordered polynomials, but this becomes CPU time expensive which we 
are trying to avoid.  

Here are the steps leading to our procedure, Taylor expansion of the y-com- 
ponent of (1) for a circle of radius of one unit is, 

Taylorx20=Normal[Series[(x-rCos[θ])/(x^2+r^2-2xrCos[θ])^(3/2),{Cos[θ], 
0,20}]]; 

integratexn=Table[Integrate[Taylorx20/.r->1,{θ,0,n π/4}],{n,1,8}]; 
The output of these codes is suppressed, as they are very long.  
We also give the Maplesoft code assuming some might-be interested [3]. 
Taylor20 := series((-r*xi + x)/(-2*r*x*xi + r^2 + x^2)^(3/2), xi = 0, 20); 
convert&xi;20` := convert(Taylor20, polynom); 
convert&xi;&theta;20` := subs(xi = cos(theta), `convert&xi;20`); 
int&theta;20` := int(`convert&xi;&theta;20`, theta = 0 .. Pi); 
subs20 := subs(r = 1, `int&theta;20`); 
Plots of the given Mathematica codes are shown in Figure 3. 
plotxn=Table[Plot[integratexn[[n]],{x,1.01,6},AxesLabel->{“x”,”Ex”},Grid

Lines->Automatic,PlotStyle->Hue[0.1 n],PlotLabel->StringJoin[“integrated 
angle \n from 0 to=“,ToString[n “π/4”]]],{n,1,8}] 

The result shown in Figure 4 is what intuitively one would have expected, i.e. 
the longer the arc length the stronger the associated field and vice versa. As such 
the brown curve with the shortest arc length is the weakest while the magenta 
curve corresponding to the longest arc length is the strongest. All the shown 
curves become indistinguishable at long distances.  

For the y-axis, we repeat the mentioned procedure utilizing the second equa-
tion of (2).  

Taylory20=Normal[Series[Sin[θ]/(x^2+r^2-2xrCos[θ])^(3/2),{Cos[θ],0, 
20}]]; 

integrateyn=Table[Integrate[Taylory20/.r->1,{θ,0,n π/4}],{n,1,8}]; 
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Figure 3. The Magnitudes of electric fields along the x-axis applying (2) with mentioned 20 terms Taylor expansion are 
depicted. The plot labels are descriptive.  

 

 

Figure 4. Collective display of all eight plates of Figure 3.  
 

Here again because of the lengthiness of the outputs they are suppressed. The 
unitless Ey vs. the unitless x-axis are shown in Figure 5.  

tablen1=Table[{x,180./π ArcTan[integrateyn[[1]]/integratexn[[1]]/.r->1.]}, 
{x,1.01,6}] 

tablen4=Table[{x,180./π ArcTan[integrateyn[[4]]/integratexn[[4]]/.r->1.]}, 
{x,1.01,6}] 

{{1.01,66.2426},{2.01,15.7619},{3.01,9.22861},{4.01,6.48196},{5.01,4.98543}} 
{{1.01,59.9414},{2.01,18.7433},{3.01,12.2783},{4.01,9.16265},{5.01,7.31438}} 
listplotn1=ListPlot[tablen1,PlotLabel->“π/4”,AxesLabel->{“x(m)”,”ϕ°”},Pl

otStyle->Blue,GridLines->Automatic]; 
listplotn4=ListPlot[tablen4,PlotLabel->“π”,AxesLabel->{“x(m)”,”ϕ°”},Plot

Style->Red,GridLines->Automatic]; 
Show[{listplotn1,listplotn4},PlotLabel->“Blue=“π/4”\n Red=π”] 
Here we display two samples of the orientation angle, ϕ, for the electric fields 

associated with the π/4 and π arc lengths, for the x-axis, respectively shown in 
Figure 2.  
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In Figure 6, the blue dots correspond to the arc-length π/4, the first plate of 
Figure 1. The red dots are for the arc length of π and corresponds to the last 
plate of the first row of Figure 1. 

Here we report the magnitude of the electric fields for mentioned cases, for 
the π/4 and π cases respectively.  

electricFieldsn1=Table[{x,sqrt(integratexn[1]^2+integrateyn[1]^2)}, 
{x,1.01,6}] 

{{1.01,2.5979},{2.01,0.574783},{3.01,0.170703},{4.01,0.0798993},{5.01,0.046053
1}} 

electricFieldsn4=Table[{x,sqrt(integratexn[4]^2+integrateyn[4]^2)}, 
{x,1.01,6}] 

{{1.01,3.71365},{2.01,1.01629},{3.01,0.387647},{4.01,0.2077},{5.01,0.130107}} 
 

 

Figure 5. The Magnitudes of electric fields along the y-axis applying the second equation of (2) with 20 terms Taylor polynomial 
are depicted. The plot labels are descriptive. 
 

 

Figure 6. Display of the orientation angle of the resultant E 
field vs. distance.  
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Figure 7. Display of the magnitude of E field for two cases of interest 
vs the distance. The blue dots correspond to π/4, while the reds with π.  

 
listplotE1=ListPlot[electricFieldsn1,PlotStyle->Blue,AxesLabel->{“x(m)”,

”E unitless”},GridLines->Automatic]; 
listplotE4=ListPlot[electricFieldsn4,PlotStyle->Red,AxesLabel->{“x(m)”,”

E, unit less”},GridLines->Automatic]; 
Show[{listplotE1,listplotE4},PlotRange->All] 
In Figure 7, as expected, the blue values are weaker than the red. This is be-

cause the former corresponds to a shorter arc length, where the reds with the 
longer. 

3. Conclusions and Comments 

In this research-oriented investigation by choosing a suitable approximation we 
circumvent the CPU expensive CAS-based procedure efficiently shortening the 
run-time of computations that we routinely face computing electrostatic-based 
problems. We have utilized two different CASs: Mathematica and Maplesoft 
proving identical outputs irrespective of the named software concluding the 
choice of the software is personal. The proposed methodology softly approximates 
the exact calculation and nonetheless runs the computation without hanging the 
computer. To make the output of the calculation as close as possible to the exact 
with optimizing the CPU run-time we considered 20 ordered polynomials in the 
Taylor approximation. This high-order replacement irrespective of the arc 
length of the curve of the case on hand generates perfect agreements at long dis-
tances relative to the radius of the curvature and mildly underestimates at short-
er distances. The interested reader may find [4] and [5] resourceful to run the 
embedded codes creating the associated graphs. 
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