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Abstract 
The unsolved number theory problem known as the 3x + 1 problem involves 
sequences of positive integers generated more or less at random that seem to 
always converge to 1. Here the connection between the first integer (n) and 
the last (m) of a 3x + 1 sequence is analyzed by means of characteristic ze-
ro-one strings. This method is used to achieve some progress on the 3x + 1 
problem. In particular, the long-standing conjecture that nontrivial cycles do 
not exist is virtually proved using probability theory. 
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1. Introduction 

Everett [1] (Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n 
+ 2) introduced the concept of parity vectors to obtain early results concerning 
the 3x + 1 problem. A different aspect of that approach is to focus mainly on the 
elements of such vectors (zeros and ones) and to index them differently. The 3x 
+ 1 problem involves using the following number theory algorithm: starting with 
any positive integer n, if n is even divided by 2, or if n is odd multiply by 3, add 
1, then divided by 2. This generates the Collatz sequence { }1 2, ,n n n=   (named 
after Lothar Collatz who introduced the problem). Experimentation suggests 
that such sequences always end in the trivial cycle {1, 2, 1, 2, …}. The 3x + 1 
problem is to prove this for all Collatz sequences C(n). Alternatively, one must 
prove that every Collatz sequence Ck(n) of finite length k converges to 1 for all 
positive integers n, k large enough. This has been numerically verified for all

58 1820 2 5.7646 10n n∗< = × = ×  (Lagarias [2]), and more recently to  
188.7 10n∗ = × . 
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A parity vector corresponding to a finite Collatz sequence is defined as 
( )1 2, , kx x x=v   where ( )mod 2i ix n= , 1 i k≤ ≤ . The characteristic zero-one 

string of Ck(n) is the set of zeros and ones in v, written as: 
0 1 1 2 20 1 0 1 0 1 0q qr ss r s r sL =  

where ri is the number of ones occurring in a group of consecutive ones in v, and 
si is the number of zeros in a following consecutive group of zeros, 0 ≤ i ≤ q. 
Here, ri ≥ 1 and si ≥ 1 for all i, except for s0 and sq which can individually be zero. 

For example, consider: 

( ) { }8 67 67,101,152,76,38,19,29,44C =  

Its parity vector is ( )1,1,0,0,0,1,1,0=v  and its characteristic zero-one string 
is 2 3 2 11 0 1 0l = . 

The total number of ones in a finite string will always be denoted r and the 
total number of zeros by s. Thus, in general: 

1 2 qr r rr + + +=   and 0 1 qs s ss + + +=   

The length of a string is denoted l(L) = r + s = k, and its norm by 
3
2

r

kL = . If  

L is the characteristic string of Ck(n), n = n1 is called a generator of L, nk a 
pre-resultant, and nk+1 a resultant. If n is a generator of L and m a resultant, this 
relationship will be denoted nLm. A cycle, if it exists, will be denoted nLn (where 
L is an appropriate finite string). At first we consider only finite strings (corres-
ponding to finite Collatz sequences). 

At this point, it is clear that each positive integer is a generator of a string, but 
not so clear that a given (finite) string will have a generator. Note that a string 
can have more than one generator; for example, the string 110113 is generated by 

( ) { }5 9 9,14,7,11,17C =  and ( ) { }5 41 41,62,31,47,71C = . 
Much work has been done on what is called the stopping time function, σ(n) 

(see Terras [3]). This function is defined to be the least positive integer k such 
that nk < n, or = ∞ otherwise. Terras proved that almost all integers have a finite 
stopping time; that is, ( ){ }lim # 1n n nσ→∞ < ∞ = . 

It is useful to represent the 3x + 1 problem graphically. Figure 1 shows the 
graph of the Collatz sequence C(11), while Figure 2 illustrates such a convergent 
sequence with a large generator: C20(11, 111). 

2. Existence of Generators 

The existence of a generator for a given zero-one string depends on the follow-
ing result. 

Theorem A: suppose that n is the smallest generator of a string L of length k 
with r odd members, and it is required to find the generator n’ for the string Lx 
of length k + 1, where x = either 0 or 1. If the resultant of L matches x (that is, 
T(k)(n) (mod 2) = x), then n’ = n is the solution. But if T(k)(n) and x are mis-
matched (that is, T(k)(n)(mod 2) ≠ x), then n’ = n + 2k is the solution. Further-
more, if m = T(k)(n) is the resultant of L, then m' = m + 3r is the pre-resultant of 
Lx. 
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Figure 1. Collatz graph for C(11). 
 

 
Figure 2. Graph of C20(11,111). 

 
Proof: We need only prove this when the first mismatch occurs at nk. Consid-

er ( ) ( )2i kT n + , i ≥ 1. By induction: 
( ) ( ) ( ) ( )1 1 1

12 2k kT n T n u −= ++  

where 1u  is either 1 or 3 according as n is even or odd: 
( ) ( ) ( ) ( )2 2 2

1 22 2k kT n T n u u −= ++  
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where 2u  is either 1 or 3 according as ( ) ( )1T n  is even or odd, 
… 

( ) ( ) ( ) ( ) 1 22k kk
kT n T n u u u= ++   

where ku  is either 1 or 3 according as ( ) ( )1kT n−  is even odd. 
But 1 2 3k

ru u u = , and ( ) ( )kT n m=  is the resultant of L, while: 
( ) ( )2 3k k rT n m+ = +  is the pre-resultant of Lx. 
To apply Theorem A in a specific situation, suppose n is the smallest genera-

tor of L (length k) and the resultant of L is m = T(k)(n). Consider the string Lx. If 
the next member of the Collatz sequence T(m) matches x, then n is the generator 
of Lx. If not, then add 2k to n which (by Theorem A) will generate Lx with 
pre-resultant T(m) = m + 3r where r is the number of ones in L. 

An example will show how this procedure works. Suppose we want to find the 
smallest generator of L = 1013041 = 1011100001. Start with n = 1 (2 if the leading 
element of L is zero). Then: 

[9] L → 1     0     1     1     1     0     0     0     0     1 
[6] C(1) → 1   2     1     2 

+ 23             + 32 
[5] C(9) → 9            11    17    26    13 

+ 26                              + 34  
[4] C(73) → 73                          94    47 

+ 27                                   + 34 
[3] C(201) → 201                                      128 64 32 

+ 29                                          + 34 
[3] C(713) → 713                                           113 
Thus, 713 is the smallest generator of L, 113 is its pre-resultant, and (3 × 113 + 

1)/2 = 170 is its resultant. 
Corollary: every finite string has a generator. 

3. A Formula for the Resultant 

One starts with the special case L = 1r0s, with n a generator of L Induction on r, 
starting with s = 0, shows that: 

3 3 2
2

r r r

r s

nm +

+ −
=                        (3.1) 

which can be put in the form m = λn + d where λ = 3r/2r+s and 3 1 2
2

r
sd

  = −  
   

. 

In general, if: 

0 1 1 2 20 1 0 1 0 1 0q qr ss r s r sL =  

with Ck(n) the Collatz sequence corresponding to L, let mi be the member of the 
sequence that generates the substring of L beginning with 1 ir . Then for each i, 1 
≤ i ≤ q: 

( )1 1i i i im m d i qλ −= + ≤ ≤  
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where 0m n= , 3 2i i ir r
i

sλ += , and 3 1 2
2

i
i

r
s

id
  = −  
   

. Thus, performing the 

indicated substitutions, each mi can be determined, and it follows that: 

1 2 1 1 2 2 1 1 2 3 2 1q q q q q q q q q q q q qm n d d d dλ λ λ λ λ λ λ λ λ λ λ λ λ− − − − − − −= + + + + +     

Since mq is the resultant of the sequence corresponding to L and  

1 2 1q q q Lλ λ λ λ− − = , the final result is: 

( )3 1
2 2

1
i iu v

im L n i qd   
   
  

=


+ ≤ ≤∑                (3.2) 

where 1 2i i i qu r r r+ += + + +  and 1 2i i i qv s s s+ += + + +  ( 0q qu v= = ). This 
formula is a special case of a similar one obtained by Bohm and Sontacchi in 
1978. 

The validity of (3.2) can be checked, using the example in Section 1, where L = 
1013041 and it was determined that n = 713 and m = 170. In this case, q = 3, s0 = 
sq = 0. First, compute ui, vi, and di: for each i ≤ 3): 

1 4u = , 1 4v = , 2 1u = , 2 0v = , and 3 3 0u v= =  

1 1 4d = , 2 19 128d = , and 3 1 2d = . 

Then: 

( )

4 4 1 05

10

4 4 1

1

05

10 2 7

5 4 2 9

10

2 3
3 3 1 3 1

2 2 2 22
3 3 1 1 3 1 19 1

2 2 2 2 22 2 2
3 713 3 3 19 2 2

2
173259 81 228 512 174080 170

1024 1024

m d

n

d dn        +        
       
       +        
       

+ + × × +
=

= + +

= + +

+ + +
= = =

 

4. The Diophantine Equation 

The above Equation (3.2) is equivalent to: 

32 2rk km n Q= +  

where Q is the summation term in (3.2). Since both 2km and 3rn are positive in-
tegers, the term 2k Q N≡  is an integer and we obtain the well-known Diophan-
tine equation for the 3x + 1 problem: 

32k rm n N− =                        (4.1) 

where N is the product of 2k and the summation term in (3.2). Since 2k and 3r are 
relatively prime, (4.1) has infinitely many positive solutions of the form: 

0 2kn m t= + , 

( )0 , , 2,3 0 1rm n t t= + =   

where n0 and m0 are the smallest positive solutions of (4.1). Thus every zero-one 
string has infinitely many generators of the form listed above. 
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Moreover, by setting m = n, one obtains an explicit formula for the generator 
of a cycle: 

3 12
2 2
3 2

i iu v
k

i

r k

d
n

   
  

=


  
−

∑
                    (4.2) 

In general, the numbers in this equation are incredibly large, but if it could be 
shown that for n ≥ 3 a prime divisor of 3 2r k−  does not divide i iu v

ia b d∑  even-
ly, a proof that nontrivial cycles do not exist is obtained. Note that if n is a gene-
rator of 1010… 10 of length 2q then n = 1 and 3 2r k−  divides 

3 1
2 2

i iu v

id   
   
   

∑  evenly. 

5. Result of Terras and Everett 

Theorem A leads to a surprising relationship between all strings of length k and 
their least generators. It was discovered independently by Terras [3] and Everett 
[1] in their work on the 3x + 1 problem in 1977-78. There are clearly 2k possible 
zero-one strings of length k, so starting with the 4 strings of length 2, we can eas-
ily deduce their least generators (and resultants): 

4 (00) 1; 2 (01) 2; 1 (10) 1; 3 (11) 8 
Suppose the strings of length k are L1, L2, L3, …, Lp, p = 2k, and we seek the 

generators of the strings of length k + 1, which are of the form 0Li and 1Li, 1 ≤ i 
≤ 2k. Those with leading term zero in Li are obviously generated by the even in-
tegers 2, 4, 6, …, 2k+1. The remaining strings with leading term one must have 
odd generators. Half of them correspond to strings ending in zero, the other half 
to strings ending in one. 

Theorem B: The strings of length k + 1 are uniquely generated by the positive 
integers less than or equal to 2k+1. Accordingly, there is a one-to-one correspon-
dence between the strings of length k + 1 and their least generators. 

Proof: A careful analysis of the previous discussion reveals that all the integers 
from 1 to 2k+1 have been accounted for. 

Table 1 illustrates Theorem B, showing all the possible characteristic strings 
of lengths 3, 4 and 5 and the corresponding generators and resultants. At this 
point we use the notation nLm only when n is the unique least generator of the 
string L and m is its resultant. 

6. Inequalities 

Suppose nLm with L of length k, and 3 2r kL = . One obtains from (3.2): 

( )3 1
2 2

3 1 3 1 3 1
2 2 2 2 2 2

3 1 1 1 3
2 2 4

1

22

i i

i i i i

u v

i

u v r s r i

r r

q

m L n i q

L n L n

L n L n

d   
   
   

           
           
           

     + + +     
 

= + ≤ ≤

< + < +

< + < +
   

∑

∑ ∑


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Table 1. List of Generators for Strings of Lengths 3, 4, and 5 

L n m L n m L n m L n m 

000 8 1 0000 16 1 00000 32 1 10000 21 2 

001 4 2 0001 8 2 00001 16 2 10001 5 2 

010 2 1 0010 4 1 00010 8 1 10010 13 4 

011 6 8 0011 12 8 00011 24 8 10011 29 26 

100 5 2 0100 10 2 00100 20 2 10100 17 5 

101 1 2 0101 2 2 00101 4 2 10101 1 2 

110 3 4 0110 6 4 00110 12 4 10110 25 22 

111 7 26 0111 14 26 00111 28 26 10111 9 26 

   1000 5 1 01000 10 1 11000 3 1 

   1001 13 8 01001 26 8 11001 19 17 

   1010 1 1 01010 2 1 11010 11 10 

   1011 9 17 01011 18 17 11011 27 71 

   1100 3 2 01100 6 2 11100 23 20 

   1101 11 20 01101 22 20 11101 7 20 

   1110 7 13 01110 14 13 11110 15 40 

   1111 15 80 01111 30 80 11111 31 242 

 
Thus it follows that: 

3
2

r

L n m L n  
 


<


< +                     (6.1) 

Due to the term 
3
2

r
 
 
 

 one cannot conclude that m < n if 1L < . However  

this is true if L  is small enough, as one might expect. In fact, if L has as many 
zeros as ones, then m < n, as will be shown. A cyclic string with m = n must have 

1L < , due to (6.1). Thus 3r < 2k. Taking the logarithm to the base 2, we have: 

2log 3k r>                           (6.2) 

Define the constants 1 2 1.584l 9og 3 62501ω = ≈  and: 

0 2 0.5lo 84g 3 1 962501ω = − ≈ . Since k = r + s, we have for any string L such that 
1L < : 

0s rω>  and 1k rω>                      (6.3) 

7. The Ratio s/r and Finite Stopping Time for Certain Collatz  
Sequences 

The numerical order relationship between r and s sometimes determines wheth-
er the generator of a string has a finite stopping time. 

Theorem C: Suppose that s ≥ r in the Collatz sequence mLn where m ≥ 3. 
Then m < n and n has a finite stopping time. 
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Proof: Define the sequence {vi}, 1 ≤ i ≤ k, as follows: if ni is even, set vi = 1/2; if 
ni is odd, set vi = 2. Then for each i, if ni is even 1i i in v n+ = , and if ni is odd 

( )1 1 2 23i i i i in n n v n+ = + < = . It follows that: 

2 1 1n v n≤ , 3 2 2 2 1 1n v n v v n≤ ≤ , 4 3 3 3 2 1 1n v n v v v n≤ ≤ ,   

and: 

1 1 2 3 1
1 12 2
2 2

s s
r s

k km n v v v v n n n n+
   = ≤ =   
   

≤ <            

A more general result can be shown by substantially the same argument. 
Theorem D: suppose that nLm, m > 1, and for some positive integer p, s = r – 

p. Then if r ≥ 3p, n has a finite stopping time. The number 3 is the least integer 
possible. 

Proof: Set 632ε −= . Let Ck(n) be the Collatz sequence corresponding to the 
string L. If 1

in
ε

<  for at least one i, 1 ≤ i ≤ k, then 3 586 20 22in n∗< < × =  and 
n has a finite stopping time. Thus it may be assumed that 1

in
ε

>  for all i, or 1 
< εni. Thus: 

3 1 3 3
2 2 2
i i i

i
n n n

n
ε ε+ + +

< =  

Define vi as follows: If ni is even take vi = 1/2; if ni is odd, 3
2iv ε+

= . Then it 
follows that for 1 ≤ i ≤ k, 1i i in v n+ ≤ . Hence, as in Theorem C,  

1 1 2 1k kn v vm v n+= <   and we obtain: 

3 3

1 3 1 3 3
2 2 2 2 4

3 0.1 31
4 4

2 2
0

2
s r r p r r

p

rr
r

m n n n

n n n

ε ε ε−+ + +         < = =         
         

 +  
 


 ≤ = <  



   

          

Corollary: suppose that nLm, m > 1, and s/r ≥ 2/3. Then n has finite stopping 
time. 

Proof: If s ≥ r, then Theorem C applies and m < n. Otherwise, s < r and there 
exists a positive integer p such that s = r − p. By hypothesis: 

2
3

r p
r
−

≥  

21
3

p
r

− ≥  

from which it follows that r ≥ 3p. Therefore by Theorem D n has finite stopping 
time.  

It might be imagined that if a cycle exists the effect of the odd members in the 
cycle essentially cancels that of the even members, and s is roughly equal to r. As 
a matter of fact, the number of even members is about 63% the number of odd 
members: if Ck(n) is a nontrivial cycle, then 1L <  and 3 2r k< , which leads 
to 2 1log 3k r rω< =  where 1 2log 3 1.584962ω = =  . Also, the above corollary 
implies that s/r < 2/3, and k < 5/3. Thus: 
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1
5
3

k
r

ω < <  and 00.585 0 66
3

. 72s
r

ω ≈<≈ <             (7.1) 

Using a theorem of Crandall [4], Lagarias showed in [2] that a non1rivial 
cycle, if it exists, must have length at least k = 275,000. More recently a paper by 
Halbeisen and Hungerbühler [5] in 1997 showed that k > 102,225,496. The ar-
ticle by Eliahou [6] established k in terms of the minimum element of a cycle. 
Brox [7] showed that certain cycles occur only finitely many times. 

8. Another Formula for the Resultant 

Define: 

1
2i iv u= =  

if ni is even: 

3 1 11 1
2 3 3i i

i i

v u
n n

   
+ = +  

  
= 


 

if ni is odd: 
Then 1i i in u n+ =  if ni is even, and 1

3 1 11
2 3
i

i i i i i
i

n
n u n v n

n+

 
= =

 

+
= +  if ni is 

odd. Thus: 

1 2 3 kv v vm nv=   

The product of the factors ui is L  and the factor 1 1
3 in

+  appears only 
when ni is odd. Hence: 

1 1
3 j

m
n

L n
 

+  
 

= ∏                      (8.1) 

where the product is taken over all the odd members nj of the sequence, 1 ≤ j ≤ r. 
(If there are no odd members, then we interpret (8.1) as simply m L n= , 
which is trivially true). 

Solving for ||L|| in (6.1) produces an interesting formula for the norm: 

( )
1

1 1
3

1
j

L m n j r
n

−
  

= + ≤ ≤      
∏               (8.2) 

where the product is taken over all the odd members of the sequence. 
For a numerical test of (8.2), consider 7(1301110211)8. The odd members of the 

designated Collatz sequence are 7, 11, 17, 13, and 5. The expression inside the 
brackets in (8.2) equals: 

11

5

1 1 1 1 17 1 1 1 1 1
21 33 51 39 15
22 34 52 40 16 2 2 4 8 16 27
21 33 51 39 15 3 3 3 3 3 3

     + + + + +     
     

× × × ×
= × × × × × = =

× × × ×

 

from which it follows that 
5 5 5

11 11 8

3 3 38
2 2 2

m = ⋅ =⋅ , the correct value for L . 
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An inequality can be established using (6.1). Suppose that p is an upper bound 
for the odd members of the Collatz sequence nLm. That is, nj < p for all j. Then: 

( )1 1 1 11 1 1
3 3 3

r

j jn p
j r

n
     

+ > + = +          
≤

 
≤


∏ ∏  

and it follows from (6.1) that: 

( )1 rm L n q> +                         (8.3) 

where q = 1/3p, slightly stronger than (6.1). 

9. Relation between k and n* 

A formula for the product term in (8.1) will be obtained for all Collatz sequences 
that do not have a finite stopping time. Starting with (8.1): 

11
3 jn

L nm
 

= +  
 

∏ . 

which is equivalent to: 

2 13
k

j

m
n n

 
= +  

 
∏  

Let c be the product term in the previous equation, and consider the conti-
nuous function: 

( ) ( )3 rf x x= +  

for fixed r. Then: 

( )3 0rc f> = . 

Also, for Collatz sequences with no finite stopping time and having r odd 
members, nj (1 ≤ j ≤ r), we must have jn n∗≥  for all j, and thus: 

1 1 1 13 3 3
j

f
n n n n

c ∗ ∗ ∗

     + < + = + =       
=

   
∏ ∏  

Accordingly, there exists 0 1
n

ε ∗< <  such that ( )f cε = . Or: 

( )1 1 23 3 3 2
k

r k

j

m
n nn

ε∗

 
+ > + + == >  

 
∏  

and it follows that: 

12 3k
r

n∗+ <  
 

                         (9.1) 

10. The 3x + 1 Cycles Conjecture 

The result (8.1) with m = n yields the relation: 

13 2k

jn
 

+ =  
 

∏                       (10.1) 
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Since all the factors of the above product are fractional, it seems unlikely that 
the product is a power of 2. 

It was proved in the preceding section that the product term equals ( )3 rε+ . 
Then for nontrivial cycles one obtains: 

( )3 2r kε+ =  

It might be imagined that ( )3 rε+  is not an integer since ε  is a very small 
positive number, thus providing an immediate proof that cycles do not exist. But 
this is false in general, for the equation: 

( )3 2r ux+ =  

has a positive solution in x for certain values of u. Suppose u lies between 1rω  
and 2r. Then: 

( ) 13 2 3r r rx ω+ > =  

3 3x+ >  

0x >  

Also: 

( ) 23 2r rx+ <  

3 4x+ <  

1x <  

If u = k then one observes that the above condition for u is satisfied for a non-
trivial cycle and there is a solution for: 

( ) ( )3 2 0 1r kx x+ = < <  

For example: 

( )9 153.17480210389 2=  

The question is whether x ε= . In fact, the above analysis proves that ε  
must have the exact value: 

2 3k rε = −  

and it remains to obtain a contradiction. 
It is important in our analysis to show that ε  is irrational. Note that for a 

nontrivial cycle: 

3 2k rε+ =  

where 1 5 3k rω < < . Thus: 

2 5 3k rω < <  

so that (2k)1/r is not an integer. It is well known that, accordingly, (2k)1/r is irra-
tional, proving that 3 ε+  and ε  are irrational. 

11. Probabilistic Proof That Cycles Do Not Exist 

Consider the product: 
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( ) ( ) ( )13 3 3r rε ε ε−+ + = +  

(which equals 2k if a nontrivial cycle exists). The decimal form of the left side 
is: 

( )( )1 2 1 20. 3 0.0.a a a b b+ +   

where a is a large positive integer and the first 18 decimals of 1 20.b b   are zero. 
(It may be assumed that ( ) 13 rε −+  is irrational, for if not, then ( )3 rε+  is irra-
tional and ≠2k, ending the proof). Multiplying out, one obtains: 

( ) ( ) ( )1 2 1 2 1 23 3 0. 0.0. 0.a a a a b b c c+ + +  
 

Let b be the integral part of ( )1 23 0.a a   and c the integral part of  
( )1 20.0.a b b  . Then we obtain for certain decimals: 

( ) ( ) ( )1 2 1 2 1 23 0. 0. 0.a b d d c e e c c+ + + + +    

The fractional part of the final result equals: 

( ) ( ) ( )1 2 1 2 1 2 0 1 20. 0. 0. .d d e e c c u u u+ + =     

The final decimal 0 1 2.u u u   equals an integer only if ui = 9 for all i ≥ 1 and, 
accordingly, equals: 

0 0.9999 9 1u u= +   

The probability that the first p decimals equal 9 is 1/10p ≈ 0, and the probabil-
ity that all the decimals equal 9 is virtually zero. The probability of the existence 
of a nontrivial cycle is thus virtually impossible. 

12. Infinite Strings 

The essence of the 3x + 1 problem involves infinite strings. Several elementary 
results concerning infinite strings can be established. First observe that not all 
infinite strings have generators; simple examples are: 

11111 , 00000 , 10101010  

In order for an infinite string to have a generator, it must at least have a mix-
ture of zeros and ones that continues indefinitely. One somewhat surprising fact 
is: 

Theorem E: if a generator of an infinite string exists, it is unique. 
Proof: suppose L is an infinite string having n as a generator. There must at 

some point be an odd member of the sequence and there is no loss if it is as-
sumed that n is odd. If a second generator n’ = n + p exists, let 2q be the highest 
power of 2 that divides p. and perform the Collatz algorithm on n’ repeatedly: 

1 1 2qn n p′ ′= + , ( )1 22
13 1 2 32 2q qn n p pn − ′ ′ ′= + + = + ⋅  ,  , 3q q

qn n p′ ′= + . 
The next term will be a non-integer and n’ cannot be a generator.  

Suppose that C is a Collats sequence with infinitely many terms different from 
1. Its corresponding zero-one string is L, consisting of infinitely many zeros and 
ones. The generator of C is n, a finite positive integer. As we progress through 
the algorithm to obtain successive values of C, no discrepancy ever exists, an un-
likely circumstance (see Section 4). But this has, as yet, resisted proof. 
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If we assume that no nontrivial cycles exist, there can be no upper bound for 
any Collatz sequence, hence limi in→∞ = ∞ . As a matter of fact, it follows that 
every Collatz sequence that does not converge to 1 contains an increasing sub-
sequence of the form 0 2k

in t+  where n0 is a positive integer, k is an arbitrarily 
large integer, and {ti} is an increasing sequence. Suppose C is a collatz sequence 
that does not converge to 1, and let L∗  be its characteristic string, with odd ge-
nerator n. 

Theorem F: The string L∗  is of the form 1 2 1i iLK K K KL−   where L is a 
finite substring repeated infinitely often of arbitrarily large length and with be-
ginning element 1, and Ki is a finite substring of L∗  or the empty set if two 
substrings L juxtoposed.  

Proof (by induction on k, the length of L): to obtain a string L of length k = 1, 
take the first element 1 of L∗  and observe that neither 000… 0… nor 111… 1… 
have generators. Thus a repeated element 1 must occur infinitely often, and we 
take L = 1. Assume that a finite string L of length k beginning with 1 occurs infi-
nitely often. Let the element immediately following L be denoted x, which must 
be repeated infinitely often, producing the string Lx of length k + 1, where Lx 
must occur infinitely often.  

Consider the string 1 2 1i iL K LK K KL∗
−=    with generator n. Let n0 be the 

least generator of L From a previous result, the generator of the string from this 
point on must be of the form: 

10 2kn t+  

where k is the length of L and t1 is a positive integer. For the subsequent repeated 
strings which are identical to L, their generators must also be of the form 

0 2k
in t+ , where ti is a positive integer. We can assume that the sequence {ti} is 

increasing since it must contain one that is. Thus, we have proved the previous 
claim made above. 

The resultants of these repeating strings must have the form 0 3r
im t+  Thus 

If ni and mi are the elements of C immediately preceding and following a string 
L, the limit of their quotients converges to the norm of L: 

0

0

3 3lim
2 2

r r
i i

i k k
i i

m m t
L

n n t→∞

+
= = =

+
 

The product Formula (8.1) leads to another relation involving the string L∗ . 
Again, assuming nontrivial cycle exists, it was determined that 3rc is not a power 
of 2. Hence, from (7.1): 

2 pm
n

≠  

where, since n0 is odd, then 0 2k
in t+  is odd and both m and n may be assumed 

to be odd integers with m much larger than n. It may be possible to derive a 
contradiction here. 

Another possibility derives from an inequality, also with m and n odd and m 
much larger than n. 
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Let the string corresponding to the Collatz sequence beginning with  

0 02kn n t′+=  and ending with 0 3r
im n t′= +  be K of, length k with r ones and s 

zeros. If 1K <  (or 1k rω> ), one obtains from the inequality (4.2): 

0
33 2
2

3
r

r k
it tK′ ′ 

 +
 

>                    (12.1) 

where r’ and k’ are the indices corresponding to L. This could lead to a contra-
diction. 

13. Conclusion 

The main goal of this article was to find an elementary proof involving zero-one 
strings to show that nontrivial cycles do not exist. A proof no doubt depends ul-
timately on advanced results in number theory, as yet not identified. As shown 
by many authors, such as the group here in the references, a proof must involve 
methods defined by multiple new or old results involving intricate details. Of 
course, the problem as a special case of the original 3x + 1 problem could be un-
decidable, not yet determined. It can only be hoped that untried methods of 
proof showing up in the literature can trigger the discovery of a connection to 
known results that finally provides a contradiction.  
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