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Abstract 
A mathematical model comprising of nonlinear reaction, diffusion, and con-
vection mechanisms seen in natural and anthropogenic processes is numeri-
cally investigated here. It is proposed that a higher order numerical scheme of 
finite difference method be used in conjunction with an iterative approach in 
order to solve the nonlinear one dimensional convection-diffusion-reaction 
equation. To account for the wide variety of physical characteristics and 
boundary conditions, an iterative approach is presented that yields a reliable 
and precise solution every time. We examined the accuracy and operational 
efficiency of two distinct finite difference approaches. The efficiency of the 
system is determined by comparing the estimated results to the appropriate 
analytical solution by adhering to established norms. Coherence and conver-
gence were analyzed for each approach. The simulation results demonstrate 
the efficacy and accuracy of these methods in solving nonlinear convection- 
diffusion-reaction equations. Convection-diffusion-reaction equation model-
ing is critical for employing the offered results in heat and mass transport 
processes. 
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1. Introduction 

There are several kinds of partial differential equations that control mathemati-
cal models of mechanical, chemical, ecological, and environmental events. 

Nonlinear convection-diffusion-reaction equations are of the kind  

 ( ) ( ) ( )t x xxA B Cφ φ φ φ φ φ+ = +                   (1) 
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where unknown function is denoted by φ  and variable coefficients represent 
the smooth functions. Numerous applications necessitate the modeling of con-
vection-diffusion-reaction (CDR) equations that are time dependent. Common 
examples also include chemical reaction and electrophoresis separation pheno-
mena simulations in flow fields. Modeling processes in chemistry, physics, engi-
neering, ecology and biology typically use convection-diffusion-reaction equa-
tions. Using the convection-diffusion-reaction model, one can see how a chemi-
cal or biological species evolve over time. It is possible to represent these phe-
nomena using a non-linear framework of advection, diffusion, and reaction equ-
ations that are time-dependent. Such processes require numerical algorithms ca-
pable of computing crisp layers while also preventing specious oscillations from 
occurring for reliable simulations. 

Extensive study has been done on the numerical characteristics of simulating 
diffusion advection transport, and that research is currently ongoing. A large quan-
tity of literature on advection diffusion transport has been produced as a result 
[1]. The convection-diffusion-reaction equation is frequently employed in the 
mathematical models used to analyze water pollution in lakes, waterways and 
rivers [2] [3] [4]. The equations of convection-diffusion-reaction emerge in the 
modeling of the process of cancer and tumor growth [5] [6] [7] [8] [9]. Fluid 
flow simulation in a non-inertial frame is yet another intriguing use of this tech-
nique. In order to model these phenomena, we use a convection-diffusive-reactive 
structure, with inertia represented in the convective term, viscous effects repres- 
ented in the diffusion expression, and centripetal forces represented in the reac-
tion term [10]. As a result of the strong gradients in the flow behavior, it is ne-
cessary to use a specific numerical treatment. The large percentage of classical 
systems features erroneous oscillations, resulting in a high level of numerical 
dispersion [11]-[16]. Identifying precise answers with a biological, physical, or 
chemical interpretation is crucial. For the solution of nonlinear partial differential 
equations, conventional approaches are inapplicable. There are several numerical 
methods that can be used to approximate the solution of nonlinear CDR equation.  

A stabilized finite element method for solving systems of CDR equations based 
on the subgrid scale approach was developed by R. Codina in 1997 [17]. To han-
dle unstable CDR problems using the finite element approach, A. Huerta et al. 
[18] introduced Galerkin least-squarres, streamline-upwind Petrov-Galerkin, and 
sub-grid scale solutions in 2002. A numerical investigation for the 1D and 2D 
steady state advection-diffusion-absorption equations using the stabilized finite 
element approach was presented by E. Onate [19] in the year 2005. In order to 
solve the advection diffusion response equation, J. A. Pudykiewicz [20] proposed 
a finite volume technique based on the notion of semidiscretization in the end of 
2005. According to J. Kacur et al. [21] in 2009, the convection-diffusion-absorp- 
tion problem can be approximated using the method of lines and interface mod-
eling. Erik Burman and Miguel A. Fernandez [22] conducted research into semi- 
implicit and implicit time-stepping approaches for finite element approxima-

https://doi.org/10.4236/ajcm.2022.122014


U. Ahmed et al. 
 

 

DOI: 10.4236/ajcm.2022.122014 234 American Journal of Computational Mathematics 
 

tions to time dependent CDR problems in the same year. Later, P. Nadukandi et 
al. [23] presented the formulation of Petrov-Galerkin scheme for the one-dimen- 
sional CDR problem based on the finite element method.  

Hendrik Speleers (2012) et al. [24] investigated the approximate solution of 
the CDR problem using isogeometric analysis based on Powell-Sabin splines. In 
2016, E. Onate et al. [25] used Galerkin scheme of finite element method for one 
dimensional advection diffusion reaction equation. Reproducing kernel particle 
scheme was discussed in 2017 by M. Gharib et al. [26] in order to solve the ad-
vection-diffusion-reaction problem. It was suggested in 2019 by F. Zhao et al. 
[27] that the convection, diffusion, and reaction equations on implicit fields be 
computationally solved using the radial basis function-generated finite differ-
ences approach. This meshless system relies on compactly supported radial basis 
functions. In 2019, U. Erdogan et al. [28] introduced a method that linearized 
first using Newton Iteration, and then discretized spatially and temporally in the 
second phase. To show that the nonlinear reaction component dampens the so-
lution profile, A. Sing et al. (2019) [29] used an efficient and reliable finite differ-
ence approach to save computing time. For the CDR equation with anisotropic 
diffusion, N. Rauf et al. (2019) [30] employed a boundary element approach to 
evaluate the accuracy and consistency of the solutions.  

The numerical solution of CDR equations was also examined by S. Singh et al. 
(2020) [31] using implicit explicit compact techniques. J. Lin [32] developed a 
meshless approach for solving linear and nonlinear advection-diffusion-reaction 
equations. To study the approximate solution of the CDR equation, Sengupta et 
al. [33] conducted a global spectral analysis in 2020. Shortly thereafter, using a 
one-sided Laplace transform and assuming constant diffusivity, velocity, and 
reactivity, Kim [34] was able to find the CDR equation’s one-dimensional analytical 
solution. Later, A. Puigferrat [35] suggested a finite increment calculus scheme 
based on stabilized finite element method for advection-diffusion-absorption 
problems. To solve the nonlinear convection diffusion response equation in one 
dimension, Ali et al. [36] proposed a numerical technique based on a combina-
tion of Lucas and Fibonacci polynomials in 2021. Soon after, A. Jain [37] pre-
sented eigenvalue analysis for multilayer 1D convection diffusion reaction equa-
tion. Svetislav Savovi [38] investigated the numerical solution of the advection- 
diffusion-reaction equation describing the transport phenomenon at the end of 
the same year using unconditionally positive finite difference and the usual ex-
plicit finite difference schemes. Luis Blanco-Cocom and colleagues [39] published 
a mathematical model of a fuel cell in 2022 that represented the physical model-
ing of the fuel cell. Using a strategy that eliminated the artificial diffusion of the 
finite element method, they were able to numerically investigate the proposed 
CDR model. 

2. Problem Statement 
2.1. Governing Equation  

For unsteady CDR problem in one dimension, a partial differential equation can 
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be stated as follows  

 ( )23 2t xx xu uu uu u u= + + −                    (2) 

where ( ) ( ], 0,x t T∈Γ×  with initial conditions ( ) ( )0,0u x u x= , x∈Γ . The Di-
richlet boundary conditions are denoted the expression ( ) ( )1 ,, f tu t xa = ,  
( ) ( )2 ,, f tu t xb = .  
Here ( ) ( ], 0,x t T∈Γ× , :x a x bΓ = ≤ ≤  is a domain in R, ( ]0,T  is the time 

interval. h dx=  and smooth functions are defined to 0u , 1f  and 2f .  

2.2. Analytical Solution  

The one dimensional non linear CDR Equation (2) has an analytical solution [40]  

 ( ) 2 4, 2e e et x xU x t −= −                      (3) 

The constraint element h dx= , the boundary conditions and the initial con-
dition ( ) 4

0 ,0 2 e ex xu u x −= = −  are all taken from the analytical solution dur-
ing the computations. Here ( ){ }, : 0 1,0 <T x t x t TΓ× = ≤ ≤ ≤ . 

3. Numerical Methods  

A numerical solution to CDR equation in one dimension will be investigated in 
this part, using numerical techniques to examine at the domain Γ . In the be-
ginning, we establish that the integer S that will be used to describe the space 
step size, ( )xd b a S= −  in horizontal direction. Divide the interval [ ],a b  
into S equal sections with a width of xd  and equidistant from each other. Af-
terwards, draw a layout by connecting the points sx  using horizontal lines, 
with s xx a c d= + ⋅  for each 0,1, 2, ,s S=  . Each action point inside the ma-
trix is represented by sx , where s is of 1,2, , 1S − . In this Equation (2), we use 
several computations to approximate the numerical layout of the problem. Here  

nt nk= , where 0,1, ,n NT=   and t is the time.  

3.1. Crank-Nicolson Implicit Scheme  

By using Crank-Nicholson technique to solve Equation (2) and integrating in a 
compact manner, we may obtain: 

1 1 1 1
1 1 1 1

1 1 1
2 1 1 1 1

2
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2
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Equation (2) may be solved for the second order implicit CN scheme by re-
placing the previous terms  
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(4) 
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The implicit approach implies that the accuracy is of ( )2 2O k h+ , our no-
menclature also includes su  and sU  for the numerical and analytical solu-
tions of points ( ),s nx t . The Von-Neuman stability research of method (4) is 
used to assess the stability of the 2nd order implicit method, which demonstrates 
the unconditional stability of the scheme. Despite that the results are positive, 
the system is currently tri-diagonal. However, because of the large iteration size, 
the inclining at the tiniest n segments missing from each direction amplifies, but 
various methods, strategies that can be used to deal with similar issues, are more 
difficult to implement because of the high transfer speed. Due to the huge amount 
of computations, another numerical technique is required to solve this problem. 
When dealing with the linear system, the iterative approach is used. The CN is 
time consuming to implement it. 

3.2. Fourth Order Implicit Scheme  

A compact integration strategy, such as fourth order implicit scheme, may be 
used to solve Equation (2), which allows us to get 

1 1
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Equation (2) may be solved for the fourth order implicit scheme by replacing 
the previous terms 

( )
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
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

     (5) 

3.3. Algorithm 1  

In order to develop a Newton iterative approach, we must first determine the 
Jacobian. The Jacobian matrix shrinks to a row vector T g∇  since all of the 
function’s partial derivatives are in the same row for : ng R R→ . This means 
that the Jacobian is the transpose of the function’s slope, which is equivalent to 

T
gJ g= ∇ .  

 ( ) 0F H =                              (6) 

where  
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 [ ]T1
1 2 2 2, , ,n

SH u H H H+
− ≈ =                       (7) 

T1 1 1 1
1 2 1, , ,n n n n

Su u u u+ + + +
− =                         (8) 

[ ]T1 2 2 2, , , SH H H H −=   where 1 2 2 2, , , SH H H −  are nonlinear equations. 
Newton’s iterative approach can be applied by using following steps  

1) Set an initial approximation of ( )0u  as starting point  
2) Up till the point of convergence for 0k =   

● Determination of linear system ( ) ( )k k kC u u W u∆ = −   
● Set 1k k ku u u+ = + ∆   

An analytically computed Jacobian is ( )kC u , and the corrective variable is 
ku . The starting estimate in the iteration process is the solution from the pre-

vious step. Every time step is terminated when ( )kW u  
1
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   
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( ) ( ) ( )21 1 1 1 1
2 1 1 2 2 1 1 3 1 1
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3.4. Algorithm 2  

It is evident that the structure is tridiagonal and that the Thomas technique can 
be applied to address it. In general, the following is how a tridiagonal system is 
written. Tridiagonal system can be expressed in the following ways 

1 1 1 1where 0s s s s s s s s sc x c x d x e x c c− − ++ + + = =  

A matrix vector representation of the above system is possible  

Au b=  

where A is a coefficient matrix There is a column vector on the right. Our pri-
mary objective is to discover the u vector.  
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[ ]T1 2, , , su u u u=                          (9) 

[ ]T1 2, , , sb b b b=                         (10) 

The implementation of the Thomas algorithm is demonstrated in the results 
by equating both sides of the Au S=  equation. 

4. Error Norms  

The precision and consistency of the methods is studied in terms of error norms 
specifically 2L  and L∞  which can be expressed as: 

( )2
, ,

, 1

L

p q p q
p q

U u
RMSError

L L
=

−
=

×

∑
               (11) 

( ). ,1 1
max

P

p q p qp P q
L U u∞ ≤ ≤ =

= −∑                  (12) 

( ) ( )2 , , , ,
t

p q p q p q p qL U u U uρ= − −               (13) 

where ( ), ,u x y t  and ( ), ,U x y t  represents the numerical and exact solutions 
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at the grid point ( ), ,p q nx y t . In this method ( ) ( ), , maxp q p qU uρ λ− =  and λ  
is an eigen value of ( ), ,p q p qU u−  respectively. 

5. Results and Discussion 

In several application areas, such as electromagnetics, biomathematics, precise 
modelling of electric signals and water modeling takes more time. To calculate 
numerical derivatives effectively, we utilized a short step size along the grid line. 
MATLAB algorithms for the 1D nonlinear CDR Equation (2) were also con-
structed. 

In this section, we examined two numerical finite difference algorithms. The 
fact that implicit schemes are always unconditionally stable, both of them are 
implicitly stated. Table 1 shows numerical findings that are compared to analyt-
ic results by modifying typical locations at time step size 0.01. Additionally, in 
Table 1, the error is reported as a measure of second order precision. Table 2 
indicates that utilizing the fourth order implicit scheme, greater precision may 
be attained by stating approximate and analytic results at distinct locations. In 
the next two tables, the RMS, L2, and Linfnty norms are provided. The error esti-
mation of the CN scheme is shown in Table 3 and Table 4, respectively, for par-
tition size of 100 and 200. Similarly, the behavior of the fourth order implicit 
scheme in terms of error estimates across partition sizes of 100 and 200, respec-
tively, is explained in the Table 5 and Table 6. 

 
Table 1. Analysis of CN scheme at 50 partition size and 1t =  for unknown ( ),u s t . 

Solution Comparison 

x U-Exact u-CN Error 

1.90 3.8210e1 3.8201e1 9.0e−3 

2.98 6.5572e1 6.5538e1 3.40e−3 

4.42 1.3471e2 1.3452e2 1.90e−3 

6.94 4.7492e2 4.7334e2 1.58e−2 

9.64 1.8320e3 1.8211e3 1.09e−2 

 
Table 2. Analysis of fourth order scheme at 100 partition size, 0.04h =  and 1t =  for 
unknown ( ),u s t . 

Solution Comparison 

x U-Exact u-4th Order Error 

1.44 0.303493e2 0.303842e2 1.1e−5 

2.08 0.418098e2 0.417973e2 1.25e−4 

3.08 0.689338e2 0.689227e2 1.113e−4 

4.04 1.114022e2 1.114008e2 1.391e−5 

4.84 1.661925e2 1.661813e2 1.12e−4 
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Table 3. Calculating error norms of CN at different time for unknown ( ),u s t . 

Error estimation at 100 partition size and time step size = 0.001 

t L2-CN L∞-CN RMS-CN 

0.1 1.67e−3 2.67e−4 1.31e−3 

0.5 2.67e−2 8.98e−3 1.66e−2 

1 3.30e−2 5.10e−3 2.40e−2 

1.5 5.12e−2 8.60e−2 3.30e−2 

2 1.10e−1 7.03e−2 1.04e−1 

 
Table 4. Calculating error norms of CN at different time for unknown ( ),u s t . 

Error estimation at partition size 200 

t L2-CN L∞-CN RMS-CN 

2 1.4142e−2 3.1307e−2 1.3136e−2 

1.5 1.1224e−2 2.6091e−3 1.083e−2 

1 6.3552e−3 8.3815e−4 4.3273e−3 

0.5 3.0250e−3 4.6615e−4 2.0104e−3 

0.1 5.6743e−4 2.1330e−5 3.6011e−4 

 
Table 5. Calculating error norms of 4th order implicit scheme at different time for un-
known ( ),u s t . 

Error estimation at 100 partition size 

t L2-4th Order L∞-4th Order RMS-4th Order 

0.1 5.2004e−4 1.4011e−5 2.1439e−4 

0.5 7.6840e−4 9.0213e−4 3.8301e−4 

1 1.2032e−3 2.2713e−4 1.0037e−3 

1.5 3.5204e−2 1.7251e−3 2.8113e−2 

2 3.1298e−1 2.4102e−2 1.9805e−1 

 
Table 6. Calculating error norms of 4th order implicit scheme at different time for un-
known ( ),u s t . 

Error estimation at 200 partition size 

t L2-4th Order L∞-4th Order RMS-4th Order 

2 2.8284e−2 6.0371e−2 1.1216e−2 

1.5 2.005e−2 1.1955e−3 1.0167e−2 

1 4.2102e−3 2.2050e−4 3.1153e−3 

0.5 5.4394e−4 3.5737e−5 2.9945e−4 

0.1 2.8284e−5 1.0038e−6 2.8312e−5 
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Finally, we investigated the accuracy of fourth order implicit scheme that were 
implemented on Equation (2). We employed norms in this investigation by 
modifying the space and time step sizes. Using different time step sizes, we may 
derive an error estimate as shown in Table 7. In this case, it suggests that preci-
sion improves when the step size is shrunk. Consequently, the accuracy of fourth 
order implicit scheme is discussed by varying the space step size in Table 8. It is 
evident from Table 7 and Table 8 that reducing the step size, whether it be in 
space or time, leads to higher accuracy in our calculation. 

As shown in Figure 1, when the second order CN implicit scheme is used to 
the CDR problem, the numerical results are approaching to the analytical find-
ings when the partition size is 50 and the k is 0.01. Despite the fact that the re-
sults are near, still substantial improvement is possible, as seen by Figure 1. 
Figure 2 shows that the results appear to be better with 75 partition size and t=1 
as compared to Figure 1. Fourth order implicit scheme outperforms the second 
order CN approach for Equation (2) as demonstrated in Figure 3 and Figure 4, 
when compared to the two preceding figures.  

Figure 5 indicates that decreasing the time step size of second order CN sys-
tem can enhance the precision of the scheme, but that doing so is computation-
ally intensive. Figure 6 shows a comparison of second and fourth order implicit 
methods for a 100 partition size and k = 0.0001. It illustrates that the numerical 
findings obtained from proposed methods are highly comparable to the obtained 
exact ones. It demonstrates that for very tiny time step sizes, both strategies can 
produce results, albeit at the expense of a significant increase in computational  
 
Table 7. Calculating error norms of CN at different time step size for unknown ( ),u s t . 

Error estimation at grid size = 100 

k L2 L∞ RMS 

0.1 6.3692e−2 9.3550e−3 2.2067e−2 

0.5 4.3210e−3 6.6382e−3 3.9477e−3 

0.05 3.1400e−3 4.9956e−4 2.9033e−3 

0.005 2.6369e−3 1.2032e−4 1.0386e−3 

0.0005 5.9426e−4 2.4330e−5 4.0217e−4 

 
Table 8. Calculating error norms of 4th order implicit scheme at different space step size 
for unknown ( ),u s t . 

Error estimation at 50 partition size and time = 0.1 

h L2-4th Order L∞-4th Order RMS-4th Order 

0.1 7.7141e−3 5.0023e−4 7.3214e−3 

0.09 4.0391e−3 1.5259e−3 3.0391e−3 

0.06 2.3321e−3 2.6234e−4 1.3781e−3 

0.001 6.0121e−4 3.3210e−5 5.3312e−4 
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Figure 1. Exact and approximate results of second order CN scheme at 50 partition size and k = 
0.01. 

 

 
Figure 2. Exact and approximate results of second order CN scheme at 75 partition size and 
time = 1. 
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Figure 3. Exact and approximate results of fourth order implicit scheme at 100 partition size, 
time = 1 and h = 0.04. 

 

 
Figure 4. Exact and approximate results of fourth order implicit scheme at 75 partition size, 
time = 0.1 and h = 0.06. 
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Figure 5. Exact and approximate results of second order CN scheme at 50 partition size 
and k = 0.0001. 

 

 
Figure 6. Comparison of fourth order and second order implicit schemes at 100 partition size and k = 0.0001. 
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cost while dealing with CN. As a result, for the one-dimensional nonlinear con-
vection-diffusion-reaction equation, the fourth order implicit method provides 
better approximate results since it achieves higher accuracy while converging 
quickly and requiring less computational complexity. 

6. Conclusion 

Two distinct numerical methods are compared for solving partial differential 
equations with nonlinear reaction, convection, and diffusion terms: a Crank-Ni- 
colson second order and a fourth order implicit finite-difference scheme. A tho-
rough examination of the theoretical formulations of the suggested schemes was 
conducted. The effectiveness, accuracy, and stability of the two schemes are 
demonstrated by a compelling example. We have demonstrated that, even though 
the Crack-Nicolson method assures the existence of a solution for any step size, 
this technique is less precise. The accuracy study of the schemes has revealed 
that the application of high-order implicit algorithm yields substantially better 
results to those obtained using the traditional Crank-Nicolson approach. The er-
ror norms converged to zero when the partition size was increased, or the step 
size was decreased. Similar mathematical problems in biological, physical sciences, 
and technology might be addressed with the proposed scheme. This study may 
be further refined by comparing the efficiency and accuracy of currently utilized 
schemes with the finite volume schemes to determine the most appropriate scheme 
for the CDR equation. 
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