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Abstract 
In this paper, a two-dimensional nonlinear coupled Gray Scott system is si-
mulated with a finite difference scheme and a finite volume technique. Pre 
and post-processing lead to a new solution called GSmFoam by understand-
ing geometry settings and mesh information. The concentration profile changes 
over time, as does the intensity of the contour patterns. The OpenFoam solv-
er gives you the confidence to compare the pattern result with efficient nu-
merical algorithms on the Gray Scott model. 
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1. Introduction 

Chemical physics typically uses reaction-diffusion equations to explain temper-
ature and concentration distributions with some pattern formulations [1]. The 
diffusion term describes the rate of heat and mass transport, while the reaction 
term describes the rate of heat and mass creation [1] [2]. Nonlinear concepts are 
frequently referred to as mass action laws because of their broad application [1] 
[2]. Similar models can also be employed in other applications where transport 
phenomena are determined by a random movement and where production or 
consumption conditions should be taken into consideration [1] [2] [3]. A system 
of reacting chemicals serves as a classic illustration [3] [4]. Population dynamics 
uses diffusion and reaction terms to characterize the density of a population. 
Diffusion describes the random movement of individuals, while reaction de-
scribes the reproduction of those individuals. The kind of reactions used may be 
different depending on the research. For a long time, they were thought of as a 
result of reacting components or interacting populations, according to Gray 
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Scott [3] [4] [5] [6]. There are still some applications today that use the mass- 
action law, although more intricate functional forms like the Monod functional 
response in biochemistry or the Holling types II and III in population dynamics 
are frequently considered more realistic alternatives. It is common for reaction- 
diffusion systems to have equilibrium conditions where the reaction terms va-
nish. If there are multiple such equilibrium points, then a transition between 
them is likely to occur. Reaction-diffusion waves are responsible for these transi-
tions between states. Examples of such occurrences include the spread of flames, 
the migration of biological species, and the growth of tumours.  

A survey of reaction-diffusion wave applications in biology will be presented 
here [3] [4] [5] [6]. We shall begin with a brief introduction to the mathemati-
cal theory of reaction-diffusion patterns. Algorithms using nonlinear reaction- 
diffusion (NRD) equations are addressed in depth by Alan Turing in 1952, 
where linear stability and pattern creation are critical in biochemistry. Alan 
Turing suggested that a chemical be diffused at a uniform initial condition, and 
the reaction that results is monitored and explained to explain biological growth 
patterns. There are a lot of easy-to-study response diffusion systems out there. 
However, the mathematical modelling that goes along with these models is no-
toriously difficult to understand. In a liquid medium, reaction-diffusion creates 
spatial patterns that arise and dissipate quickly. To solve this challenge, a viscous 
permeable support liquid medium, such as gels, is utilized to slow the formation 
of patterns, which is essential for vision. The structure would arise if a chemical 
system in a stable state were disturbed. These pattern-forming systems are inter-
esting because they remain out of steady-state over lengthy periods of time, 
which is a feature of biological systems [3] [4] [5] [6]. Systems for analyzing 
reaction-diffusion measure the impact of chemical reactions distributed over 
space.  

In well-stirred environments, such changes produce non-spatial periodic os-
cillations. Transport phenomena like diffusion, which spread these oscillations 
across space, make them significantly more fascinating [6] [7] [8]. Structure de-
velopment in the activator-inhibitor Gierer-Meinhardt model is thought to need 
the interaction of these antagonistic feedback processes (the synthesis of new 
molecules and their dispersion) [8] [9] [10]. Filip Buric [7] investigated the pat-
terns generation in different species at different parameters in term of behavior 
which emerges population composition and formation of their structure [10] 
[11] [12]. M. Cronhjart observed replicators possess continuous variability but 
behave as small molecules emphasis being placed on their interactions which are 
explained in such that the Gray Scott model and its extensions presented here 
specify a limited availability of substrate used in replication and therefore intro-
duce competition between species in fuel consumption but unlike completely 
generalized models elaborated by H. Takagi [11] [12] [13] [14] [15]. Also, H. 
Takagi explained spots patterns in a reaction diffusion system with many chem-
icals. Jeff S McGough invested cubic auto-catalytic reactions while studying Gray 
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Scott model. Numerically Gray Scott system is solved by Ascher in 1995 by using 
implicit explicit numerical technique [16] while W. Chen investigated numerical 
behavior of nonlinear convection diffusion equation by multistep finite element 
methods in 2001 [15] [16] [17] [18] [19]. Also, Kai Zhang investigation to solve 
such a complex pattern-oriented system by using second order implicit explicit 
schemes on Gray Scott model reported in 2008 [15] [16] [17] [18] [19]. Seyed Ali 
Madani studied the significant effects on two dimensional pattern formations of 
chemical reactions concerned with diffusion of species like Gray Scott model by 
using the explicit finite difference method in 2014 [15] [16] [17] [18] [19].  

Dejene Gizaw used FEM to Gray Scott reaction diffusion problem by apply-
ing FEniCs Software in 2016 [20] [21] [22] [23]. S. Hasnain and Muhammad 
Saqib studied the reaction diffusion phenomena in three dimension in order to 
apply implicit finite difference higher order scheme in 2017. While high effi-
ciency techniques to solve convection diffusion problems is observed in the ar-
ticle by S. Hasnain and Muhammad Saqib. Also, S. Hasnain and Muhammad 
Saqib explained three dimensional coupled nonlinear reaction diffusion system 
by compact schemes to get high efficiency of the numerical algorithms which 
constitute the experimental and simulation oriented study of Gray Scott model 
[22]-[27]. 

2. Gray Scott Model Governing Equations 

The Gray Scott model is a two dimensional model of diffusion reaction that can 
produce interesting patterns. Two species iξ  and jξ  interact in the following 
ways:  

2 3i j jξ ξ ξ+ →  

and 

iξΦ → →Φ . 

While jξ  can only be produced by the above reactions involving two values 
of jξ  and one iξ , jξ  decays on its own with a rate ( )f g+  larger than the 
one controlling the decay of iξ .  

jξ →Φ . 

Introduction leads us to study Gray Scott model by simulations oriented en-
vironment attached with simple geometry and meshing. Let us consider the ma-
thematical equation oriented Gray Scott model,  

( )
2 2

2
2 2 1 ,

i
i i i

i j it x yξ
ξ ξ ξ

ξ ξ χ ξ
 ∂ ∂ ∂

= + − + − 
∂ ∂ ∂ 

                (1) 

( )
2 2

2
02 2 ,

j

j j j
i j jt x yξ

ξ ξ ξ
ξ ξ ξ χ

 ∂ ∂ ∂
= + + + +  ∂ ∂ ∂ 
                (2) 

Where,  
• 

iξ
  diffusion coefficient for first specie.  
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• 
jξ

  diffusion coefficient for second specie.  

• The first term 
2 2

2 2i
i i

x yξ
ξ ξ ∂ ∂
+ 

∂ ∂ 
 , we called as diffusive term which is  

concentration coefficient (to be constant). Such term shows that first con-
centration increase in proportion to operator, we say Laplacian (multidimen-
sional, second order derivative explains variation in the gradient). If the 
quantity of species is higher in neighboring vicinity, the value of iξ  will in-
crease which constitutes diffusion system known as heat equation [9] [13] 
[19] [23] [24] [28].  

• The second term represents nonlinear reaction rate which is 2
i jξ ξ− . As there 

is no constant involved in reaction term but strength of the reaction can be 
adjustified by concentration constants.  

• The third term is ( )1 iχ ξ− , known as replenishment term, completely uses 
of iξ  give rise to generation of jξ  such that all the chemical utilize even-
tually to replenish it. The third term in Equation (2) shows that iξ  will be 
increased by the rate proportional to the difference between its initial level 
and 1. If no term make interference between two concentrations, 1 will be the 
highest value for the iξ  [9] [13] [19] [23] [24] [28].  

•   represents the rate of conversion of jξ  to new.  
• 0χ  represents the feeds rate.  

3. Numerical Methods  

Next, we will go over numerical solutions for the two-dimensional non-linear 
coupled Gray Scott problem using finite difference approximation. To demon-
strate the difference and similarity between the finite difference approximation 
and the finite volume method (FVM), and to compare the outcomes of the two 
methods, the coupled system approximation uses finite difference and finite 
volume. To begin, the domain must be discretized (split) into equal pieces or 
control volumes (it is not necessary for the length of each segment to be 
equal, but for simplicity, we use equal segments). Consider a finite domain 

( ){ }, | ,x y a x b c y dω = < < < <  with step sizes in x-direction  
( ) ( )1xh b a N= − −  and y-direction ( ) 1yh d c M= − −  respectively. Also 

( ),i jx y , are grid points or Cartesian mesh in x & y directions for which 
1,2, , 1i N= −  and 1,2, , 1j M= −  represent the interior nodes or interior 

points of mesh. We assume final ft T=  which discretized into finite steps in time 
t [19] [23] [24] [28] [29] [30]. Methods are categorized into two parts:  
• Implicit Finite Difference coupled with ADI scheme.  
• Replace iξ ξ→  and jξ η→ .  
• Fully Implicit Finite Volume scheme.  
• Replace iξ φ→  and jξ ϕ→ .  

3.1. Scheme 01 

Scheme procedure can be as follows: 
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Interior Boundary Points: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,: ,: 1,:

:, 1 :, :, 1

xx i i i

yy j j j

ξ γξ ξ γξ

ξ γξ ξ γξ
− +

− +

′′ ′′ ′′= + +

′′ ′′ ′′= + +
                 (3) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,: ,: 1,:

:, 1 :, :, 1

xx i i i

yy j j j

η γη η γη

η γη η γη
− +

− +

′′ ′′ ′′= + +

′′ ′′ ′′= + +
                 (4) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

0 1
2,: ,: 2,: 1,: ,: 1,:2 2

0 1
:, 2 :, :, 2 :, 1 :, :, 12 2

2 2
4

2 2
4

xx i i i i i i

yy j j j j j j

a a
h h
a a
h h

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

+ − + −

+ − + −

= − + + − +

= − + + − +
     (5) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

0 1
2,: ,: 2,: 1,: ,: 1,:2 2

0 1
:, 2 :, :, 2 :, 1 :, :, 12 2

2 2
4

2 2
4

xx i i i i i i

yy j j j j j j

a a
h h
a a
h h

η η η η η η η

η η η η η η η

+ − + −

+ − + −

= − + + − +

= − + + − +
     (6) 

• Such scheme constitutes tridiagonal structure with ( )1
4 1
3

a γ= −  and 

( )0
1 1 10
3

a γ= − + . 

• For 0γ = , scheme can be recognized as fourth order.  
1st Point at Left Boundary: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

,: :,
1,: 2,: :,1 :,22 2

,: :,
1,: 2,: :,1 :,22 2

,

,

I II I

I II I

c c

h h
c c

h h

ξ ξ
ξ γξ ξ γξ

η η
η γη η γη

′′ ′′ ′′ ′′+ = + =

′′ ′′ ′′ ′′+ = + =

 where 1, .7I =  .    (7) 

For 0γ = , the linear system in constant c’s can be written as:  

• 1 2 3 4 5 6 7
2077 2943 573 167 18 57 131, , , , , ,
157 110 44 99 11 110 1980

c c c c c c c− − −
= = = = = = =   

2nd Point at Right Boundar: 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

:, :,
1,: 2,: 3,: :,1 :,2 :,32 2

:, :,
1,: 2,: 3,: :,1 :,2 :,32 2

, ,

, ,

I II I

I II I

c c

h h
c c

h h

ξ ξ
γξ ξ γξ γξ ξ γξ

η η
γη η γη γη η γη

′′ ′′ ′′ ′′ ′′ ′′+ + = + + =

′′ ′′ ′′ ′′ ′′ ′′+ + = + + =

 where 1, .7I =  . 

(8) 

For 0γ = , the linear system in constant c’s can be written as:  

• 1 2 3 4 5 6 7
585 141 459 9 81 3 3, , , , , ,
512 64 512 32 512 64 512

c c c c c c c− − −
= = = = = = =   

Top Left Point at Boundary: 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

,: :,
2,: 1,: ,: :, 2 :, 1 :,2 2

,: :,
2,: 1,: ,: :, 2 :, 1 :,2 2

, ,

, ,

I IN I N I
N N N N N N

I IN I N I
N N N N N N

c c

h h
c c

h h

ξ ξ
γξ ξ γξ γξ ξ γξ

η η
γη η γη γη η γη

− −
− − − −

− −
− − − −

′′ ′′ ′′ ′′ ′′ ′′+ + = + + =

′′ ′′ ′′ ′′ ′′ ′′+ + = + + =

  (9) 

For 0γ = , the linear system in constant c’s can be written as:  
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• 1 2 3 4 5 6 7
585 141 459 9 81 3 3, , , , , ,
512 64 512 32 512 64 512

c c c c c c c− − −
= = = = = = =   

Top Right Point at Boundary: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1 ,: :, 1
1,: ,: :, 1 :,2 2

1 ,: :, 1
1,: ,: :, 1 :,2 2

,

,

I IN I N I
N N N N

I IN I N I
N N N N

c c

h h
c c

h h

ξ ξ
γξ ξ γξ ξ

η η
γη η γη η

+ − + −
− −

+ − + −
− −

′′ ′′ ′′ ′′+ = + =

′′ ′′ ′′ ′′+ = + =

 where 1, .7I =  . (10) 

For 0γ = , the linear system in constant c’s can be written as:  

• 1 2 3 4 5 6 7
2077 2943 573 167 18 57 131, , , , , ,
157 110 44 99 11 110 1980

c c c c c c c− − −
= = = = = = =   

ADI Algorithm Setting: 
Combining Equations (3)-(10) according to the following procedure,  

( ) ( ) ( )

( ) ( ) ( )

1
, ,2

1
, ,2

1 ,

1 ,

xx j j

xx j j

C D
x

C D
x

ξ ξ

η η

−

−

= ∆ 

=
∆ 

                    (11) 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( )
1

, , ,2

, ,

1 1
, , ,2

1 1 ,
2 2

where ,
1 1 ,
2 2

n n
x j j yy j

n n
i j i j

n
x i i xx i

tI C D t F
x

F F
tI A B t F

x

ξ ξ ξ

ξ η

ξ ξ ξ

−

− +

 ∆    − = + ∆ +   ∆   =
  ∆   − = + ∆ +   ∆   



 

 

(12) 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( )
1

, , ,2

, ,

1 1
, , ,2

1 1 ,
2 2

where ,
1 1 ,
2 2

n n
x j j yy j

n n
i j i j

n
x i i xx i

tI C D t G
x

G G
tI A B t G

x

η η η

ξ η

η η η

−

− +

 ∆    − = + ∆ +   ∆   =
  ∆   − = + ∆ +   ∆   



 

 

(13) 

where F and G are nonlinear terms in Equations (11)-(13). Also, the matrices A, 
B, C and D are (N × N) sparse with triangular nature. 

3.2. Scheme 02 

It is possible to separate the scheme implementation process into two compo-
nents, as follows:  

1) Steady state two dimensional system with source.  
2) Transient two dimensional system with source.  

3.2.1. Algorithm Strategy for Steady Phenomena 
• Divide the domain into the finite sized subdomains (finite control volumes) 

and each subdomain is represented by a finite number of grid points (like 
Nodes).  

• Integrate the governing differential equation (GDE) over each subdomain.  
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• Consider a profile assumption for the dependent variable (like, interpolation 
function) to evaluate the above integral which expresses the result as an alge-
braic quantity at the grid points.  

( ) ( )d d d d d d 0xx yyV V V
x y x y Source x yξξ ξ⋅ + ⋅ + ⋅ =∫ ∫ ∫           (14) 

( ) ( )d d d d d d 0xx yyV V V
x y x y Source x yηη η⋅ + ⋅ + ⋅ =∫ ∫ ∫           (15) 

( ) ( ) ( ) ( ) 0,w n sx x y ye w n s
e A A A S Vξ ξ ξ ξ       − + − + ∆ =                (16) 

( ) ( ) ( ) ( ) 0,w n sx x y ye w n s
e A A A S Vη η η η       − + − + ∆ =                (17) 

Using the assumptions, 

( )

( )

,

,

w P W

WP

w P W

WP

A
West Face Flux

A
West Face Flux

φ

ϕ

φ φ
δ

ϕ ϕ
δ

−
=

−
=

                 (18) 

( )

( )

,

,

e E P

PE

e E P

PE

A
East Face Flux

A
East Face Flux

φ

ϕ

φ φ
δ
ϕ ϕ
δ

−
=

−
=

                  (19) 

( )

( )

,

,

s P S

SP

s P S

SP

A
South Face Flux

A
South Face Flux

φ

ϕ

φ φ
δ

ϕ ϕ
δ

−
=

−
=

                 (20) 

( )

( )

,

.

n N P

PN

n N P

PN

A
North Face Flux

A
North Face Flux

φ

ϕ

φ φ
δ

ϕ ϕ
δ

−
=

−
=

                 (21) 

Combining Equations (14)-(21) to get the following system,  

w e s n w e s n
P P W E S N u

WP PE SP PN WP PE SP PN

A A A A A A A A
S Sφ φ φ φ φ

δ δ δ δ δ δ δ δ
 

+ + + − = + + + + 
 

 (22) 

w e s n w e s n
P P W E S N u

WP PE SP PN WP PE SP PN

A A A A A A A A
S Sϕ ϕ ϕ ϕ ϕ

δ δ δ δ δ δ δ δ
 

+ + + − = + + + + 
 

 (23) 

In a two-dimensional case, the face areas are assumed to be constant and 
are treated as 1A = . The distribution of the φ  & ϕ  in a particular two- 
dimensional scenario is obtained by formulating discretized equations at each 
grid node of the subdivided domain. To account for boundary conditions, 
discretized equations must be changed where flux information is available. The 
boundary-side coefficient is set to zero, and any flux crossing the boundary 
is added as a new source to any existing uS  and pS  components. The result-
ing equations are then solved to obtain the φ  & ϕ  two-dimensional distribu-
tion.  
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3.2.2. Algorithm Strategy for Transient Phenomena 
To determine the right-hand side of the aforementioned Equation (22) and Equ-
ation (23), we must make an assumption regarding the change in Pφ  & Pϕ , 

Eφ  & Eϕ  and Wφ  & Wϕ  with time. When calculating the time integral, we 
can utilize the values from the previous step as well as the values from the cur-
rent step plus the values from the step plus the step after that. The approach can 
be generalized by using a weighting value between 0 and 1 and writing the 
integral in the following way:  

d
t t

Pt
tφ φ

+∆
= ∫                            (24) 

( ) 01 dP P tφ θφ θ φ = + −                         (25) 

( ) 01 dP P tϕ θϕ θ ϕ = + −                         (26) 

For example, if θ  is equal to 0, then scheme is explicit while θ  is equal to 1, 
scheme is fully implicit [17] [23] [26] [31] [32]. 

4. Test Problems 

We can organize the problem into two parts one dimensional coupled nonlinear 
system and two dimensional. To demonstrate the effectiveness of the approaches 
described, we numerically solved the following example. 

4.1. One Dimensional Coupled Problem 

( )
( )

2

2

1 , 0 &
where

, , 0 &
t

t

t x
t x

φ
φ ϕ

ϕ

φ φ φϕ χ φ ω
ϕ ϕ φϕ ϕ χ ω

= ∆ − + − > ∈  == ∆ + + + > ∈ 


 

 
       (27) 

with initial and boundary conditions,  

( )

( )

( ) ( )
( ) ( )

,0 0.01sin , 0

,0 0.12sin , 0

0, , , , 0,

0, , , , 0,

0, 1,

0.09 &

Steady State

Steady State

Steady State Steady State

Steady State Steady State

Steady State Steady State

xx x L
L

xx x L
L

t L t t

t L t t

φ φ

ϕ ϕ

φ φ φ φ

ϕ ϕ ϕ ϕ

φ ϕ

χ

= + ≤ ≤

= − ≤ ≤

= = >

= = >

=

π 
 
 

π 
 
 

=

= = −

where 0.01,

0.004.

φ ϕ







 = =







     (28) 

4.2. Two Dimensional Coupled Problem 

Two dimensional coupled non-linear Gray Scott model system can be written as:  

( ) ( )
( ) ( )

2

2

1 , 0 & ,

, 0 & ,
where 1,

0, 1,

1 & 0.

t

t

Steady State Steady State

t x y

t x y

φ

ϕ
φ ϕ

φ φ φϕ χ φ ω

ϕ ϕ φϕ ϕ χ ω

φ ϕ

χ

= ∆ − + − > ∈

= ∆ + + + > ∈  = =

= = 


= = 



 
 



   (29) 

https://doi.org/10.4236/ajcm.2021.114018


A. A. A. Amin, D. S. Mashat 
 

 

DOI: 10.4236/ajcm.2021.114018 281 American Journal of Computational Mathematics 
 

4.3. Simulation Setup 

The one of the main purposes of this research study is to get good understand-
ings of the simulation of the reaction diffusion model like Gray Scott system in-
cluding geometry construction, related mesh, boundary and initial conditions, 
convergence criterion to solver selection, pre & post processing. Cases are settled 
under block meshes for pre processing with some control parameters as setup 
simulations in Open Foam (OpenFOAM solvers). Post processing is viewed by 
using ParaView which is embedded in OpenFoam software [20] [27] [30] [31] 
[32]. 

4.4. Geometry  

The geometry consists of the square block with all the boundaries of the square 
are walls & stationary. Initially, the concentration will be assumed stationary and 
will be solved on a uniform mesh using the GSmFoam which is designed to solve 
nonlinear reaction diffusion system oriented problems. The effect of increased 
mesh resolution and mesh grading at the center of the walls will be investigated. 
Convert the units to meters as along eight vertices (0 0 0), (1 0 0), (1 1 0), (0 1 0), 
(0 0 0.1), (1 0 0.1), (1 1 0.1) & (0 1 0.1) with blocks and edges. Boundaries are as 
top, bottom, left & right with type cyclic while front & back as empty due to two 
dimensional case. Faces are along (3 7 6 2) as top, (0 4 7 3) bottom, (1 5 4 0) left, 
(2 6 5 1) right, (0 3 2 1) front and (4 5 6 7) back [20] [27] [30] [31] [32].  

4.5. Mesh  

A system in three dimensional cartesian coordinate form can easily solved by the 
use of OpenFoam solver with all type of geometries as a default parameters  
 

 
Figure 1. Block type geometry for GS model in two dimensions. 
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selection. It can be instructed to solve in two dimensions by specifying a special 
empty boundary condition on boundaries normal to the (3rd) dimension for 
which no solution is required. Such domain consists of a square of side length 

0.1 md =  in the xy plane. A uniform mesh of 200 by 200 cells will be used in-
itially. The mesh generator supplied with OpenFOAM (blockMesh) generates 
meshes from a description specified in an input dictionary located in the system 
directory for a given case. For the sake of clarity, the file first specifies coordi-
nates of the block vertices. The mesh is generated by running blockMesh on this 
blockMeshDict file by simplifying in terminal writing blockMesh (Figure 1). 
The running status of blockMesh is reported in the terminal window. Any mis-
takes in the blockMeshDict file are picked up by blockMesh and the resulting 
error message directs the user to the line in the file where the problem occurred 
[27] [30] [33] [34]. 

4.6. Boundary and Initial Conditions 

The case is set up for geometry with mesh generation is completed in which ini-
tial fields are designed in 0 folder. Such case is set up to start at time 0 st =  
which contains two sub files named as iξ  and jξ  whose initial and boundary 
conditions must be specified by considering dimensions [ ]0 0 0 0 0 0 0  
with internal field uniform along top, bottom, left & right boundaries with type 
as cyclic (pattern formations). Also consider front & back boundaries type as 
empty because of two dimensional coupled system for both components iξ  
and jξ . Selection to boundary conditions are under three principals as internal 
field is the data which can be uniformly described by a single cell (or at point) or 
nonuniform for all the other points of the field specified [27] [30] [33] [34]. 
Boundary conditions are stored in boundary field file which includes data for all 
the boundary patches which consist of walls. Zero gradient boundary conditions 
for both components iξ  and jξ  are observed due to normal gradient of the 
concentration which is zero. Front & back walls are considered empty due to 
two dimensional case with initial fields being uniform. No slip boundary con-
ditions on fixed stationary walls of the two dimensional case is set up [27] [30] 
[33] [34]. 

4.7. Space Time Discretisation & Solver Selection  

We applied finite volume discretisation schemes in the fv (finite volume) 
Schemes dictionary in the system directory. The specification of the linear equa-
tion solvers, tolerances and other algorithm controls is made in the fv (finite vo-
lume) Solution dictionary. 

4.8. Numerical Schemes  

The finite volume schemes (fvSchemes) dictionary in the system directory sets 
the numerical schemes for terms such as derivatives in equations that appear in 
applications being run. As standard Gaussian finite volume integration is se-
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lected which is the general choice for every user in OpenFoam. Gaussian inte-
gration is based on summing values on cell faces which must be interpolated 
from cell centers. Diffusion term can be solved under Laplacian schemes ( 2∆ )  

while time 
t
∂
∂

 is discretized under time oriented scheme known as Euler  

scheme which is a default choice along with Gauss linear for ( ),div Uξ  [27] 
[30] [33] [34] [35]. 

5. Results 

Numerical computations have been performed using the uniform grid. For solving 
problem 01, we set some parameters which can be seen from data in Tables 1-3 
by using implicit schemes. Figures 2-5 give results for component iξ  at dif-
ferent time levels which show pattern formulation for the initial level to the final 
level. Such results indicate for judgement of pattern, the time scale must be larg-
er enough to see in a clear glance. While Figures 6-9 indicate the different set-
tings of parameters that output in different patterns.  
 
Table 1. Shows test problem 01 at time 100finalT =  at different locations. Components 

are iξ  and jξ . 

We set error tolerance due to initial and boundary conditions are  
mentioned in scheme 01 

Locations iξ  jξ  TolError  

(0.1, 0.1) 0.0073 0.00031 1e−7 
(0.5, 0.5) 0.00727 0.000316 e−7 
(1.5, 1.2) 0.0041 0.00019 e−7 
(2, 1.5) 0.0341 0.0027 e−7 

 
Table 2. Shows test problem 01 at time 1000finalT =  for components are iξ  and jξ  

for different grid sizes and error during calculations. 

Maximum error linked with space step sizes at final time 1000s keeping x y t∆ = ∆ = ∆  

Space Step Sizes 1Error  2
1Error x∆  4

1Error x∆  
0.25 1.322e−6 2.115e−5 1.579e−5 
0.20 8.088e−7 2.022e−5 1.492e−5 
0.10 1.736e−7 1.736e−5 1.389e−5 

0.0625 6.265e−7 1.604e−5 1.375e−5 
 
Table 3. Shows test problem 01 at different time finalT  for components are iξ  and jξ  

for different grids and CPU usage. 

lightgray Variation of grid and usage of CPU. 

Grid finalTime  UseCPU  1

2

Error
Error

 

10 × 10 100 13% 0.01 
100 × 100 1000 19% 0.02 
200 × 200 2000 21% 0.001 
300 × 300 10,000 27% 0.001 
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Figure 2. Shows test problem 02 at time 100finalT = , 0.022ξ =  and 

0.051K = . 
 

 
Figure 3. Shows test problem 02 at time 500finalT = , 0.022ξ =  and 

0.051K = . 
 

 
Figure 4. Shows test problem 02 at time 1000finalT = , 0.022ξ =  and 0.051K = . 
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Figure 5. Shows test problem 02 at time 10000finalT = , 0.022ξ =  and 0.051K = . 

 

 
Figure 6. Shows test problem 02 at time 100finalT = , 0.01ξ =  and 0.041K = . 

 

 
Figure 7. Shows test problem 02 at time 1000finalT = , 0.01ξ =  and 0.041K = . 
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Figure 8. Shows test problem 02 for component η  at time 1000finalT = , 0.01ξ =  and 

0.45K = . 
 

 
Figure 9. Shows test problem 02 for component η  at time 10000finalT = , 0.01ξ =  

and 0.45K = . 
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