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Abstract 
In the present paper, we introduce a non-polynomial quadratic spline method 
for solving third-order boundary value problems. Third-order singularly 
perturbed boundary value problems occur frequently in many areas of ap-
plied sciences such as solid mechanics, quantum mechanics, chemical reactor 
theory, Newtonian fluid mechanics, optimal control, convection-diffusion proc-
esses, hydrodynamics, aerodynamics, etc. These problems have various im-
portant applications in fluid dynamics. The procedure involves a reduction of 
a third-order partial differential equation to a first-order ordinary differential 
equation. Truncation errors are given. The unconditional stability of the 
method is analysed by the Von-Neumann stability analysis. The developed 
method is tested with an illustrated example, and the results are compared 
with other methods from the literature, which shows the applicability and 
feasibility of the presented method. Furthermore, a graphical comparison 
between analytical and approximate solutions is also shown for the illustrated 
example. 
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1. Introduction 

The field of nonlinear dispersive waves has undergone enormous development 
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since the work of Stokes, Boussinesq, and Korteweg and de Vries (KdV)—all of 
whom studied water wave problems in the nineteenth century. In the 1960s, re-
searchers developed effective asymptotic methods for deriving nonlinear wave 
equations, such as the KdV equation, which governed a broad class of physical 
phenomena [1]. Some approaches for solving nonlinear partial differential equa-
tions have been addressed in recent literature; the most prominent of these were 
the non-polynomial spline methods. The non-polynomial spline used for solving 
nonlinear partial differential equations was employed by many researchers. The 
most known and well-focused results are those presented by Ramadan et al. 
(2005), who used a numerical method for approximation of Burger’s equation [2]. 
Shock waves and blowup arising in third-order nonlinear dispersive equations 
were studied in 2008 by Galaktionov, V.A. and Pohozaev, S.I. [3]. In [4] [5], the 
criteria for deriving stability conditions of the different methods were consi-
dered for the numerical solution of a third-order linear dispersive equation. Re-
search by Tirmizi et al. (2008) used Quartic non-polynomial spline functions to 
develop a class of numerical methods for solving self-adjoint singularly per-
turbed problems [6]. In 2011, Taiwo and Ogunlaran developed a numerical tech-
nique for solving linear fourth-order boundary-value problems, which were in-
itially reduced to a system of second-order boundary-value problems [7]. In re-
search by Lin (2014), a numerical method based on splines in tension was de-
veloped for solving the RLW equation. The method was tested by using single 
solitary waves, the interaction of two solitary waves, and solitary waves with Max-
wellian initial condition [8]. In the same year, Mustafa and Ilhame discussed the 
method of lines is applied to the boundary-value problem for the third-order 
partial differential equation [9]. In 2017, El-Danaf et al. considered the Genera-
lised Regularised Long Wave (GRLW) equation. They studied the interaction of 
solitons, where no analytic solution is known during the interaction. The Max-
wellian initial condition for the GRLW equation was used [10]. A year later, Li et 
al. solved the time-fractional nonlinear Schrödinger equation [11]. In 2018, Sul-
tana et al. presented a new three-level implicit method, which was developed to 
solve linear and nonlinear third-order dispersive partial differential equations 
[12]. In 2019, Shahna demonstrated how to solve fourth-order boundary value 
problems whose highest-order derivative was multiplied by a small perturbation 
parameter [13]. In this paper, a novel approach, based on using non-polynomial 
splines to solve a third-order dispersive partial differential equation is proposed. 
The third-order dispersive partial differential equation we will use is [14]. 

( )
3

3 , , , 0g x t a x b t
t x
η η∂ ∂
+ = ≤ ≤ >

∂ ∂
                (1) 

where ( ),g x t  is a source term. The boundary conditions associated with Equa-
tion (1) are assumed to be of the form: 

( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , , , , 0xxa t t b t t b t t tη β η β η β= = = >          (2) 

and the initial condition is: 
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( ) ( ),0 , .x f x a x bη = ≤ ≤                      (3) 

The spline functions proposed, as defined in [15], have the form  

{ }2
4 1, , ,sin ,cosT span x x x xω ω=  where ω  is the frequency of the trigonome-

tric part of the spline functions, which will be used to increase the accuracy of 
our method. 

2. Analysis of the Method 

The first step in the non-polynomial spline method is to create a grid with two 
mesh constants h and k. The grid points for this situation are ( ),i jx t  where 

ix a ih= + , 0,1, , 1i N= +  and jt jk= , 0,1,j =  . 
Let j

iZ  be an approximation to ( ),i jx tη , obtained by the segment 

( ),i jP x t  of the mixed spline function passing through the points ( ), j
i ix Z  and 

( )1 1, j
i ix Z+ + .  
Each segment has the form: 

( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( )

2, cos sin

.

i j i j i i j i i j i

i j i i j

P x t a t x x b t x x c t x x

d t x x e t

ω ω= − + − + −

+ − +
    (4) 

for each 0,1, ,i N=  . To obtain expressions for the coefficients of Equation (4) 
in terms of j

iZ , 1
j

iZ + , j
iM , j

iS , and 1j
iS + , we first define:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1 1

3 3
1 1

, , , , ,

, , , .

j j j
i i j i i i j i i i i

j j
i i j i i i j i

P x t Z P x t Z P x M

P x t S P x t S

+ +

+ +

= = =

= =
           (5) 

Using Equations (4) and (5), we get: 
j

i i ia e Z+ = , 
2

1cos sin j
i i i i i ia b h c hd e Zθ θ ++ + + + = , 

j
i i ib d Mω + = ,                         (6) 

3 j
i ib Sω− = , 

3 3
1sin cos j

i i ia b Sω θ ω θ +− = . 

where ( ) ( ) ( ) ( ) ( ), , , ,i i j i i j i i j i i j i i ja a t b b t c c t d d t e e t≡ ≡ ≡ ≡ ≡ , and hθ ω= . 
By solving the last five equations in (6), we obtain the following: 

3 1
3

cos
sin

j j
i i

i
S S

a h
θ

θ θ
+ −

= , 3
3

j
i

i
S

b h
θ

= − , 

( )( )11
2 3 2

1 cos

sin

j jj j j j
i ii i i i

i

h S SZ Z M hS
c

hh

θ

θ θ θ
++
+ −−

= + − −           (7) 

2
2

j
j i

i i
S

d M h
θ

= + , 3 1
3

cos
sin

j j
j i i

i i
S S

e Z h
θ

θ θ
+ −

= − . 

Using the continuity condition of the first and second derivatives at ix x= , 
that is ( ) ( ) ( ) ( )1, ,n n

i i j i i jP x t P x t−=  where n = 1 and 2, we get the following rela-
tions: 

1 1 1 1sin cos 2i i i i i ib d a b hc dω ω θ ω θ− − − −+ = − + + +  
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2 2 2
1 1 12 cos sin 2i i i i ia c a b cω ω θ ω θ− − −− + = − − +             (8) 

Using expressions in Equation (7), then Equation (8) becomes: 

( ) ( ) ( )( )
2 2

1 1 1 12 3

2 2 1 cos
sin

j j j j j j j j
i i i i i i i i

h hM M Z Z S S S S
h

θ
θ θ θ− − − −+ = − − + + + −   (9) 

( ) ( )

( )( ) ( )

2 2

1 1 1 1 1

2 2

1 1 13 2

cos 1 2
sin 2 sin

1 cos
sin

j
j j j j j j ji

i i i i i i i

j j j j
i i i i

h S hM M S S Z Z Z
h

h hS S S S

θ
θ θ θ θ

θ
θ θ θ

− − + − +

+ − −

− = − + + − +

+ − − + −

  (10) 

Adding Equations (8) and (10), we get: 

( ) ( )( )

( )

2 2

1 1 1 12 3

2 2

1 1

1 1 cos 2
2 2 sin

cos
.

2 sin 4 sin

j j j j j j j
i i i i i i i

j
j ji

i i

h hM Z Z S S S S
h
h S h S S

θ
θ θ θ

θ
θ θ θ θ

+ − − +

− +

= − − + − + +

+ − +

  (11) 

Similarly, 

( ) ( )( )

( )

2 2

1 2 1 2 12 3

2 2
1

2

1 1 cos 2
2 2 sin

cos
.

2 sin 4 sin

j j j j j j j
i i i i i i i

j
j ji

i i

h hM Z Z S S S S
h
h S h S S

θ
θ θ θ

θ
θ θ θ θ

− − − − −

−
−

= − − + − + +

+ − +

 (12) 

Using j
iM  and 1

j
iM −  in Equations (10) and (11) gives the following rela-

tion: 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )( )

2

1 1 2 12

2

2 1 13

2 2
1

2 1 1

2 2

1 1 12 3

1
2

1 cos
3 3

2 sin
cos

2 sin 4 sin
2 2 1 cos

sin

j j j j j j
i i i i i i

j j j j
i i i i

j j
i i j j j j

i i i i

j j j j j j
i i i i i i

hZ Z Z Z S S
h
h

S S S S

h S S h S S S S

h hZ Z S S S S
h

θ
θ

θ θ
θ

θ θ θ θ

θ
θ θ θ

+ − − −

− − +

−
− − +

− − −

− + − − +

−
+ + + +

+
+ − + + +

= − − + + + −

 

or: 

3
2 2 13

3
1 3

3
13

3
1 3

cos 1 1 3
2 sinsin

1 cos cos 1 3
sin 2 sinsin

1 cos cos 1
sin 2 sinsin

cos 1 1 0, 2, , .
2 sinsin

j j j
i i i

j j
i i

j j
i i

j
i

Z h S Z

h S Z

h S Z

h S i N

θ
θ θθ θ

θ θ
θ θ θ θθ θ

θ θ
θ θ θ θθ θ

θ
θ θθ θ

− − −

−

+

+

− − − + + 
 

− − − + − 
 
− − − + + 

 
− − + = = 

 


 

This equation can be rewritten in the following simple form: 

2 1 1 2 1 13 3 , 2, , .j j j j j j j j
i i i i i i i iZ Z Z Z S S S S i Nα β β α− − + − − +− + − + = + + + = 

   (13) 

where: 
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3 3
3 3

cos 1 1 1 cos cos 1and
2 sin sin 2 sinsin sin

h hθ θ θα β
θ θ θ θ θ θθ θ θ θ

− −   = + = − +   
   

 

Remark 1. As 0ω → , that is 0θ → , then ( )
3 311, ,

24 24
h hα β

 
→  

 
, and sys-

tem (13) reduces to ordinary quartic spline: 

( )
3

2 1 1 2 1 13 3 11 11 ,
24

j j j j j j j j
i i i i i i i i

hZ Z Z Z S S S S− − + − − +− + − + = + + +  

Using Equation (1), we can write 2
j

iS − , 1
j

iS − , j
iS  and 1

j
iS + , in the form: 

3
2 2

2 23

j j
j ji i

i i
Z Z

S g
tx

− −
− −

 ∂ ∂
= = − 

∂∂  
, 

3
1 1

1 13

j j
j ji i

i i
Z Z

S g
tx

− −
− −

 ∂ ∂
= = − 

∂∂  
 

3

3

j j
j ji i

i i
Z Z

S g
tx

 ∂ ∂
= = − 

∂∂  
, 

3
1 1

1 13

j j
j ji i

i i
Z Z

S g
tx

+ +
+ +

 ∂ ∂
= = − 

∂∂  
 

These equations can be discretised in the form: 
1 1

2 2 1 1
2 2 1 1

1 1
1 1

1 1

, ,

, .

j j j j
j j j ji i i i

i i i i

j j j j
j j j ji i i i

i i i i

Z Z Z Z
S g S g

k k

Z Z Z Z
S g S g

k k

− −
− − − −

− − − −

− −
+ +

+ +

      − −
≈ − ≈ −               
      − −

≈ − ≈ −               

     (14) 

The use of Equation (13) in Equation (14) gives us the following system: 

2 1 1

1 1
2 2 1 1

2 1

1 1
1 1

1

3 3

,

j j j j
i i i i

j j j j
j ji i i i

i i

j j j j
j ji i i i

i i

Z Z Z Z

Z Z Z Z
g g

k k

Z Z Z Z
g g

k k

α β

β α

− − +

− −
− − − −

− −

− −
+ +

+

− + − +

   − −
= − + −   

   
   − −

+ − + −   
   

 

or: 

2 1 1
1 1 1 1

2 1 1 , 2, , .

j j j j
i i i i i i i i

j j j j j
i i i i i

A Z B Z C Z D Z

Z Z Z Z i Nα β β α δ
− − +

− − − −
− − +

+ + +

= + + + + = 

         (15) 

where: 

iA k α= − + , 3iB k β= + , 3iC k β= − + , iD k α= +  

and: 

( )2 1 1
j j j j j

i i i i ik g g g gδ α β β α− − += + + +  

System (15) consists of N-1 equations in unknowns , 0, , 1j
iZ i N= +

. To get 
a solution to this system, we need three additional equations. Two equations are 
obtained from the first two parts in Equation (2). 

( ) ( ) ( ) ( )0 1 1 2, , ,j j
NZ a t t Z b t tη β η β+= = = =               (16) 

The third equation can be obtained from the third part of Equation (2), that is 

( ) ( )
2

1
32 ,

j
N

xx
Z

b t t
x

η β+∂
= =

∂
, which can be discretised: 
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4 3 2 1 1
2

2 21
32

10 61 156 214 154 45

12 12 , 0

j j j j j j
N N N N N N

j
N

Z Z Z Z Z Z

Z
h h j

x
β

− − − − +

+

− + − + − +

∂
≈ = ≥

∂

       (17) 

Writing Equations (15) - (17) in matrix form gives: 
* 1j j jQZ Q Z r−= +                        (18) 

where: 

( )0 1 2 1 1 ,
tj j j j j j j

N N NZ Z Z Z Z Z Z− +=   

2 2 2 2

3 3 3 3

1 1 1 1

1 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0

,
0 0 0

0 0 0 0
0 0 10 61 156 214 154 45
0 0 0 0 0 0 0 1

N N N N

N N N N

A B C D
A B C D

Q
A B C D

A B C D
− − − −

 
 
 
 
 
 
 =
 
 
 
 

− − − 
 
 







      

        









 

*

0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0

,
0 0 0

0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q

α β β α
α β β α

α β β α
α β β α

 
 
 
 
 
 
 =  
 
 
 
 
 
  







      

        









 

and ( ) ( ) ( )( )2
1 2 3 2, , , ,12 ,

tj j j
j N j jr t h t tβ δ δ β β=  . The initial condition  

( ) ( )0,x t f xη = , for each a x b≤ ≤ , implies that ( )0
i iZ f x= , for each  

0,1, , 1i N= + . These values can be used in Equation (2.15) to find the value of 
1
iZ , for each 0,1, , 1i N= + . If the procedure is reapplied once all the ap-

proximations 1
iZ  are known, the values of 2 3, ,i iZ Z 

 can be obtained in a 
similar manner. 

3. Error Analysis 

Using Equation (14), we obtain the truncation error: 
1 1 1 1

2 1 1 2 1 1
j j j j j j j j j j

i i i i i i i i i i i i i iT A B C Dη η η η αη βη βη αη δ− − − −
− − + − − += + + + − − − − −   (19) 

where: 

iA k α= − + , 3iB k β= + , 3iC k β= − + , iD k α= − +  

and: 
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( )2 1 1
j j j j j

i i i i ik g g g gδ α β β α− − += + + +  

Expanding Equation (19) in Taylor series, in terms of ( ),i jx tη  and its de-
rivatives, we obtain the following expression: 

( )

( ) ( )

( ) ( )

2 2
2 2

2 3
2 3

2

2

221 1
1! 2! 2!

1
2! 3!

11 2 2
2!

11
2!

j j j
i i x x i i x x i

j j
i i i x x x i

j
t x t x i

j
t x t x i

hh hT A D D B hD D

h hC D hD D D

kD hD kD hD

kD hD kD hD

η η

η η

α η

β η

   
 = − + − + − + −     

 
+ + + + + + 

 

 − + − − + − − + 
 

 − + − − + − − + 
 

 







 

      

( ) ( )

( )

2 3
2 3

2

2 2
2 2

2
2

1
2! 3!

11
2!

2
1 2 1

2! 2!

1
2!

j
t t t i

j
t x t x i

j j
x x i x x i

j j
i x x i

k kkD D D

kD hD kD hD

h hk hD D g k hD D g

hk g k hD D g

β η

α η

α β

β α

 
− − + − + 

 
 − + − + + − + + 
 
   
 − − + − − − + −     

 
− − + + + 

 





 



 

where 3j j j
i t i x ig D Dη η= + . After simple calculations, we get: 

( )

( )

( )

( )

2 2
2 2

2 3
2 3

2 3
2 3

2 2

2

22 3
1! 2! 2!

2! 3!

2
2! 3!

2 31 1
1 12! 3!

315
23!

j j j
i x x i x x i

j
x x x i

j
t t t i

j
t t x i

t

hh hT k D D k hD D

h hk hD D D

k kkD D D

h kD k D D

h kD

η η

η

β α η

β α η

β α

   
 = − − + − + − + −     
 

+ + + + 
 

 
− + − + − + 

 
    −

+ + + −    
    

 
+ +  

 

 







2 2 241
24!

j
t x ik D D η

  
− +  

  


 

     

( )

( ) ( )

( )

( ) ( )( )

3 2 2 3

2
2 3

2
2 3

2
2 3 3

4 51 17
3 34! 5!

2
2

2!

2!

2
2!

j
t t x i

j
x x t x i

j
x x t x i

j j
x x t x i t x i

h kD k D D

h
k hD D D D

hk hD D D D

hk hD D D D k D D

β α η

α η

β η

α η β α η

    −
+ + + − +    

    
 
 − − + − +
 
 
 

− − + − + 
 
 

− + + + − + + 
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( )( ) ( )

( ) ( )

( )

( )

3
3 3 4

3 3
2 5 3 6

3
4 7

2 3
2 3

2
2

1 15 7
4 2 12 6

1 17
40 24

2
2! 3!

j j j
i x i x i

j j
x i x i

j
x i

j
t t i

hT k h D kh D

h hkh D kh D

hkh D

k kD D

β α η β α η

β α η β α η

β α η

β α η

 −
= − + + + + 

 
   −

+ − + + + +   
   
 

+ − + + 
 

 
+ + − + − 

 





 

( )

( )

( )

2 2 3 3

2 2 2 3 3 2

3 2 2 3 3 3

3 41 1
1 13! 4!

4 51 15
2 24! 5!

5 61 17 .
3 35! 6!

j
t t x i

j
t t x i

j
t t x i

h k D k D D

h k D k D D

h k D k D D

β α η

β α η

β α η

    
+ + − +    

    
    

+ + − + −    
    

    
+ + − + +    

    





 

       (20) 

For 
3

2
hβ α+ = , the local truncation error is of order ( )2 2 3o kh k h+  but for 

3

2
hβ α+ =  and 0α =  it is of ( )4 2 3o kh k h+ . 

Remark 2. The previous relations, which enable us to choose α  and β , can 
be obtained using simple calculations by expanding Equation (19) in terms of 

j
iu  and its derivatives, which is the local truncation error of Equation (19), as 

follows: 
* 3 3 3 3

2 1 1 2 1 13 3 ,j j j j j j j j j
i i i i i x i x i x i x iT D D D Dη η η η α η β η β η α η− − + − − += − + − + − − − −  

( )( ) ( )

( ) ( )

( )

3
3 3 4

3 3
2 5 3 6

3
4 7

2
2

1 15 7
4 2 12 6

1 17 .
40 24

j j j
i x i x i

j j
x i x i

j
x i

hT h D h D

h hh D h D

hh D

β α η β α η

β α η β α η

β α η

 −
= − + + + + 

 
   −

+ − + + + +   
   
 

+ − + + 
 



 

4. Stability 

Using the Von Neumann method, the stability of the method can be investi-
gated. According to this method, the solution of the difference Equation (14) can 
be written in the form: 

( )expj j
iZ q ihζ φ=                       (21) 

where φ  is the wave number, 1q = − , h is the element size, and jζ  is the 
amplification factor at time level j. Inserting the latter expression for j

iZ  in 
scheme (14), we obtain the characteristic equation in the form: 

( )( ) ( )( ) ( ) ( )( ){ }
( )( ) ( )( ) ( ) ( )( ){ }1

exp 2 exp 1 exp exp 1

exp 2 exp 1 exp exp 1

j
i i i i

j

A i q h B i q h C iq h D i q h

i q h i q h iq h i q h

ζ φ φ φ φ

ζ α φ β φ β φ α φ−

− + − + + +

= − + − + + +
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iA k α= − + , 3iB k β= + , 3iC k β= − + , iD k α= − +  

After simple calculations, we obtain: 
( ) ( ) ( )
( ) ( ) ( )

exp 2 exp exp
exp 2 exp expi i i i

q h q h q h
A q h B q h C D q h
α φ β φ β α φ

ζ
φ φ φ

− + − + +
=

− + − + +
       (22) 

Using Euler’s formula, that is: 

[ ]exp cos sin ,q q hϕ ϕ ϕ ϕ φ= + = , 

Equation (22) becomes: 
* *X qY

X qY
ζ +
=

+
                       (23) 

where: 

( )
( )

( ) ( ) ( )
( ) ( )

*

*

cos 2 cos

sin 2 sin

cos 2 4 cos 3

sin 2 2 sin

X

Y

X k k k

Y k k

α ϕ β α ϕ β

α ϕ α β ϕ

α ϕ β α ϕ β

α ϕ α β ϕ

= + + +

= − + −

= − + + + + −

= − + − + −

         (24) 

Using 2cos 2 1 2sinϕ ϕ= − , and 2cos 1 2sin
2
ϕϕ = − , we can write the equa-

tions in (24) as: 

* 2 2

* 2

2 2 4 *

2 3 *

2 cos 4 sin
2 2

2 sin cos 4 sin
2 2 2

2 cos 4 sin 8 sin
2 2 2

2 sin cos 4 sin 8 cos sin
2 2 2 2 2

X

Y

X k X T

Y k Y G

ϕ ϕβ α α

ϕ ϕ ϕβ α α

ϕ ϕ ϕβ α α

ϕ ϕ ϕ ϕ ϕβ α α

  = + −  
  
  = − + −  
  

   = + − − = +      
  = − + − − = +  
  

  (25) 

where 48 sin
2

T k ϕ
= − , 38cos sin

2 2
G ϕ ϕ
= − , 

Using (24), we obtain: 
*2 *2

2 2

X Y
X Y

ζ +
=

+
                        (26) 

The equations in (26) enable us to rewrite the last equation in the form: 

( ) ( )
*2 *2

2 2* *

X Y

X T Y G
ζ +

=
+ + +

. 

or: 
*2 *2

*2 2 *2 2

X Y
X T Y G

ζ
δ

+
=

+ + + +
.                  (27) 

where * *2 2X T Y Gδ = + . Using Equation (27), δ  becomes: 

2 4 2

2 4 2

32 cos sin 4 sin
2 2 2

32 cos sin 4 sin 0
2 2 2

k

k

ϕ ϕ ϕδ β α α

ϕ ϕ ϕβ α α

 = − + − 
 
 + + − = 
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This result enables us to write Equation (27) as: 
*2 *2

*2 *2 2 2

X Y
X Y T G

ζ +
=

+ + +
.                    (28) 

For stability, we must have 1ζ ≤  (otherwise jζ  in Equation (21) would 
grow in an unbounded manner). Using Equation (28), we can say that the stabil-
ity condition, that is 1ζ ≤ , is satisfied. 

5. Numerical Example 

In this section, we obtain numerical solutions of Equation (1) for a numerical 
example. 

Consider the non-homogeneous third-order dispersive partial differential eq-
uation [14]: 

( ) ( )
3

3
3 sin sin cos cos , 0 1, 0x t x t x t

t x
η η∂ ∂
+ = − − ≤π ≤π π >

∂ ∂
 

with boundary conditions: 

( ) ( ) ( ) ( )0, 1, 0, 0, 1, 0, 0xx xxt t t t tη η η η= = = = >  

and the initial condition: 

( ),0 sin , 0 1x x xη π= ≤ ≤  

The exact solution of this problem is: 

( ), sin cosx t x tη = π  

The obtained numerical results are listed in the Tables 1-7, where all calcula-
tions are carried out using Mathematica. The accuracy of method is measured by 
computing L∞-error norm, Max. Absolute error, as shown in Tables 1-3 and Ta-
ble 5 illustrates numerical and exact solutions for: 

3

0.025, 0.0005,
2
hh k β α= = = − + . 

The reason that the accuracy in Table 1 is the best is because: 
3

0,
2
hα β α= = − + . 

 
Table 1. The L∞ -error between the numerical and exact solutions when 0.025h = ,

0.0005k = , 0α = , 
3

2
hβ α= − + . 

Time 0.500 1.500 2.00 2.500 

L∞ -error 4.59312 * 10−6 5.05911 * 10−7 2.01782 * 10−6 4.047 * 10−6 

 
Table 2. The L∞ -error between the numerical and exact solutions when 0.025h = , 

0.0005k = , 
3

160
hα = , 

3

2
hβ α= − + . 

Time 0.500 1.500 2.00 2.500 

L∞ -error 7.28473 * 10−5 9.0094 * 10−6 3.09094 * 10−5 6.31829 * 10−5 
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Table 3. The L∞ -error between the numerical and exact solutions when 0.025h = , 

0.0005k = , 
3

24
hα = , 

3

2
hβ α= − + . 

Time 0.500 1.500 2.00 2.500 

L∞ -error 4.63835 * 10−4 5.7401 * 10−5 1.9661 * 10−4 4.02159 * 10−4 

 
Table 4. The comperasion between the numerical and exact solutions when 0.025h = , 

0.0005k = , 2t = , 0α = , 
3

2
hβ α= − + . 

X Exact Solution Numerical Solution 

0.1 −0.128596 −0.129457 

0.2 −0.244605 −0.2446030 

0.3 −0.336669 −0.3366680 

0.4 −0.395779 −0.3957770 

0.5 −0.416147 −0.4161450 

0.6 −0.395779 −0.3957780 

0.7 −0.336669 −0.3366700 

0.8 −0.244605 −0.2446046 

0.9 −0.128596 −0.129457 

 

Table 5. The L∞ -error between the numerical and exact solutions when 
20

h = π
, 

0.002k = , 
3

160
hα = , 

3

2
hβ α= − + . 

Time 1.9 2 2.1 

L∞ -error 2.9822 * 10−3 3.31405 * 10−3 3.68684 * 10−3 

 

Table 6. The comperasion between the numerical and exact solutions when 
20

h = π
, 

0.002k = , 
3

160
hα = , 

3

2
hβ α= − + , 2t = . 

X Exact Solution Numerical Solution 

0.1 −0.128596 −0.129126 

0.2 −0.244605 −0.2445870 

0.3 −0.336669 −0.3366450 

0.4 −0.395779 −0.3957500 

0.5 −0.416147 −0.4161160 

0.6 −0.395779 −0.3957500 

0.7 −0.336669 −0.3366450 

0.8 −0.244605 −0.2445870 

0.9 −0.128596 −0.129126 
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For, the local truncation error is of order ( )4 2 3o kh k h+  but for:  
3

, 0
2
hβ α α+ = ≠  it is of order ( )2 2 3o kh k h+ . 

The following figures from Figures 1-11 show the relation between the nu-
merical and exact solutions of the dispersive equation for virus time and discre-
tization’s (h).  

The following figures from Figures 12-15 show the 3D of the numerical solu-
tions of the dispersive equation for virus time and the same discretization’s (h). 
 

Table 7. The L∞ -error between the numerical and exact solutions when 
20

h = π
, 

0.002k = , 
3

160
hα = , 

3

2
hβ α= − + . 

Time 1.9 2 2.1 

L∞ -errors 1.86724 * 10−3 2.08023 * 10−3 2.31321 * 10−3 

 

 
Figure 1. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 0.0005
160 2
h hh k tα β α= = = = − + = . 

 

 

Figure 2. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 0.5
160 2
h hh k tα β α= = = = − + = . 
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Figure 3. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 1.0
160 2
h hh k tα β α= = = = − + = . 

 

 

Figure 4. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 1.5
160 2
h hh k tα β α= = = = − + = . 

 

 

Figure 5. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 2.0
160 2
h hh k tα β α= = = = − + = . 
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Figure 6. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 2.5
160 2
h hh k tα β α= = = = − + = . 

 

 

Figure 7. The relation between the numerical and exact solutions of the dispersive eation 

at 
3 3

0.025, 0.0005, , , 3.0
160 2
h hh k tα β α= = = = − + = . 

 

 

Figure 8. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 3.5
160 2
h hh k tα β α= = = = − + = . 
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Figure 9. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 4.0
160 2
h hh k tα β α= = = = − + = . 

 

 

Figure 10. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 4.5
160 2
h hh k tα β α= = = = − + = . 

 

 

Figure 11. The relation between the numerical and exact solutions of the dispersive equa-

tion at 
3 3

0.025, 0.0005, , , 5.00
160 2
h hh k tα β α= = = = − + = . 
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Figure 12. 3D for the numerical solutions of the dispersive equation from t = 0 to t = 10. 
 

 

Figure 13. 3D for the numerical solutions of the dispersive equation from t = 10 to t = 20. 
 

 

Figure 14. The 3D for the numerical solutions of the dispersive equation from t = 20 to t 
= 30. 
 

 

Figure 15. The 3D for the numerical solutions of the dispersive equation from t = 30 to t 
= 40. 

6. Concluding Remarks 

This paper is devoted to the quartic non-polynomial spline functions for solving 
the third-order dispersive partial differential equation. Recent trends in compu-
tational mathematics, mathematical physics and mechanics have widely used 
numerical methods to solve such problems. The results obtained using the quar-
tic non-polynomial spline functions are very encouraging. It has been shown 
that the L-∞ errors norm confirm the theoretical convergence. The convergence 
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analysis of the method proved that our scheme is third-order convergent 

( )2 2 3o kh k h+ . Also, the method is shown to be unconditionally stable. The nu-
merical example illustrates that the non-polynomial spline functions are more 
adaptable in approximating functions. The graphs between exact and approxi-
mate solutions for the numerical examples show the superiority of our method 
compared with [8]. 
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