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Abstract 
This work continues the illustrative application of the “Second Order Com-
prehensive Adjoint Sensitivity Analysis Methodology” (2nd-CASAM) to a 
benchmark mathematical model that can simulate the evolution and/or 
transmission of particles in a heterogeneous medium. The model response 
considered in this work is a reaction-rate detector response, which provides 
the average interactions of particles with the respective detector or, alterna-
tively, the time-average of the concentration of a mixture of substances in a 
medium. The definition of this model response includes both uncertain 
boundary points of the benchmark, thereby providing both direct and indi-
rect contributions to the response sensitivities stemming from the bounda-
ries. The exact expressions for the 1st- and 2nd-order response sensitivities to 
the boundary and model parameters obtained in this work can serve as strin-
gent benchmarks for inter-comparing the performances of all (deterministic 
and statistical) sensitivity analysis methods. 
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1. Introduction 

This work continues to illustrate the application of the general second-order 
adjoint sensitivity analysis methodology (2nd-CASAM) presented in [1] by us-
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ing the evolution/transmission mathematical benchmark model introduced in 
[2], but considering a “reaction-rate” detector response, as opposed to the 
“point-detector” response considered in [2]. As in [2], the mathematical model 
considered in this work could represent [3] [4] the time-evolution of the con-
centration of a substance in a homogeneous mixture of materials or, alternative-
ly, it could represent [4] [5] [6] the transmission/attenuation of the flux of un-
collided particles (e.g., photons) travelling through a one-dimensional homoge-
nized multi-material slab of imprecisely known thickness.  

Although simple, the model comprises a large number of model parameters, 
thereby involving a correspondingly large number of sensitivities (i.e., functional 
derivatives) of the model’s responses to the model parameters. Furthermore, the 
model has been deliberately designed so that a large number of relative response 
sensitivities display identical values. The application of the 2nd-CASAM [1] 
yields the exact expressions of the 1st- and 2nd-order sensitivities of the reac-
tion-rate response to the uncertain model and boundary parameters. These exact 
expressions can be used to benchmark any other statistical or deterministic 
software used for computing sensitivities.  

This work is organized as follows: Section 2 presents the mathematical for-
mulation and expression of a reaction-rate detector for the paradigm evolu-
tion/transmission model. Section 3 illustrates the application of the 2nd-CASAM 
[1] for obtaining efficiently the exact closed-form expressions of the first- and 
second-order sensitivities of the reaction-rate detector response to both model 
and boundary parameters. Section 4 offers concluding remarks. 

2. Mathematical Modeling of a Paradigm  
Evolution/Transmission Benchmark Problem 

The general methodology presented in Part I (Cacuci, 2020) is applied in this 
work to a simple paradigm model, admitting a closed-form analytic solution for 
convenient verification of all results to be obtained, which simulates a typical 
evolution or attenuation of a quantity that will be denoted as ( )tρ , satisfying 
the following linear conservation equation: 

( ) ( )
1

d
0, 0 ,

d

N

i i u
i

t
t n t

t
ρ

ρ σ β β
=

+ = ≤ ≤ ≤ < ∞∑


          (1) 

( ) , at .in tρ β ρ β= =
 

                   (2) 

As has been discussed in [2], Equations (1) and (2) occur in the mathematical 
modeling of many physical systems, including the evolution of the concentration 
of a substance in a homogeneous mixture of N materials (from an imprecisely 
known initial quantity, denoted as inρ , measured at an initial-time value t β=



 
towards an imprecisely known final-time value ut β= ) or the mono-directional 
propagation of the flux of uncollided particles travelling through a one-dimensional 
homogenized multi-material slab of imprecisely known thickness ( )uβ β−



 in 
a direction parallel to the t-coordinate.  
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An important typical response of interest for the physical problem modeled by 
Equations (1) and (2) is a “reaction rate” detector response, which will be de-
noted as ( )2 ; ,R ρ α β , and which is represented mathematically by the following 
functional: 

( ) ( )2 ; , d ,
u

dR t t
β

β

ρ ρ= Σ ∫


α β                    (3) 

where dΣ  represents the detector’s reaction cross section. In Equation (3), the 
vector α  denotes the “vector of model parameters” and defined as follows: 

( ) ( )
† †

1 1 1, , , , , , , , , .N N N in dn n
α

α α σ σ ρ Σ    α          (4) 

Similarly, the vector β  denotes the “vector of boundary parameters” and is 
defined as follows: 

( )†, .uβ β


β                         (5) 

Throughout this work, the symbol “  ” is used to denote “is defined as” or “is 
by definition,” while the “dagger” ( )†  superscript is used to denote “transposi-
tion.” 

For subsequent verification of the expressions that will be obtained for various 
response sensitivities, the closed-form solution of Equations (1) and (2) is pro-
vided below: 

( ) ( )
1

exp .
N

in i i
i

t t nρ ρ β σ
=

 = −  
∑



                (6) 

Although the model parameters inρ , in , iσ , dΣ , together with the boun-
dary parameters β



 and uβ  are considered to be imperfectly known and sub-
ject to uncertainties, the actual probability distributions of these parameters are 
not known in practice. Usually, only the “nominal” (or “mean”) values and the 
respective variations from the nominal values (e.g., standard deviations) of the 
respective components are known. The nominal values will be denoted using the 
superscript “zero” so that the vector comprising the nominal values of the model 
parameters, denoted as 0α , will be defined for the system under consideration 
as follows: 

( ) ( )† †0 0 0 0 0 0 0 0 0
1 1 1, , , , , , , , , .N N N in dn n

α
α α σ σ ρ Σ    α         (7) 

Similarly, the vector comprising the nominal values of the boundary parame-
ters is denoted as 0β  and is defined for the system under consideration as fol-
lows: 

( )†0 0 0, uβ β


β .                        (8) 

In practice, the nominal solution, denoted as ( )0 tρ , is computed by solving 
numerically Equations (1) and (2) using the nominal values for the model and 
boundary parameters. For this illustrative example, the nominal solution of Eq-
uations (1) and (2) has the following expression: 
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( ) ( )0 0 0 0 0

1
exp .

N

in i i
i

t t nρ ρ β σ
=

 = −  
∑



               (9) 

The closed-form expression of ( )2 ; ,R ρ α β  is readily obtained by inserting 
into Equation (3) the expression of ( )tρ  provided in Equation (6) and per-
forming the respective integration, which yields the following expression: 

( ) ( )2
1

1

; , 1 exp .
N

in d
u i iN

i
i i

i

R n
n

ρ
ρ β β σ

σ =

=

 Σ  = − −    
∑

∑


α β         (10) 

As indicated be the expression in Equation (10), even though the forward 
function ( )tρ  is independent of the boundary point uβ , the response 

( )2 ; ,R ρ α β  evidently depends on uβ , so its sensitivities with respect to uβ  
will not vanish. 

3. Application of the 2nd-CASAM for Computing Exactly and  
Efficiently the 1st- and 2nd-Order Response Sensitivities of  

( )R2 ; ,ρ α β  with Respect to the Uncertain Model and  
Boundary Parameters 

The variations between the true and the nominal values of the model and boun-
dary parameters will be considered to constitute the components of the vectors 
δα  and δβ , respectively, defined as follows: 

( ) 0
1, , , ,N i i iα

δ δα δα δα α α−  α               (11) 

( )† 0 0, , , .u u u uδ δβ δβ δβ β β δβ β β− −
   

  β          (12) 

Since the state function is related to the model and boundary parameters α  
and β  through Equations (1) and (2), it follows that the variations and δβ  in 
the model and boundary parameters will cause a corresponding variation in the 
state function ( )tρ  around the nominal solution ( )0 tρ . In turn, these varia-
tions will cause variations in the responses ( )1 ; ,R ρ α β  around the respective 
nominal response values. For subsequent derivations, it is convenient to use the 
compact notation ( ); ,ρe  α β , with the corresponding nominal values de-
noted as ( )0 0 0 0; ,ρe  α β . 

3.1. Computing the 1st-Order Sensitivities ( )R2 ; ,ρ α β  Using the  
1st-LASS 

The first-order total sensitivity of the response ( )2 ; ,R ρ α β  defined in Equa-
tion (3) is provided by the first-order G-differential of this response, which is 
obtained by G-differentiating Equation (3) as shown in Part I (Cacuci, 2020), to 
obtain the following expression: 

( ) ( ) ( )0
2 2 2; ; , ind dirR R Rδ δρ δ δ δ δ= +e α β             (13) 

where the indirect-effect term ( )2
indRδ  and the direct-effect term ( )2

dirRδ , 
respectively, are defined as follows: 
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( ) ( )
0

0

0
2 d ,

u
ind

dR t t
β

β

δ δρΣ ∫


                     (14) 

( ) ( ) ( ) ( ){ } ( ){ }
0

0 0
0

0 0
2 d .

u

u

dir
d d u dt t

R t t t t
β

β β
β

δ δ ρ ρ δβ ρ δβ
= =

Σ + Σ − Σ∫






    (15) 

The direct effect term, ( )2
dirRδ , can be computed directly by using in Equa-

tion (15) the nominal solution provided in Equation (9) to obtain: 

( ) ( ) ( )

( ) ( ) ( )

0
0 0 0 0

2
0 0 1

1

0 0 0 0 0 0 0 0

1

1 exp

exp .

Ndir in
d u i iN

i
i i

i

N

u d in u i i d in
i

R w
w

w

ρ
δ δ β β σ

σ

δβ ρ β β σ δβ ρ

=

=

=

  Σ − −    

 + Σ − − Σ  

∑
∑

∑



 



    (16) 

The indirect effect term, ( )2
indRδ , depends on the unknown variation ( )tδρ , 

of the state function ( )tρ , which is the solution of the following First-Level 
Forward Sensitivity System (1st-LFSS) obtained by G-differentiating Equations 
(1) and (2) around the nominal parameter values: 

( )
( ) ( ) ( )0 0 0 0 0 0 0

1 1

d
, 0

d

N N

i i i i i i u
i i

t
t n t n n t

t
δρ

δρ σ ρ δσ σ δ β β
= =

   + = − + ≤ ≤ ≤ < ∞,∑ ∑


(17) 

( ) ( )
0

0 0d
, at .

d in
t

t
t

t
β

ρ
δρ β δβ δρ β

=

  + = = 
  



  

            (18) 

The need for performing the many large-scale computations for obtaining for 
all possible variations in the model and boundary parameters can be avoided by 
applying the 2nd-CASAM presented in [1]. In order to apply the 2nd-CASAM, the 
function ( )tδρ  is considered to be an element of a Hilbert space ( ) ( )1

tΩH , 

( )0 0,t uβ βΩ


 , endowed with the following inner product, denoted as  
( ) ( )1 2,t tρ ρ , between two (square-integrable) functions ( ) ( ) ( )1

1 ttρ ∈ ΩH  
and ( ) ( ) ( )1

2 ttρ ∈ ΩH : 

( ) ( ) ( ) ( )
0

0
1 2 1 2, d .

u

t t t t t
β

β

ρ ρ ρ ρ∫


                 (19) 

The indirect effect term, ( )2
indRδ , is computed by applying the general 

2nd-CASAM presented in [1] to Equation (17), which commences by using the 
definition of the inner product provided in Equation (19) to form the inner 
product of Equation (17) with a square-integrable function ( ) ( ) ( ) ( )1 1

ttθ ∈ ΩH
and integrating the left-side of the resulting equation by parts once, so as to 
transfer the differential operation from ( )tδρ  onto ( ) ( )1 tθ , to obtain: 

( ) ( )
( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0

1 0 0

1

1
1 1 10 0 0 0 0 0

1

d
d

d

d
d .

d

u

u

N

i i
i

N

i i u u
i

t
t t w t

t

t
t t w t

t

β

β

β

β

δρ
θ δρ σ

θ
δρ θ σ θ β δρ β θ β δρ β

=

=

    + 
  

 
= − + + − 

  

∑∫

∑∫





 

(20) 
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The following sequence of operations is performed next using Equation (20):  
1) Require that the first term on the right-side of Equation (20) be identical 

with the indirect effect ( )2
indRδ  defined in Equation (14). 

2) Use the right-side of Equation (17) to replace the term multiplying ( ) ( )1 tθ  
on the left-side of Equation (20). 

3) Eliminate the unknown quantity ( )0
uδρ β  on the right-side of Equation 

(20) by imposing the condition ( ) ( )1 0 0uθ β = . 
4) Insert the boundary condition provided in Equation (18) into the resulting 

expression. 
The result of the above sequence of operations is the following expression for 

the indirect-effect term ( )2
indRδ : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

0

10 0 0
2

1

1 0

d

,

uNind
i i i i

i

in
t

R n n t t t

t
t

β

β

β

δ δσ σ δ θ ρ

ρ
θ β δρ δβ

=

=

= − +

 ∂   + −  
∂    

∑ ∫






         (21) 

where the first-level adjoint function ( ) ( )1 tθ  appearing in Equation (21) is the 
solution of the following First-Level Adjoint Sensitivity System (1st-LASS): 

( ) ( ) ( ) ( )
1

1 0 0 0 0 0

1

d
, 0 ,

d

N

i i d u
i

t
t n t

t
θ

θ σ β β
=

− + = Σ ≤ ≤ ≤ < ∞∑


      (22) 

( ) ( )1 0 0uθ β = .                       (23) 

Since the 1st-LASS does not depend on any parameter or boundary variation, a 
single large-scale computation for obtaining the adjoint function ( ) ( )1 tθ  suf-
fices for computing exactly and efficiently, using quadrature formulas, all of the 
2 4N +  sensitivities of the response ( )2 ; ,R ρ α β  with respect to all model and 
boundary parameters. Solving the 1st-LASS defined by Equations (22) and (23) 
yields the following expression for the first-level adjoint function ( ) ( )1 tθ : 

( ) ( ) ( )
0

1 0 0 0

0 0 1

1

1 exp .
N

d
u i iN

i
i i

i

t t n
n

θ β β
σ =

=

 Σ  = − −    
∑

∑
           (24) 

Adding Equations (21) and (15), and identifying the quantities that multiply 
the respective parameter variations yields the following expressions for the 
first-order sensitivities of ( )2 ; ,R ρ α β  in terms of the first-level adjoint func-
tion ( ) ( )1 tθ : 

( ) ( )
0

1 02 ,
in

R
θ β

ρ
 ∂

= ∂ e


                    (25) 

( ) ( ) ( )
0

00

10 02 d , 1, , ,
u

i
i

R n t t t i N
β

β

θ ρ
σ

 ∂
= − = ∂ 

∫
e



            (26) 

( ) ( ) ( )
0

00

10 02 d , 1, , ,
u

i
i

R t t t i N
n

β

β

σ θ ρ
 ∂

= − = ∂ 
∫

e


            (27) 
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( )
0

00

2 d ,
u

d

R t t
β

β

ρ
 ∂

= ∂Σ 
∫

e


                    (28) 

( ){ } 0
0

02 ,
u

d t
u

R t
β

ρ
β =

 ∂
= Σ ∂ e

                  (29) 

( ){ } ( ) ( ) ( )
0

0 0

10 02 .d t
t

tR t
tβ

β

ρ
ρ θ β

β =
=

∂  ∂  = −Σ −   ∂ ∂    e








        (30) 

The results in Equations (26) and (27) indicate that the relative sensitivities of 
the response to the parameters iσ , [ ][ ]2 2i iR Rσ σ∂ ∂ , are identical to the rela-
tive sensitivities [ ][ ]2 2i iR n n R∂ ∂  of the response to the parameters in , for 
each 1, ,i N=  , for all of these 2N model parameters, since 

( ) ( ) ( )12 2

2 2 20

d , 1, , .
ft

i i i i

i i

n nR Rt t t i N
R R n R
σ σ

θ ρ
σ

∂ ∂ = − ≡ = ∂ ∂∫       (31) 

As indicated in Equations (28) and (29), the first-order sensitivities of  
( )2 ; ,R ρ α β  with respect to the model/detector parameter dΣ  and the boun-

dary parameter uβ  stem exclusively from the direct effect term, ( )2
dirRδ , and 

can therefore be computed directly using the solution ( )tρ , provided in Equa-
tion (6), of the forward model [cf., Equations (1) and (2)]. Thus, inserting the 
expression of ( )tρ  and performing the operations indicated in Equations (28) 
and (29), respectively, yields the following expressions: 

( )
0

0
0 0 0 02

0 0 1

1

1 exp ,
N

in
u i iN

id
i i

i

R n
n

ρ
β β σ

σ =

=

   ∂  = − −    ∂Σ    
∑

∑e


         (32) 

( )
0

0 0 0 0 0 02

1
exp .

N

d in u i i
iu

R nρ β β σ
β =

 ∂  = Σ −   ∂   
∑

e


            (33) 

On the other hand, as indicated in Equations (25)-(27), the first-order sensi-
tivities of ( )2 ; ,R ρ α β  with respect to the model parameters inρ , iσ , and in  
stem exclusively from the indirect effect term ( )2

indRδ  and can therefore be 
computed after having obtained the first-level adjoint function ( ) ( )1 tθ  by solv-
ing the 1st-LASS, namely Equations (22) and (23). Finally, the sensitivity of 

( )2 ; ,R ρ α β  with respect to the boundary parameter β


 stems from contribu-
tions arising from both the direct and the indirect effect terms, as indicated by 
Equation (30). 

Using the result for the first-level adjoint function ( ) ( )1 tθ  obtained in Equa-
tion (24) in Equations (25)-(27) and performing the respective operations yields 
the following results: 

( )
0

0
0 0 0 02

0 0 1

1

1 exp ,
N

d
u i iN

iin
i i

i

R n
n

β β σ
ρ σ =

=

   Σ∂  = − −    ∂    
∑

∑e


        (34) 

( ) ( )
0

0 0 0
0 0 0 0 0 0 0 02

2
1 10 0

1

1 1 exp ,
N N

in d i
u i i u i iN i ii

i i
i

nR n n
n

ρ
β β σ β β σ

σ
σ

= =

=

   Σ∂    = − + − − −      ∂       
 
 

∑ ∑
∑e

 

(35) 
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( ) ( )
0

0 0 0
0 0 0 0 0 0 0 02

2
1 10 0

1

1 1 exp .
N N

in d i
u i i u i iN i ii

i i
i

R n n
n

n

ρ σ
β β σ β β σ

σ
= =

=

   Σ∂    = − + − − −      ∂       
 
 

∑ ∑
∑e

 

(36) 

Finally, the sensitivity of ( )2 ; ,R ρ α β  with respect to the boundary parame-
ter β



 is computed by using in Equation (30) the expression of first-level ad-
joint function ( ) ( )1 tθ  obtained in Equation (24) together with the expression of 

( )0 tρ  provided in Equation (9), to obtain the following result: 

( )
0

0 0 0 0 0 02

1
exp .

N

d in u i i
i

R nρ β β σ
β =

 ∂  = −Σ −   ∂   
∑

e




            (37) 

Notably for the result obtained in Equation (37), the contribution from the 
indirect effect term involving ( ) ( )1 tθ  partially offsets the contribution from the 
direct effect term involving the expression of ( )0tρ β=



. 

3.2. Computing the 2nd-Order Sensitivities of the Response  
( )R2 ; ,ρ α β  Using Second-Level Adjoint Sensitivity Systems  

(2nd-LASS) 

As indicated by the general methodology presented in [1], the 2nd-order sensitiv-
ities of ( )2 ; ,R ρ α β  are obtained by computing successively the 1st-order 
G-differentials of the 1st-order sensitivities obtained in Equations (25)-(30). The 
detailed steps will be illustrated by computing the 2nd-order sensitivities corres-
ponding to defined in Equation (26), which is representative of the steps that 
would be repeated for the computations of the other 2nd-order sensitivities of 

( )2 ; ,R ρ α β , which would be derived from the 1st-order G-differentials of the 
expressions presented in Equations (25) and (27)-(30). Omitting, for notational 
simplicity, the superscript “zero” (which denotes “nominal values” in this work), 
the 1st-order G-differential of the expression provided in Equation (26) is ob-
tained as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

0

0

0 0

0 0

2

1 1

, 0

2 2

d d
d

,

u u

i

i i

i idir indir

R

n n t t t t t

R R

β εδβ

β εδβ ε

δ
σ

εδ θ εδθ ρ εδρ
ε

δ δ
σ σ

+

+ = =

  ∂ 
  ∂   

   − + + +    
  

         ∂ ∂   = +         ∂ ∂               

∫

e

e e

e e

 

  (38) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

2

1 1 0 0d , for 1, , ;
u

i dir

i i

R

n t t t n i N
β

β

δ
σ

δ θ ρ δβ θ β ρ β

   ∂ 
   ∂     

− + =∫

e



  

 

  (39) 
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( ) ( ) ( ) ( ) ( ) ( )

0

0 0

0 0 0

2

1 1d d , for 1, , .
u u

i indir

i i

R

n t t t n t t t i N
β β

β β

δ
σ

δθ ρ θ δρ

   ∂ 
   ∂     

  − − = 
  

∫ ∫

e

e 

 

   (40) 

The direct-effect term defined by Equation (39) can be computed immediate-
ly, since the 1st-level adjoint function ( ) ( )1 tθ  and the forward function ( )tρ  
are known. However, the indirect-effect term defined by Equation (40) contains 
the variation ( ) ( )1 tδθ  in the 1st-level adjoint function and, respectively, the 
variation ( )tδρ  in the forward function, both of which depend on parameter 
variations and neither of which is immediately available. The variation ( ) ( )1 tδθ  
of the 1st-level adjoint function ( ) ( )1 tθ  is related to the parameter variations 
through the G-differential of the 1st-LASS, which is derived by applying the defi-
nition of the G-differential to Equations (22) and (23) to obtain the following 
equations, evaluated at the nominal parameter values: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1

1

1 0 0

1

d

d

, 0 ,

N

i i
i

N

d i i i i u
i

t
t n

t

t n n t

δθ
δθ σ

δ θ δσ σ δ β β

=

=

 
 − +

= Σ − + ≤ ≤ ≤ < ∞

∑

∑


       (41) 

( ) ( ) ( )
( ) ( )

( ) ( )
0

1
1

1 0

d
d

0.
u

u

t

u

t
t

t
β

θ
δθ δβ

δθ β

=

  + 
  

= =

                   (42) 

Since Equations (41) and (42) depend on the parameter variations, solving 
them would be just as impractical computationally as solving the 1st-LFSS. 
Therefore, the need for solving these equations will be circumvented by ex-
pressing the indirect-effect term defined in Equation (40) in an alternative way 
so as to eliminate the appearance of ( ) ( )1 tδθ  and ( )tδρ . For this purpose, we 
introduce another Hilbert space, denoted as ( ) ( ) ( )2 0 0, ,t t uβ βΩ Ω



H , which 
comprises, as elements, two-component vectors of the form  

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 2,i i it t tψ ψ 

 ψ , with square-integrable functions ( ) ( )2 , 1, 2ij t jψ = . 
The inner product between two elements ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

1 2,i i i tt t tψ ψ  ∈ Ω  Hψ   
and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

1 2,i i i tt t tϕ ϕ  ∈ Ω  Hϕ in the Hilbert space ( ) ( )2
tΩH  will 

be denoted as ( ) ( ) ( ) ( )2 2

2
,i it tψ ϕ  and is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

2
2 2 2 2

2 1
, d .

u

i i ij ij
j

t t t t t
β

β

ψ ϕ
=

∑ ∫


ψ ϕ             (43) 

Using the definition given in Equation (43), construct the inner product of 
Equations (41) and (17) with a square integrable two-component function 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 11 12, tt t tθ θ  ∈ Ω  Hθ  to obtain the following relation: 
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( ) ( ) ( ) ( )
( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

0

0

0

0

1
12 2

11 12

1

1

12 2
11 12

1

d 0
d, d

d0
d

, d .

u

u

N

i i
i

N

i i
i

N

d i i i i
i

N

i i i i
i

n
ttt t t

tn
t

t n n
t t t

t n n

β

β

β

β

σ
δθ

θ θ
δρσ

δ θ δσ σ δ
θ θ

ρ δσ σ δ

=

=

=

=

 − +  
         + 
 

 Σ − + 
  =    

− + 
 

∑
∫

∑

∑
∫

∑





    (44) 

Integrating by parts the left-side of Equation (44) so as to transfer the diffe-
rential operations on ( ) ( )1 tδθ  and ( )tδρ  to differential operations on ( ) ( )2

11 tθ  
and ( ) ( )2

12 tθ  yields the following result: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

0

0

0

0

0

0

2 1 1
11

1

2
12

1

2 1 2 1 20 0 0 0 0 0
11 11 12

2
2 1 2110 0

12 11
1

2
212

12

d d
d

d d
d

d
d

d

d
d

u

u

u

N

i i
i

N

i i
i

u u u u

N

i i
i

t t t n t
t

t t t n t
t

t
t t n t

t

t
t

t

β

β

β

β

β

β

θ δθ δθ σ

θ δρ δρ σ

θ β δθ β θ β δθ β θ β δρ β

θ
θ β δρ β δθ θ σ

θ
δρ θ

=

=

=

 − +  

 + +  

= − + +

 
− + + 

  

+ − +

∑∫

∑∫

∑∫







 

 

( )
0

0 1
d .

u N

i i
i

t n t
β

β

σ
=

 
 
  

∑∫


    (45) 

The last two terms on the right-side of Equation (45) are now required to 
represent the indirect-effect term defined in Equation (40) by imposing the fol-
lowing relations: 

( ) ( ) ( ) ( ) ( ) ( )
2

211
11

1 1

d
exp ,

d

N N

i i i i in i i
i i

t
t n n t n t n

t
θ

θ σ ρ ρ β σ
= =

 + = − = − −  
∑ ∑



   (46) 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
212

12
1

1

1

1

d
d

1 exp .

N

i i
i

N
i d

i u i iN
i

i i
i

t
t n

t
n

n t t n
n

θ
θ σ

θ β σ
σ

=

=

=

− +

 Σ  = − = − − −    

∑

∑
∑

         (47) 

The boundary conditions for Equations (46) and (47) are established by re-
quiring the contributions involving the unknown quantities ( ) ( )1δθ β



 and 
( )uδρ β  in Equation (45) to vanish, which can be accomplished by imposing 

the following conditions: 
( ) ( ) ( ) ( )2 2

11 120, 0.uθ β θ β=     =


                (48) 

The system of equations comprising Equations (46)-(48), which is indepen-
dent of parameter variations, constitutes the 2nd-Level Adjoint Sensitivity System 
(2nd-LASS) for the two-component 2nd-level adjoint function  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 11 12, tt t tθ θ  ∈ Ω  Hθ . 
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Replacing the left-side of Equation (45) by the right-side of Equation (44) and 
taking into account Equations (46)-(48) yields the following expression for the 
indirect effect term defined in Equation (40): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2

1

12 2
11 12

1

2 1 20 0 0 0
11 12

d ,

, for 1, , .

u

i indir

N

d i i i i
i

N

i i i i
i

u u

R

t n n
t t t

t n n

i N

β

β

δ
σ

δ θ δσ σ δ
θ θ

ρ δσ σ δ

θ β δθ β θ β δρ β

=

=

  ∂
  ∂   

 Σ − + 
  =    

− + 
 

+ + =

∑
∫

∑

 



    (49) 

Using the conditions given in Equations (18) and (42) in the last terms on the 
right side of Equation (49) yields the following expression for the indirect-effect 
term: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0

0

0

2

1

12 2
11 12

1

2
12

, d
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, for 1, , .
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u

i indir

N

d i i i i
i

N

i i i i
i
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t

R

t n n
t t t

t n n

t
i N

t

β

β

β

δ
σ

δ θ δσ σ δ
θ θ

ρ δσ σ δ

ρ
θ β δρ δβ

=

=

=

  ∂
  ∂   

 Σ − + 
  =    

− + 
 

   + − =  
   

∑
∫

∑



 



    (50) 

Adding the direct-effect term defined in Equation (39) to Equation (50) and 
identifying in the resulting expression the coefficients multiplying the variations 

iδσ , inδ , inδρ , dtδ , δβ


 and uδβ  yields the following expression for the 
respective 2nd-order sensitivities of the response ( )2 ; ,R ρ α β : 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0

2
2 1 22

11 12d d ; , 1, , ;
u u

j j
j i

R n t t t n t t t i j N
β β

β β

θ θ θ ρ
σ σ
∂

= − − =
∂ ∂ ∫ ∫

 

    (51) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0

0

2
2 1 22

11 12

1

d d
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d ; , 1, , ;

0, ;

u u

u

j j
j i

ij ij

R t t t t t t
n

i j
t t t i j N

i j

β β

β β

β

β

σ θ θ σ θ ρ
σ

δ θ ρ δ

∂
= − −

∂ ∂

=
− = =  ≠

∫ ∫

∫

 





      (52) 

( ) ( )
2

22
12 ; 1, , ;

in i

R i Nθ β
ρ σ
∂

= =
∂ ∂ 

                  (53) 

( ) ( )
0

0

2
22

11 d ; 1, , ;
u

d i

R t t i N
β

β

θ
σ

∂
= =

∂Σ ∂ ∫


                 (54) 

( ) ( )
( ) ( )

0

12
22

11

d
; 1, , ;

d
u

u
u i t

tR i N
t

β

θ
θ β

β σ
=

 ∂
= − = 

∂ ∂   
            (55) 
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( ) ( ) ( ) ( ) ( ) ( )
0

2
1 22

12

d
; 1, , .

di
i t

tR n i N
t

β

ρ
θ β ρ β θ β

β σ
=

 ∂
= − = ∂ ∂  



  



      (56) 

The 2nd-order sensitivities shown in Equations (51)-(56) can be computed af-
ter having determined the 2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 11 12,t t tθ θ 
 θ  

by solving the 2nd-LASS comprising Equations (46)-(48) using the nominal pa-
rameter values (the superscript “zero,” which indicates “nominal values,” has 
been omitted, for simplicity). Since the model parameters in  depend on the 
index 1, ,i N=  , it follows that the right-sides of Equations (46)-(48) also 
depend on this index. Strictly speaking, therefore, the 2nd-level adjoint sensitiv-
ity function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 11 12,t t tθ θ 
 θ  is a function of the index 1, ,i N=  . 

Hence, in the most unfavorable situation, the 2nd-LASS, comprising Equations 
(46)-(48) would need to be solved numerically for each distinct value in , for 
a total of N-times. Even in such a “worse-case scenario,” however, only the 
right sides (i.e., “sources”) of Equations (46) and (47) would need to be mod-
ified, which is relatively easy to implement computationally. The left-sides of 
these equations remain unchanged since they are independent of the index 

1, ,i N=  . Notably, the change of the dependent variables 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2

11 11 11 12 12, ,i i it n u t n t t n u tθ ϕ θ= = =         (57) 

would transform (46)-(48) into the following form:  
( ) ( ) ( ) ( ) ( )
2

211
11

1

d
,

d

N

i i
i

u t
u t n t

t
β ρ

=

+ = −∑                (58) 

( ) ( ) ( ) ( ) ( ) ( )
2

2 112
12

1

d
,

d

N

i i
i

u t
u t n t

t
β θ

=

− + = −∑              (59) 

( ) ( ) ( ) ( )2 2
11 120, 0.uu uβ β=    =



                 (60) 

The above (alternative) 2nd-LASS, comprising Equations (58)-(60) is indepen-
dent of the index 1, ,i N=  , and would need to be solved (numerically or ana-
lytically) only once, to obtain the following expressions for the functions ( ) ( )2

11u t  
and ( ) ( )2

12u t : 

( ) ( ) ( ) ( ) ( ) ( )2 2
11 11

1
exp ,

N

in i i
i

u t t t n tρ β β σ ϕ
=

 = − − =  
∑

 

         (61) 

( ) ( ) ( )
1 1

2
12

1 1 1

1

exp .
N N N

d
u i i u i i i iN

i i i
i i

i

u t t n t n n
n

β σ β σ σ
σ

− −

= = =

=

  Σ       = − + − −               
∑ ∑ ∑

∑
(62) 

The components of the 2nd-level adjoint function ( ) ( )2
1 tθ  are obtained by 

multiplying the functions ( ) ( )2
11u t  and ( ) ( )2

12u t  by the respective model para-
meters in , to obtain the following expressions for the components of the 
2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 11 12,t t tθ θ 
 θ : 

( ) ( ) ( ) ( )2
11

1
exp ,

N

i in i i
i

t n t t nθ ρ β β σ
=

 = − −  
∑

 

            (63) 
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( ) ( ) ( ) ( )2
12 2

1 1
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1 1 exp .
N N

i d
u i i u i iN i i

i i
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n
t t n t n
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θ β σ β σ

σ
= =
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 Σ    = − + − − −         
 
 

∑ ∑
∑

  (64) 

Using Equations (63) and (64) in Equations (51)-(56) and performing the re-
spective operations yields the following results for the partial 2nd-order sensitivi-
ties: 
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( ) ( )
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i in d u u i i
iu i

R n n i Nρ β β β β σ
β σ =

∂  = Σ − − = ∂ ∂  
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      (69) 

( ) ( )
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exp , 1, , .

N

i in d u u i i
ii

R n n i Nρ β β β β σ
β σ =

∂  = − Σ − − = ∂ ∂  
∑

 



     (70) 

As before, the right-sides of expressions shown in Equations (65)-(70) are to 
be evaluated at the nominal values for the parameters, but the superscript “zero,” 
which indicates “nominal values,” has been omitted, for notational simplicity. 

The expressions of the remaining 2nd-order sensitivities of ( )2 ; ,R ρ α β  can 
be derived following the same procedure as outlined above, and as also outlined 
in [2] since these derivations would not illustrate any new concepts, they will not 
be presented in this work. 

4. Conclusions 

The results obtained by applying the general 2nd-CASAM presented in [1] to the 
paradigm evolution/transmission benchmark analyzed in this work indicate the 
following major characteristics of this powerful methodology for computing ex-
actly and efficiently the 1st- and 2nd-order sensitivities of model responses with 
respect to model and boundary parameters:  

1) For a model comprising Nα  distinct but uncertain model parameters and 
Nβ  distinct but uncertain distinct boundary parameters, a single adjoint com-
putation, to solve the 1st-LASS, is necessary for computing exactly all of the
N Nα β+  1st-order response sensitivities to the model’s uncertain parameters 
and boundaries. In contradistinction, N Nα β+  computations would be needed 
to obtain approximate values for the 1st-order sensitivities if forward and/or sta-
tistical methods were used.  

2) By considering each 1st-order sensitivity as a response and developing a 
corresponding 2nd-level adjoint sensitivity system (2nd-LASS) for computing 
the respective 2nd-order sensitivities, the application of the 2nd-CASAM yields 
exact expressions/values for all (mixed and unmixed) 2nd-order sensitivities. 
For each 1st-order sensitivity, the solution of each of the 2nd-LASS is at most a 
two-component (vector) 2nd-level adjoint sensitivity function of the form 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 2, , 1, ,i i it t t i N Nα βψ ψ  = +  ψ . Hence, although these 2nd-level 

adjoint sensitivity functions are independent of any parameter variations, the 
2nd-LASS would need to be solved for N Nα β+  distinct right-sides (i.e., “source 
terms”), in the most unfavorable situation. Even in this “worse-case scenario,” 
only the right sides of the 2nd-LASS would need to be modified in computational 
computer codes, which is a relatively easy programming task. The left-sides of 
the 2nd-LASS equations (which contain differential operators, and which would 
therefore involve “solvers” that would be much more difficult to modify compu-
tationally) remain unchanged. 

3) In many practical situations, it is possible to reduce drastically the number 
of computations involving the 2nd-LASS. Occasionally, the solutions of some of 
the 2nd-LASS can be written down by inspection, without actually solving the 
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corresponding 2nd-LASS. For the paradigm evolution problem analyzed in this 
chapter, for example, the 2nd-LASS would need to be solved only four times, to 
compute the 2nd-level adjoint functions ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 2, , 1, 2,3, 4j j jt t t jψ ψ  = ψ , 
which would suffice for obtaining all of the ( )( )1 2N N N Nα β α β+ + +  distinct 
2nd-order response sensitivities. Of course, such a very large reduction in the 
number of large-scale computation cannot be expected in every practical prob-
lem, but in most cases, the number of computations required for computing the 
complete set of 2nd-order response sensitivities if far less than the number, 
( )N Nα β+ , of model parameters. 

4) The specific 2nd-order sensitivities of interest can be selected “a priori,” 
based on the magnitude/importance of the 1st-order sensitivities. 

5) As has been generally shown by Cacuci [1] [2] [3], the mixed 2nd-order sen-
sitivities are obtained twice, stemming from distinct 2nd-LASS. This fact enables 
the 2nd-CASAM to provide an inherent independent verification of the correct-
ness and accuracy of the 2nd-level adjoint sensitivity functions that are used to 
compute the respective mixed 2nd-order sensitivities. 

6) The un-mixed 2nd-order sensitivities of the form ( )2 2
1 itρ α∂ ∂  are ob-

tained only once. Therefore, they can be independently verified either by solv-
ing the 2nd-LFSS, which would yield their exact values, or they can be com-
puted approximately (rather than exactly) by using finite difference formulas 
in conjunction with re-computations, e.g.,  

( ) ( ) ( ) 22 2 0 0 02i i i i i i iR R R Rα α δα α α δα δα − ∂ ∂ ≅ + − + −  . 
7) Notably, contributions to the response sensitivities with respect to the un-

certain boundary parameters can arise from either the model’s boundary condi-
tions, from the definition of the model’s response or from both. It has been 
shown that in some cases, the contributions from the model’s boundary condi-
tions may cancel partially the “direct-effect” contributions stemming from the 
response’s definition. 

Ongoing work aims at extending the 2nd-CASAM to include the consideration 
of additional responses (e.g., ratios of functionals), as well as consideration of 
coupled physical systems having common imprecisely known internal interfaces 
in phase-space.  
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