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Abstract 
The complex behavior and predictability of the Dry Spell Lengths (DSL) se-
ries obtained in Benin synoptic stations, from 1951 to 2010 are analyzed in 
this paper using a fractal approach. The synoptic stations are located in Co-
tonou, Bohicon, Save (subequatorial climate), and Parakou, Natitingou, Kan-
di (Sudanian climate). The DSLs are computed by considering four thresholds 
level, R0 = {1.0, 1.5, 2.0 and 5.0} mm/day. The fractal trace is estimated for 
dry spell density by the mean of the “Dry Spell Spell” (DSS) n-index. The res-
caled range method is used to determine the predictability of DSL. By ana-
lyzing the DSS, results show that low DSS n-index values (n-index < 0.4) are 
more favored in the northern part of Benin than in the southern region, whe-
reas, high values of DSS n-index (n-index > 0.4) occur preferentially in the 
southern part. Therefore, during 1951-2010, the Sudanian region presents 
frequent wet spells, alternated with short dry spells than in the subequatorial 
one. However, a high degree of long dry spell persistence, followed by short 
dry events is observed in the subequatorial region than in the Sudanian one. 
The longest DSL is observed in the subequatorial region, especially in Coto-
nou. Except for the Kandi station, the DSLs series obtained at synoptic sta-
tions are characterized by persistence. Therefore, autoregressive processes 
could be applied to the DSL series. Generally, the physical process governing 
dry spells observed at Save, Natitingou, and Bohicon are consistently pre-
dictable than the process governing the stations of the Cotonou and Parakou. 
However, at Kandi station, the DSL process approximates the usual Brownian 
motion, and it is, therefore, unpredictable or difficult to predict. 
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1. Introduction 

In West Africa, rainfed agriculture is 90% of the cases responsible for food pro-
duction, and 80% of the population in West Africarelieson it for providing its 
livings (Rockstrom, 2000). However, rainfed agriculture depends highly on the 
variability of the West African monsoon system, which activities determine the 
rain regime in the region (FAO, 2016). Rainfed agriculture is sensitive both, to 
the length and the occurrence of wet and dry spells during the rainy season (Gor-
nall et al., 2010; Froidurot & Diedhiou, 2017). Thus, the understanding of the 
variability of wet and dry spells could be used for forecasting a particular crop 
growth cycle or the variety of crops to sow in a given location of West Africa 
(Sivakumar, 1992). Dry and wet spells effects have a direct impact on the econ-
omy of the countries because they affect, not only agriculture but also the related 
sectors such as fisheries, health, hydroelectricity (Jayawardene et al., 2005; Ma-
thugama & Peiris, 2011). For instance, wet and dry spells affect water quality in a 
drainage basin, which in turn may have health implications for society (Whit-
worth et al., 2012). Longer dry spells also can interrupt generating electricity in 
hydroelectric power systems (Jayawardene et al., 2005). In this regard, an under-
standing of wet and dry spell lengths is crucial for water resources management, 
for the best planning, and designing applications in agriculture and the envi-
ronment (Mathugama & Peiris, 2011; Froidurot & Diedhiou, 2017). The Dry spell 
lengths are defined as the number of consecutive days with daily rain amounts 
lower than a certain chosen threshold. It represents a valuable magnitude to 
analyze several aspects of drought episodes (Lana et al., 2015). The accurate 
analysis of dry spell length is relevant for a better understanding of any pluvi-
ometric regime (Lana et al., 2008a). It is argued from literature (e.g., Lana et al., 
2006, 2008a, 2008b) that the studies of DSLs series could help to improve know-
ledge of time trends and physical mechanisms governing drought sequences. 
Several studies have been conducted worldwide to explore the variability of wet 
and dry spell characteristics. In West Africa, these characteristics have been ana-
lyzed focusing on two aspects. The first one is related to the spatial distribution 
and temporal trend in the wet or dry spells, one can cite: (Sivakumar, 1992; Sa-
nogo et al., 2015; Froidurot & Diedhiou, 2017; Girma et al., 2020). The second 
aspect focuses on the curve fitting of probability distribution in wet or dry spells 
(Ezeh et al., 2016; Salack et al., 2016). Generally, the probabilistic behavior of dry 
periods’ characteristics is determined analytically by assuming a given stochastic 
structure. The stochastic models used to study dry spells are subdivided into two 
different groups: the first group mainly refers to the non-homogeneous Poisson 
model (driven data models), while the second can be represented by Markov 
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processes (physically-based models) (Sirangelo et al., 2019; Manikandan et al., 
2017; Reddy et al., 2008). The Markov chains probabilistic model is widely 
used for the analysis of dry and wet spells in different parts of the world for 
example, in East Africa one can cite studies of: Matarira & Jury, 1992; Biamah 
et al., 2005; Sharma, 1996; Bekele, 2001; Barron et al., 2003; Seleshi & Camber-
lin, 2006; Fischer et al., 2013; Admasu et al., 2014. In West Africa, the works of 
Ezeh et al., 2016; Salack et al., 2016; Afouda et al., 2002; Afouda, 1988, 1989, 
1990; Afouda & Adisso, 1997; Le Barbé & Lebel, 1997 are the most dominant 
one. 

It’s argued by (Cahill, 2003; Hui et al., 2005; Muller, 2006) that the first-order 
Markov chains have a relatively short memory that may limit the model’s ability 
to reproduce adequately long dry and/or wet spells, as well as inter-annual varia-
bility. According to Wilks, 1999 and Hayhoe, 2000, higher-order Markov chains, 
often improve these inadequacies; however, they require an estimation of more 
parameters thereby placing stricter demands on the amount of input data. Fur-
thermore, the estimation of more parameters introduces uncertainties in the 
methods or models using these parameters. An alternative to the Markov chains 
process is to use the wet-dry spell model. The problem is that alternation be-
tween dry and wet events presents self-similarity, which is the key characteristic 
of fractal objects (Martínez et al., 2007; Feng et al., 2015; Dayeen & Hassan, 2016; 
Monjo, 2016; Lucena et al., 2018). In this context, the Fractal approach can be an 
efficient alternative to explore the variability of wet and dry spell characteristics, 
mainly to study their complexity and predictability (Lana et al., 2010; Lana et al., 
2015; Monjo, 2016). 

Fractal concepts are reliable tools often used with efficient results to charac-
terize the physical laws governing the complex natural processes taking place in 
precipitations time series and their predictability (Lana et al., 2010; Lovejoy & 
Mandelbrot, 1985; Hubert et al., 1993; Sivakumar et al., 2001; Martınez et al., 
2007). However, in West Africa, especially in the Benin Republic, a country chal-
lenging agriculture, hydroelectricity, and health sector, the complex behavior, 
and predictability of DSL series related to fractal theory has never been investi-
gated yet. That is why our study aims to introduce, for the first time, the analysis 
of the complex behavior of dry spells lengths and quantify the predictability of 
these dry spell regimes in the fractal framework in the Benin Republic. The con-
tent of the paper is organized as follows: (i) collected data and the methodology 
are presented in Section 2. Section 3 presents the results and discussions. Con-
clusions are summarized in the final section. 

2. Materials and Methods 
2.1. Study Area 

The area of study covers the Benin Republic synoptic stations (Kandi, Natitin-
gou, Parakou, Save, Bohicon, and Cotonou) which geographical locations are 
indicated in Figure 1. The country is located in West Africa between 6˚25' and  
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Figure 1. Hydrometeorological map of Benin republic showing the locations of synoptic stations’, the climate regimes, 
and precipitations isohyets. 

https://doi.org/10.4236/ajcc.2021.104030


M. N. Agbazo et al. 
 

 

DOI: 10.4236/ajcc.2021.104030 601 American Journal of Climate Change 
 

12˚30' North latitude and 0˚45' and 4˚ East longitude. Benin is characterized by 
three main climatic zones: the Sudanianclimate in the northern part where Kan-
di, Natitingou, and Parakou stations are located. Whereas, Save, Bohicon, and 
Cotonou are located in the Subequatorial climate. Sometimes, Save station is 
considered as located in the transition area between the Sudanian and the sub-
equatorial one. According to Boko (1988), the Sudanian climate zone is charac-
terized by the succession in the year of a single dry season (November to March) 
and a rainy season with maximum rainfall in August September. Whereas, the 
Subequatorial climate is characterized by a bimodal rainfall regime. There are 
four more or less marked seasons: two rainy seasons (March to July and Sep-
tember to November) and two dry seasons (July to September and November to 
March). The rainfall maxima usually take place in June for the long rainy season 
and in October for the short rainy season. The transition zone between the Su-
danianclimate and the subequatorial climate is located from the latitude of Bo-
hicon to the latitude of Tchaourou (Near Parakou station). 

2.2. Data Analysis 

Daily rainfall data used in this study are collected from the six synoptic stations 
of Benin and were provided by “Météo-Bénin”, the Benin meteorology service in 
charge of climatic data. In the present study, only the rainfall data recorded dur-
ing the rainy season over the period from 1951 to 2010 are considered. The de-
scriptive statistics of the precipitation time series collected during the study pe-
riod are presented in Table 1. The highest maximum value of precipitation dur-
ing the study period is observed at the Cotonou station. In contrast, the lowest 
value is noticed at Bohicon station. The skewness and kurtosis parameters of the 
precipitation time series present information about differences in their statistical 
distributions. Precipitation reveals a positive skewness at all the synoptic stations 
which indicates that the distributions are right-tailed. The lowest skewness and 
kurtosis values are observed at Natitingou, informing that the precipitation’s 
distribution at this station has a more rounded peak and thinner tails, compared 
to the other stations. However, the highest skewness and kurtosis values are ob-
served at Cotonou, indicating strongly right-tailed distributions with sharp 
peaks and fat tails. For more detail in the study area, the reader can see Agbazo 
et al. (2019, 2021). 
 
Table 1. Statistical description of the whole sixty-year daily meteorological time series from 
Benin’s synoptic stations. 

Synoptic stations Min Max Skewness Kurtosis 

Cotonou 0 194.2 4.68 33.15 
Bohicon 0 128.5 4.00 23.60 

Save 0 184.2 4.31 30.60 

Parakou 0 176 4.00 27.17 
Natitingou 0 149.7 3.20 17.487 

Kandi 0 157.8 3.69 22.62 
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2.3. Background for Dry Spells Length 

A dry spell length is defined as a period of consecutive days with rainfall below 
a given threshold. The thresholds value, commonly used to define a dry spell 
length (DSL) in various parts of the world are 0.1, 0.85, 1.0, 1.5, 2, 5.0 and 10.0 
mm/day (Kutiel & Maheras, 1992; Harrington & Flannignan, 1993; Perzyna, 
1994; Anagnostopoulou et al., 2003; Serra et al., 2006, 2013, 2014; Groisman & 
Knight, 2008; Zolina et al., 2013). In Africa, 0.8 or 1 mm/day had been used (Se-
leshi & Camberlin, 2006; Froidurot & Diedhiou, 2017). Sometimes, these thre-
sholds are considered insufficient for crops use (Sivakumar, 1992; Froidurot & 
Diedhiou, 2017). Rainfall amount less than 1.0 mm is supposed to evaporate di-
rectly before any use (Chaudry & Sheikh, 2001; Douguedroit, 1987; Lázaro et al., 
2001; Epifani et al., 2004). In the current study, DSLs series are computed by 
considering four thresholds level, R0 = {1.0, 1.5, 2.0, and 5.0} mm/day. As a long 
dry spell has strong influences on agriculture and drought, DSLs are generally 
divided into short and long dry spells by various authors (e.g., Sivakumar, 1992; 
Bonsal & Lawford, 1999; Huth et al., 2000; Gong et al., 2005). The short dry 
spells are defined as those events with alength shorter than 10 days while the 
long dry spells refer to the others (Gong et al., 2005). In this paper, the same 
division is made on the DSLs time series. Moreover, the DSLs series are com-
puted in each station during its rainy season according to its corresponding 
climatic zone. Computation of dry spells is done during rainy seasons. The 
MATLAB software codes are rewritten and used to achieve the study calcula-
tions. 

2.4. Dry Spell N-Index Calculation  

The DSL structure is analyzed with the use of self-similarity features obtained 
from the DSS n-index, which is developed by Monjo et al. (2019). According to 
Monjo et al. (2019) DSS n-index method can be briefly described as follows: 

Let { }| 1, 2, ,tD t N=   be a time series of consecutive dry spells duration. Dif-
ferent independent events (“spells of spells”) are built around the dry value (D0 = 
1) and each separated event is referred to as a “dry spell spell”. The maximum 
accumulated dry spell duration (Pi) of a DSS event is defined as: 

{ } 11

1
max

N ik i
i jj k k

P D
− ++ −

= =
= ∑                         (1) 

where i is the number of accumulated events, and N is the total of considered 
events. 

For each DSS event, the maximum average duration Yi at i-step is: 

i
i

P
Y

i
=                                (2) 

Therefore, the maximum average duration satisfies a scaling relationship con-
cerning this event number:  

1

1 n
iY

Y i
 =  
 

                              (3) 
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Y1 is the maximum expected dry length per year and n is the DSS n-index. 
Moreover, d ≤ n ≤ 1, where, d is the fractal dimension of the spells considered 
(Monjo, 2016).  

From, Equations (2) and (3), Pi can be deduced as: 
( )1

1
n

iP Y i −=                             (4) 

For each DSLs series, the parameters Y1 and DSS n-index is fitted for each DSS 
and averaged at each synoptic station. 

Information on the structure of the drought lacunarity is provided by the DSS 
n-index, specifically, it measures the probability of irregularity (if n ~1) or regu-
larity (if n ~0). Dry spells are considered regular values when similar dry spell 
lengths are usually consecutive. In contrast, generally, long dry spells are followed 
by much shorter dry sequences in the irregular values cases. It is important to 
keep in mind that a high degree of irregularity is correlated with the longest dry 
spells. As in Monjo et al. (2019), DSS n-index values are considered as: 1) lower if 
DSS n-index is lower than 0.3; 2) medium when DSS n-index is between 0.3 and 
0.4, and 3) higher when DSS n-index is greater than 0.4. 

2.5. Rescaled Analysis 

The predictability of complex dynamic systems such as the DSL series is quanti-
fied by interpreting the meaning of the Hurst exponent (H) (Feder, 1988; Goltz, 
1997; Lana et al., 2010). Indeed, 1) the DSL series will present a clear sign of ran-
domness when its Hurst exponent value is equal to 0.5, 2) the DSL series will 
present persistence (time trends on a previous DSL series contribute to DSL pre-
diction) if Hurst exponent value is well above 0.5, 3) in a contrast, the DSL series 
will present anti-persistence (an average of all previous DSL values contributes to 
DSL prediction), when Hurst exponent value is well below 0.5 (Lana et al., 2010). 
To calculate the Hurst exponent, numerous approaches are proposed in the scien-
tific literature (Peng et al., 1994; Peters, 1994; Taqqu et al., 1995; Kendziorski, 
1999). Among these, the method of rescaled-range (R/S) analysis is used in the 
present study (Peters, 1994; Mandelbrot, 1985; Feder, 1988). The Rescaled-range 
(R/S) analysis is chosen because it is the most efficient method used in litera-
ture. 

The description of the one-dimensional R/S analysis (Hurst, 1951; Lana et al., 
2010; Tatli, 2015) is shown below: 

Let { }| 1, 2, ,ty t N=   be an original DSL series. The R/S statistics areestimated  

by computing the subsets of DSL series mean 1

1
kky yτ

τ =
=
τ∑ , also Rτ  and Sτ   

are given respectively by (5) and (6): 

( ) ( )1 11 1max mini k i kk
i i

kR y y y yτ ≤ ≤τ τ ≤ ≤τ τ= =
 = − − − ∑ ∑          (5) 

( )
1 2

2
1

1
kkS y yτ

τ τ=

 = − τ 
∑                       (6) 

where, 1 N≤ τ ≤ , Sτ  is the standard deviation. If the fractal behavior exists, 
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the rescaled range ( )R S R Sτ ττ
=  follows a power-law relationship: 

( ) HR S a
τ
= τ                             (7) 

H is the Hurst exponent and a is a constant and Hurst exponent is the slope 
obtained by plotting ( )log R S

τ
 versus ( )log τ  as: 

( ) ( )log log logR S a H
τ
= + ⋅ τ                      (8) 

The rescaled analysis is performed on DSLs series obtained by considering the 
four thresholds level R0 = {1.0, 1.5, 2.0, and 5.0} mm/day. The predictability index 
(PI) and the Hurst exponent are related as (Voss, 1985; Rangarajan & Sant, 1997, 
2004; Mittall & Bhardwaj, 2011): 

PI 2 0.5 H= −                              (9) 

The corresponding process is unpredictable when PI is closed to zero. In con-
trast, the studied process is very predictable if PI is closed to one (Mittall & 
Bhardwaj, 2011). 

3. Results and Discussion 

Figure 2 compares the frequency of occurrence (FoO) of the DSS n-index at 
each synoptic station. The results show that: 1) when considering the thresholds 
level, R0 = {1.0, 1.5, 2.0 and 5.0} mm/day, the FoO of lower DSS n-index, which 
values are lower than 0.3 from the synoptic stations located in Sudanian climate 
(Kandi, Natitingou and Parakou) are systematically higher than those obtained 
at the station located in Subequatorial climate (Save, Bohicon and Cotonou). 
This result indicates that the lower DSS n-index is more favored in the northern 
part (in the Sudanian area) of Benin than in the southern part (in Subequatori-
al). Moreover, for R0 = {1.0, 1.5, 2.0} mm/day, the highest FoO of lower DSS 
n-index is obtained at Natitingou station and the lowest one is obtained at Save. 
However, when R0 = {5.0} mm/day, the highest FoO of lower DSS n-index is ob-
tained at Kandi station and the lowest is obtained at Bohicon station. These 
findings imply that the Northern Benin (Sudanian climate) is more characte-
rized by high degree of persistence of very short dry spells, alternating with very 
frequent wetdays than in the southern part. These results are in agreement with 
the findings of Monjo et al. (2019), who have shown that low values of DSS 
n-index are generally found in rainforest zones, which climate is similar to those 
of Sudanian one. 2) Whatever, the thresholds level considered, excepted at Co-
tonou station, the FoO of medium DSS n-index (DSS n-index is between 0.3 and 
0.4) obtained in Subequatorial climate are systematically greater than those ob-
tained in lower DSS n-index case. However, the opposite findings are obtained 
in Sudanian climate. Overall stations and thresholds level considered, the lowest 
FoO of medium DSS n-index is obtained at Cotonou. 3) It is noted that when the 
thresholds level, R0 = {1.0, 1.5, 2.0 and 5.0} mm/day are considered, the FoO of 
higher DSS n-index (DSS n-indexgreater than 0.4) obtained at the station lo-
cated in Subequatorial climate (Savè, Bohicon and Cotonou) are systematically  
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Figure 2. Histograms of the frequency of occurrence (FoO) of DSS n-index per bins (size 0.2) of DSS n-index values obtained for 
DSLs series with different thresholds level, R0, of 1.0 mm/day (a), 1.5 mm/day (b), 2.0 mm/day (c) and 5.0 mm/day (d). 
 

higher than those obtained at (Kandi, Natitingou and Parakou) synoptic stations 
located in Sudanian climate. These findings indicate that the higher DSS n-index 
occurs preferentially in the southern part. Furthermore, the highest and lowest 
values are obtained respectively at Cotonou and Natitingou station. These results 
mean that the Subequatorial climate is characterized by the highest values of 
DSS n-index, which involve a long dry spell followed by shorter dry events. 
These findings are consistent with those of Monjo et al. (2019), who argued that 
the tropical and subtropical regions are characterized by high values of the index 
(n-index > 0.4). The findings at Cotonou could be explained by the fact that Co-
tonou is very closer to the Atlantic Ocean (a.s.l 3.5 m), which strongly influences 
the structure of its precipitation’s regime. Whereas those obtained at Natitingou 
station are not surprising because the region of Natitingou is known as the most 
watered area of Benin. It is also a mountainous area. 

Figure 3 presents the same as Figure 2 but for two groups of DSS n-index 
(n-index < 0.4 and n-index > 0.4). The first group is obtained when we combine  
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Figure 3. Same as Figure 2 but for two groups of DSS n-index (n-index < 0.4 and n-index > 0.4). 

 
lower DSS n-index (DSS n-index lower than 0.3) and medium DSS n-index (DSS 
n-index is between 0.3 and 0.4), the second one is the higher DSS n-index (DSS 
n-index greater than 0.4). 

The results presented in Figure 4 concerned only DSLs series obtained by 
considering the thresholds level of 1.0 mm/day. But the result is qualitatively the 
same for thresholds levels of 1.5 and 2.0 mm/day. Figure 4 shows the number of 
values per 2D bin for the maximum expected dry spell, Y1, and DSS n-index, per 
synoptic station for DSLs series obtained by considering thresholds level of 1.0 
mm/day. The results (Figure 3 and Figure 4) suggest that DSS n-index appears 
preferentially between 0.0 and 0.4. Therefore, the predominance of low (DSS 
n-index n < 0.3), medium (DSS n-index within the interval (0.3, 0.4)) values of 
the DSS n-index is identified in Benin synoptic stations during the period 
1951-2010. Based on the classification made by (Monjo et al., 2019), these results 
indicate that generally Benin synoptic stations are characterized by frequent wet 
spells alternating with short dry spells. Moreover, at these stations, the maxi-
mum expected dry spell is generally lower than 10 days. Thus, they could have a  
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Figure 4. The number of values per two-dimensional bin (10 days × 0.2) of maximum 
expected dry spell (Y1) and DSS n-index, per synoptic station for DSLs series obtained by 
considering thresholds level of 1.0 mm/day. 
 
low influence on agriculture and drought. From literature, only long dry spells 
(DSL with length longer than 10 days) have a strong influence on agriculture 
and drought (Sivakumar, 1992; Bonsal & Lawford, 1999; Huth et al., 2000; Gong 
et al., 2005). Despite the predominance of low, medium values of the DSS n-index, 
it is important to highlight those high values of the DSS n-index associated with 
longer dry spells are also identified at Cotonou station (subequatorial region). 
This result reveals the occurrence of very long dry spells alternating with short 
or long wet events in southern Benin. 

Figure 5 and Figure 6 present the averaged values of the maximum expected 
dry length per year (Y1) over 1951-2010 and DSS n-index per synoptic station 
for each DSL series. From Figure 5 and Figure 6, the South-North distribution 
of averaged values of Y1 and DSS n-index shows that whatever the thresholds 
among the chosen ones, the highest and lowest values of these two parameters  
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Figure 5. South-North distribution of the averaged values over 1951-2010 of DSS n-index 
for DSLs series with different thresholds level, R0, of 1.0 mm/day (a), 1.5 mm/day (b), 2.0 
mm/day (c) and 5.0 mm/day (d). Cotonou (Co), Bohicon (Bo), Save (Sa), Parakou (Pa), 
Natitingou (Na), and Kandi (Ka). 
 
are, respectively, obtained at Cotonou and Natitingou stations. The coincidence 
of the highest and lowest values of Y1 and DSS n-index at the same station is 
logical because the n-index is strongly correlated with the maximum and the av-
erage lengths of dry spells (Monjo et al., 2019). The lowest values of Y1 (~6 days) 
and DSS n-index (~0.3) obtained at Natitingou station indicate that Natitingou 
is, therefore, more watered, which is not surprising from Benin precipitation re-
gime (Boko, 1988). However, the highest values of Y1 (~19 days) and DSS n-index 
(~0.43) obtained at Cotonou may be due firstly to the influence of the Atlantic 
Ocean, very closed to Cotonou Synoptic station as we have mentioned above. It 
could affect Cotonou’s rainfall by the usual variation of sea surface temperature 
or sea humid air circulation around the station. Also, the anthropic effect 
created by the presence of many industries, and the airport around the mea-
surement site could highly influence the precipitation regime. It appears that, 
except Kandi station, averaged values of Y1 and DSS n-index decrease remarka-
bly with the latitude. 

Figure 7 shows the South-North distribution of Hurst exponents throughout 
the stations for the four thresholds level, R0 = {1.0, 1.5, 2.0, and 5.0} mm/day. It  
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Figure 6. South-North distribution of the averaged values over 1951-2010 of the maxi-
mum expected dry length per year (Y1) for DSLs series with different thresholds levels, R0, 
of 1.0 mm/day (a), 1.5 mm/day (b), 2.0 mm/day (c) and and 5.0 mm/day (d). Cotonou 
(Co), Bohicon (Bo), Savè (Sa), Parakou (Pa), Natitingou (Na), and Kandi (Ka). 
 

 
Figure 7. South-North distribution of the Hurst exponent for the four DSLs series with 
different thresholds levels, R0, of 1.0, 1.5, 2.0, and 5.0 mm/day. Cotonou (Co), Bohicon 
(Bo), Save (Sa), Parakou (Pa), Natitingou (Na), and Kandi (Ka). 
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suggests that the same local rainfall regime frequently generates DSL series with 
predictive characteristics, varying from lower persistence to stronger persistence, 
depending on the threshold R0. This indicates a sign of complexity in the DSL 
series from the rainfall regime in Benin. Kandi is the synoptic station where the 
lower values of H are obtained whatever the thresholds level. Moreover, at this 
station, Hurst exponents are very close to 0.5 (i.e., the associated fractal dimen-
sion could be 1.5) for the four thresholds. This is an evident sign of randomness 
of the physical process governing dry spells observed at Kandi. The findings 
could be explained by the fact that Kandi is near the Sahelian desert region 
where the precipitation regime is strongly influenced by dryer air, often blowing 
from the Sahara to that region each year. Except for Kandi station, Benin synop-
tic stations are characterized by Hurst exponents values exceeding 0.5, especially 
for 1.0, 2.0, and 5.0 mm/day, H values are within 0.53 - 0.73 interval. Therefore, 
the DSLs series is characterized by a persistent character in these synoptic sta-
tions of Benin. Moreover, the intensity level of the persistence depends on the 
type of climate and the chosen thresholds level. Thus, time trends on previous 
DSL series contribute to DSL prediction. In this regard, autoregressive processes 
could be applied to DSL series, excepted to those obtained at Kandi synoptic sta-
tion. 

Figure 8 presents the latitudinal variation of the Pearson coefficient for Hurst 
exponent for each of the four thresholds level R0. The results show that whatever 
the thresholds level R0, the Hurst exponent is estimated by a Pearson coefficient  
 

 
Figure 8. Spatio-temporal variation of the Pearson coefficient for Hurst exponent obtained 
for the four thresholds level, R0, of 1.0, 1.5, 2.0, and 5.0 mm/day. Red and black represent 
the upper bound and the lower bound of the 95% confidence interval. Green represents 
the Pearson coefficient. Cotonou (Co), Bohicon (Bo), Save (Sa), Parakou (Pa), Natitingou 
(Na), and Kandi (Ka). 
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Figure 9. Dry spell length predictability graph for the four thresholds level, R0, of 1.0, 1.5, 
2.0, and 5.0 mm/day. Cotonou (Co), Bohicon (Bo), Savè (Sa), Parakou (Pa), Natitingou 
(Na), and Kandi (Ka). 
 
between 0.90 and 0.97, indicating the robustness of the linear regression used to 
fit the log-log representation. The upper and the lower bound of the 95% confi-
dence interval obtained through Fisher’s z-transformation (Wilks, 2006) have 
the same sign meaning that the computation is statistically significant. 

Figure 9 presents the predictability indices (PI) for DSLs series obtained by 
considering respectively the four thresholds level, R0, of 1.0, 1.5, 2.0, and 5.0 
mm/day. The spatial distribution of the PI values shows large variability of PI 
across synoptic stations and thresholds level. Therefore, the predictability indic-
es of DSLs depend on the geographical location and the chosen thresholds level 
used to define a dry spell length (DSL). These results suggest that generally, the 
physical process governing dry spells observed at Save, Natitingou, and Bohicon 
are consistently predictable than the process governing dry spell at Cotonou and 
Parakou DSLs series. However, at Kandi station PI value is generally closer to ze-
ro, then the DSL process approximates the usual Brownian motion and is, there-
fore, unpredictable or difficult to predict, showing the complex behavior and pre-
dictability of DSL series in Benin. The patterns extracted by the predictability in-
dex give much more insight than the H values obtained above. 

4. Conclusion 

The main objective of this paper is to study the complex behavior and predicta-
bility of DSL series obtained in Benin synoptic stations from 1951 to 2010 using 
the n-index and rescaled range method. DSLs are computed by considering four 
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thresholds level, R0 = {1.0, 1.5, 2.0 and 5.0} mm/day. The main findings obtained 
can be summarized as follows: 

1) The predominance of low and medium DSS n-index values (n-index < 0.4) 
is identified in the northern part of Benin, whereas, high values of DSS n-index 
(n-index > 0.4) occur preferentially in the southern part. Therefore, the occur-
rence of the short dry spells (lower than 10 days) alternating with longer or 
shorter wet spells occurs preferentially in northern Benin than in the southern 
part. However, the occurrence of long dry spells (DSL with a length longer than 
10 days) alternating with short or long wet events is more favored in the south-
ern part of Benin. 

2) The highest and lowest values of averaged values over 1951-2010 of the 
maximums expected dry length per year (Y1) and DSS n-index are obtained re-
spectively, at Cotonou and Natitingou stations. The lowest averaged values of Y1 
and DSS n-index are respectively ~6 days and ~0.3 whereas the highest values 
are ~19 days and ~0.43. 

3) It appears that, except Kandi station, averaged values of Y1 and DSS n-index 
decrease remarkably with the latitude. 

4) Randomness and persistence are present in the Beninese DSL series. Thus, 
time trends on previous DSL series contribute to DSL prediction. Therefore, au-
toregressive processes would apply to the DSL series obtained at the synoptic 
stations, excepted at Kandi station. 

5) The predictability indices (PI) of DSLs depends on the geographical loca-
tion, and the thresholds level used to define a dry spell length (DSL). The physi-
cal process governing dry spells observed at Save, Natitingou, and Bohicon are 
consistently predictable than that governing Cotonou and Parakou DSLs series. 
However, at Kandi station PI is generally closed to zero, thus the DSL process 
approximates the usual Brownian motion and is, therefore, unpredictable or dif-
ficult to predict. 

Although dry spell processes are a complex dynamic system, they are consis-
tently predictable at some stations and not at others in Benin Republic. Thus, it 
is possible to develop such predictable strategies for monitoring and managing 
droughts and dry spell regimes to solve agriculture and hydroelectricity prob-
lems related to water resources. The implications of our findings for agricultural 
production in Benin refer to: 1) the consideration of dryness lacunarity, which 
provides a better understanding of drought duration and can help to predict 
DSLs when droughts start and finish; 2) the characterization of the temporal and 
spatial patterns of drought; 3) the study of DSL time series predictability by Hurst 
exponent, which permits characterizing the persistence, anti-persistence or ran-
domness of DSL. 

The present study limitations refer to the study period and to the fact that on-
ly the synoptic stations DSL time series are analyzed. It’s must be useful to ex-
plore drought lacunarity and its predictability for current and future period 
cross the Benin country. Our future studies will focus on these limitations. 
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Cotonou. The data are not available online in any database so that we cannot pro-
vide a link to reach them. They are provided when researchers address requests 
to “Météo-Bénin” (http://www.asecna.aero). 
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