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Abstract 
Process-based crop simulation models are useful for simulating the impacts 
of climate change on crop yields. Currently, estimation of spatially calibrated 
soil parameters for crop models can be challenging, as it requires the availa-
bility of long-term and detailed input data from several sentinel sites. The use 
of aggregated regional data for model calibrations has been proposed but not 
been employed in regional climate change studies. The study: 1) employed 
the use of county-level data to estimate spatial soil parameters for the calibra-
tion of CROPGRO-Soybean model and 2) used the calibrated model, assimi-
lated with future climate data, in assessing the impacts of climate change on 
soybean yields. The CROPGRO-Soybean model was calibrated using major 
agricultural soil types, crop yield and current climate data at county level, for 
selected counties in Alabama for the period 1981-2010. The calibrated model 
simulations were acceptable with performance indicators showing Root Mean 
Square Error percent of between 27 - 43 and Index of Agreement ranging 
from 0.51 to 0.76. Projected soybean yield decreased by an average of 29% 
and 23% in 2045, and 19% and 43% in 2075, under Representative Concen-
tration Pathways 4.5 and 8.5, respectively. Results showed that late-maturing 
soybean cultivars were most resilient to heat, while late-maturing cultivators 
needed optimized irrigation to maintain appropriate soil moisture to sustain 
soybean yields. The CROPGRO-Soybean phenological and yield simulations 
suggested that the negative effects of increasing temperatures could be coun-
terbalanced by increasing rainfall, optimized irrigation, and cultivating late- 
maturing soybean cultivars. 
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1. Introduction 

Global climate change and variability is expected to affect crop phenological pro- 
cesses and yield. The need for the assessment of the extent of such potential im-
pacts have resulted in the use of several process-based crop models to simulate 
the unique interactions between crops, their environment (weather and soils), 
management practices and performance under projected future climate condi-
tions (Ahmed & Hassan, 2011). One commonly used process-based crop model 
is the Crop Growth (CROPGRO) (Jones et al., 2003). It is a grain legume model 
based on the SOYGRO, BEANGRO and PNUTGRO models (Tsuji et al., 1998). 
Numerous calibration and validation studies on CROPGRO-soybean have estab-
lished the model’s ability to simulate crop development and observed seed yield 
under different climate conditions and regions (Batchelor et al., 1993; Tsuji et 
al., 1998; Lal et al., 1999; Southworth et al., 2002; Wang et al., 2003; Mera et al., 
2006; Res et al., 2007). 

The successful use of these crop simulation models depends on the availability 
and use of long term experimental data for accurate calibration (Lobell & Or-
tiz-Monasterio, 2006; Cabrera et al., 2007; Liu et al., 2011). However, the calibra-
tion of these models in regional climate change studies has numerous challenges. 
First, there is difficulty in obtaining long-term (30 or so years) data of detailed 
and complete regional crop growth and development information, crop yields 
and crop management records for use in conventional model calibration (Jiang 
et al., 2014). Second, soil survey reports fall short in their descriptions of soil 
characteristics, especially and with respect to details on physical and chemical 
parameters needed to approximate soil components (water, air, nutrients) and 
soil structure which affects root distribution (Mavromatis et al., 2001; Irmak et 
al., 2001). 

One way to overcome these challenges is using detailed data (e.g. time-series 
data on phenology, growth, soil nitrogen status, etc. and/or end-of-season yield 
and yield-component data) obtained from sentinel sites such as agricultural ex-
periment stations and representative farms. Through this approach, several stu-
dies have successfully assessed the impact of climate change at the regional scale. 
Alexandrov & Hoogenbom (2000) calibrated and validated their CERES models 
for Maize and Wheat using detailed experimental data from a variety of trial 
sites across Bulgaria for the period 1980-1993. In their assessment of climate 
change and climate variability impacts on corn yields in the midwestern US, 
Southworth et al. (2002) used detailed experimental data for 1975-1990 obtained 
from two selected representative farms in Illinois to calibrate and validate CERES- 
Maize models (Southworth et al., 2002). Brassard & Singh (2007) used experi-
mental data for 1961-1990 from agricultural research stations to calibrate CERES, 
CROPGRO and SUBSTOR models in order to study climate change impacts on 
crops in southern Québec, Canada.  

A second approach is estimating spatially variable soil parameters in a syste-
matic, stepwise, and subjective approach for the calibration of crop models. 
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Considering that soils do not change over several decades, Mavromatis et al. 
(2001) and Irmak et al. (2001), employed reverse modeling in which historical 
yields, which had been de-trended to remove technological influences, were used 
to estimate select soil parameters. This was accomplished manually or through 
use of algorithms, systematically manipulating soil parameters until simulated 
model outputs mimicked historical yields, and analyzed statistics show low Root 
Mean Square Error (RMSE) and high Index of Agreement (d-statistic). Crop 
production is a significant component of Alabama’s economy with soybeans be-
ing among the top five important crops in the state (USDA-NASS, 2015). Soy-
bean serves as both source of food and feed in Alabama. The study, therefore 
aimed to 1) employ hindcast to subjectively estimate selected soil parameters for 
the CROPGRO-Soybean model based on historical yields, 2) assess the extent to 
which this approach allowed the models to reproduce observed yields and, 3) use 
the calibrated model to assess the impact of climate change on soybean yields in 
Alabama. 

2. Materials and Methods 
2.1. Study Area 

The study sites include four counties within the State of Alabama in the US, 
which are among the highest soybean producers in the state, and whose histori-
cal yield statistics were readily available to the public. Counties were also se-
lected to represent a spatial distribution or trends across the state to better in-
corporate the different weather patterns between the southern, central, and 
northern parts of the state. The research Counties selected are Limestone 
(34˚50'N, 86 56'W; 207 m), DeKalb (34˚31'N, 85˚41'W; 297 m), Dallas County 
(32˚13'N, 87˚8'W; 44 m) and Baldwin (30˚36'N, 87˚46'W; 44 m) (Figure 1). 
 

 
Figure 1. Location of research counties sites in Alabama, USA. 
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2.2. DSSAT Crop Simulation Model: CROPGRO-Soybean Model 

The Decision Support System for Agrotechnology Transfer (DSSAT), v4.6, is a 
software suit of over 28 crop simulation models (Hoogenboom et al. 2015). The 
software application is supported by database management programs for soil, 
weather, and crop management and experimental data, and by utilities and ap-
plication programs in its simulations of growth, development and yield as func-
tions of the soil-plant-atmosphere dynamics (Hoogenboom et al. 2015). In this 
study, CROPGRO-Soybean model was used to simulate crop growth. CROPGRO- 
Soybean model simulates growth, development and yield of a crop using pre-
scribed or simulated management together with changes in soil water, carbon 
and nitrogen that take place during a cropping system.  

2.3. Crop Model Inputs 
2.3.1. Weather Data 
Daily weather data (minimum and maximum air temperature, rainfall, solar 
radiation) for each site were obtained from the US Department of Agriculture- 
Agriculture Research Service (USDA-ARS) website  
(http://ars.usda.gov/Research/docs.htm?docid=19422) and National Aeronautics 
and Space Administration-Prediction of Worldwide Energy Resource (NASA- 
POWER) websites  
(http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.
nasa.gov). 

2.3.2. Crop Yield Data 
Soybean observed yield data for the period 1981-2010 were obtained from US De-
partment of Agriculture-National Agricultural Statistics Service (USDA-NASS), 
Alabama field Office, County Estimates (USDA-NASS, 2015). The data was col-
lected for Limestone, De Kalb, Dallas, and Baldwin counties. County selection 
was based on high soybean producers, presence of agricultural research centers, 
availability of data and location, i.e. north, center and south of the state. During 
this period (1981-2010), the observed soybean yields exhibited positive yield 
trends (Figure 2).  

These observed crop yields were de-trended/adjusted to remove technology 
effects using a conventional simple linear regression model [time = independent 
predictor of yield] (McQuigg et al., 1973; Huang et al., 2015). The need for this 
procedure stems from the fact that technology influences positive yield trends 
for almost all crops in the US, including soybeans (Easterling et al., 1996; Huang 
et al., 2015; USDA-NASS, 2015). In this study, yields were adjusted using the li-
near trend shown below: 

( )( )Slope of linear regressionij ijY Y A i′ = + − .             (1) 

where: i = year; j = county; ijY ′  = is the adjusted crop (soybean) yield in the 
county (j) in year (i); ijY  = is the crop (soybean) yield for a county (j) in year 
(i); A = is the year to which the yields were adjusted/de-trended (i.e., 2004). 
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Figure 2. Annual soybean yields for selected counties in Alabama (1981-2010). 

2.3.3. Crop Management Data 
“Planting windows” were estimated from planting dates obtained from US De-
partment of Agriculture National Agricultural Statistics Service (USDA-NASS) 
website (Table 1). The model was set to simulate planting when the lower limit 
of percentage of soil water reaches or exceeds 70 and the soil warms up suffi-
ciently. The nitrogen application rate and depths as well as row and plant spac-
ing, and depth used were based on recommendations by the Alabama Agricul-
tural Experiment Stations (AAES). The study assumed irrigation and pesticide 
application were absent from the study sites and therefore were not considered. 

2.3.4. Cultivars and Genetic Coefficients 
The crop cultivars were characterized by a specific set of genetic coefficients the 
model uses to simulate and predict the daily growth and development of the 
plants in response to weather, soil conditions and management practices. The 
study employed the model’s validated generic soybean coefficients for the dif-
ferent soybean Maturity Groups (MG) (Tsuji et al., 1994). The MG 5 was used 
for Limestone and De Kalb counties while MG 6 and MG 7 were used for Dallas 
and Baldwin counties, respectively (Table 2). 

2.3.5. Soil Data 
The majority soil series used for agricultural purposes were identified from 
USDA soil surveys and published works and used as representative soils for the 
study sites (Table 3).  

2.3.6. Future Climate Scenarios 
MarkSim DSSAT weather generator (http://gisweb.ciat.cgiar.org/MarkSimGCM/) 
was used to downscale future climate data from two General Circulation Models 
(GCM): MIROC 5 (Watanabe et al., 2010) and IPSL-CM5A-MR (Dufresne et al., 
2013). At each study site, climate scenarios were generated for two future pe-
riods: “2045” (2030-2060), and “2075” (2060-2090). Future climatic conditions 
according to the Representative Concentration Pathway (RCP) 4.5 and 8.5  
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Table 1. Crop planting information (obtained from AAES). 

Crop Management Soybean 

Planting window 15th May-15th June 

Planting method Dry seed 

Planting distribution Rows 

Planting depth (cm) 4 

Plant population at seeding (plants/m2) 37 

Plant population at emergence (plants/m2) 37 

Row spacing (cm) 76.2 

 
Table 2. Generic soybean genetic coefficients (MG) (Tsuji et al., 1994). 

Coefficient Definition 
Value 

MG 5 MG 6 MG 7 

CSDL 
Critical short-day length below which reproductive  
development progresses with no daylength effect (hour) 

12.83 12.58 12.33 

PPSEN 
Slope of the relative response of development to photoperiod 
with time (positive for short day plants) (1/hour) 

0.30 0.31 0.32 

EM-FL 
Time between plant emergence and flower appearance (R1) 
(photothermal days) 

19.80 20.20 20.80 

FL-SH 
Time between first flower and first pod (R3)  
(photothermal days) 

8.00 9.00 10.00 

FL-SD 
Time between first flower and first seed (R5)  
(photothermal days) 

15.50 16.00 16.00 

SD-PM 
Time between first seed (R5) and physiological maturity (R7) 
(photothermal days) 

34.80 35.60 36.40 

FL-LF 
Time between first flower(R1) and end of leaf  
expansion (photothermal days) 

18.00 18.00 18.00 

LFMAX 
Maximum leaf photosynthesis rate at 30˚C, 350 vpm CO2, and 
high light (mg CO2/m2/s) 

1.03 1.03 1.03 

SLAVR 
Specific leaf area of cultivar under standard growth conditions 
(cm2/g) 

375.00 375.00 375.00 

SIZLF Maximum size of full leaf (three leaflets) (cm2) 180.00 180.00 180.00 

XFRT 
Maximum fraction of daily growth that is partitioned to seed 
+ shell 

1.00 1.00 1.00 

WTPSD Maximum weight per seed (g) 0.18 0.18 0.18 

SFDUR 
Seed filling duration for pod cohort at standard growth  
conditions (photothermal days) 

23.00 23.00 23.00 

SDPDV 
Average seed per pod under standard growing conditions 
(#/pod) 

2.05 2.05 2.05 

PODUR 
Time required for cultivar to reach final pod load under  
optimal conditions (photothermal days) 

10.00 10.00 10.00 

THRSH 
Threshing percentage. The maximum ratio of seed/(seed + 
shell) at maturity. Causes seeds to stop growing as their dry 
weight increases until shells are filled in a cohort. 

78.00 78.00 78.00 

SDPRO Fraction protein in seeds (g(protein)/g(seed)) 0.40 0.40 0.40 

SDLIP Fraction oil in seeds (g(oil)/g(seed)) 0.20 0.20 0.20 
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Table 3. Representative soil series of counties and their sources. 

County Name Representative Soil Series Description Profile Information Source 

Limestone Decatur Silty Loam Moderate drainage, water holding capacity approx., 0.20 (cm3/cm3) NRCS Soil survey 

DeKalb Dickson Silt Loam Moderately well drained, water retention difference 0.12 - 0.23 (cm3/cm3) NRCS soil survey. 

Dallas Canton Bend Sandy Loam Medium in natural fertility, water holding capacity 0.11 - 0.18 (cm3/cm3) NRCS soil survey. 

Baldwin Dothan Sandy Loam 
Low in natural fertility, moderately drained, water holding capacity of 
0.08 - 0.12 (cm3/cm3) 

NRCS soil survey. 

 
respectively, for medium and high radiative forcing conditions, were used for 
the study. The two study periods allowed for the assessment of climate change 
impact in the near term (“2045”) and in the long term, (“2075”). Data were 
downloaded for the following future scenarios: 2045 RCP 4.5 MIROC5, 2045 
RCP 8.5 MIROC5, 2075 RCP 4.5 MIROC5, and 2075 RCP 8.5 MIROC5, 2045 
RCP 4.5 IPSL-CM5A-MR, 2045 RCP 8.5 IPSL-CM5A-MR, 2075 RCP 4.5 IPSL- 
CM5A-MR, and 2075 RCP 8.5 IPSL-CM5A-MR. 

2.3.7. Carbon Dioxide Fertilization Effect—DSSAT Simulations 
Another aspect of climate change which impacts crop yields is carbon dioxide. 
Elevated carbon dioxide concentrations affects yields in two ways: promotion of 
photosynthesis and secondly through improved water use efficiency (Justino et 
al. 2013). To simulate the fertilization effect of CO2 on crop physiology, carbon 
dioxide concentration levels were introduced directly in the environmental 
modifications of DSSAT (Justino et al., 2013). 

2.4. Soil Parameterization 

This study employed a hindcast method to calibrate selected soil parameters us-
ing stepwise procedure adopted from Mavromatis et al. (2001). The soil para-
meters which defined water availability, water holding capacity, fertility and root 
growth were selected, and their initial values were set for at field-based measured 
values for Alabama region according to Ratliff et al. (1983). The purpose of this 
was to have a good starting point to help optimize the calibration the soil para-
meters. The best values of the parameters were chosen by simulating 30 years 
historical yields in CROPGRO-Soybean model and using scatter plots of ob-
served, which had been adjusted to remove technology effects and simulated 
yields to evaluate the performance of the models. The set of parameters that gave 
the highest d-statistic and the lowest RMSE was then chosen. To further assess 
the accuracy of the CROPGRO-Soybean model calibration and statistics, the 
study employed scatter plots to evaluate model simulations and measured data 
(Liu et al., 2011). The scatter plots of observed versus simulated yields allows the 
modeler to examine how the manual shifts of the different soil parameters affect 
yield simulations.  

The initial soil profile conditions used before the calibration process started 
were based on default model variables values and values reported by Ratliff et al. 
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(1983), which were set to start on January 3 of each year, a day before the start of 
simulations. For each soil within the study sites, the Soil Drained Upper Limit 
(SDUL), Soil Lower Limit (SLL) of extraction, Upper Limit Saturated (SAT), Soil 
Fertility Factor (SLPF) and the Soil Root Growth Factor (SRGF) were paramete-
rized. For each of the soils, the delta (difference between drained upper limit 
(DUL) and lower limit (LL)) for each of the layers in the profile was initially set 
to a similar starting point: 0.100 cm3/cm3. The delta was shifted by adding or 
subtracting 0.005 cm3/cm3 to either the LL or DUL while checking the lower end 
of the scatter plots to see how well the simulated yields mimicked the observed 
yields in the water limited years of the baseline. Once shifts in the delta stopped 
improving model performance, attention was turned to the SAT values. The SAT 
values were then successively shifted by ±1 cm3/cm3 while checking how simu-
lated yield mimicked the observed yields in the scatter plots in the water-limited 
years. This study ensured that the SAT values were always greater than the DUL 
values as pointed out by Romero et al. (2012). It is worth noting that the initial 
SAT value of the top layer was adopted in all the successive layers before syste-
matic shifts were made. SLPF (scale of 0 - 1) for each of the soils was initially set 
to 1.00 to give a similar starting point and then shifted by ±0.01 while checking 
the higher end of the 1:1 scatter plots to see how well the simulated yields mi-
micked the observed yields in the good (high) yielding years in the baseline. Af-
ter the optimization was complete, the SRGF was set to 1 in the layers whose 
center was ≤30 cm from the top of the surface layer. The initial starting point 
SRGF for the remaining layers beneath was estimated using the relationship es-
tablished by Gijsman et al. (2007), and given as 1 × exponential (−0.02 Layer-
Centre) i.e. depth from the top of the soil surface to the center of the layer of in-
terest. 

2.5. Climate Change Impact Assessment 

To assess the response of soybeans to future climate scenarios, the study utilized 
the seasonal analysis program of DSSAT v4.6 whereby seasonal experiments were 
set up, model simulations were run, and finally biophysical analysis of model 
results was done. The crop management variables, genetic coefficients and opti-
mized soil profiles from current climate simulations were taken as input data 
during the assessment. In addition to the current weather data, future climate 
scenarios obtained from MarkSim were included in the analysis. Comparisons 
were made between mean yields of the baseline and future climate scenarios, 
with and without carbon fertilization. To assess the effect of carbon fertilization 
on soybean, carbon dioxide concentration was changed in the environmental 
modifications section of DSSAT v4.6 in each of the future climatologies treat-
ments, as shown in Table 4.  

3. Results 
3.1. Adjusted Yields 

The de-trending/adjustments of soybean yields resulted in trend line gradients  
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Table 4. Carbon dioxide additions to the environmental modifications section of DSSAT. 

Treatment Name Carbon dioxide additions 

2075 IPSL-CM5A-MR RCP 4.5 140 ppm 

2075 MIROC 5 RCP 4.5 140 ppm 

2075 IPSL-CM5A-MR RCP 8.5 272 ppm 

2075 MIROC 5 RCP 8.5 272 ppm 

 
close to zero for all counties (Figure 3). The remaining residuals in the graphs 
indicate the inter-annual variations in yields due to weather (Easterling et al., 
1996; Osborne & Wheeler, 2013; Huang et al., 2015). The adjustment resulted in 
soybean yields decreases to attain a period of approximately constant technology.  

3.2. Model Calibration and Estimated Soil Parameters 

The Soil Fertility Factor (SLPF) values ranged from 0.572 to 0.758 (Table 5), 
which is within the range of values supported in the literature (Irmak et al., 2001; 
Mavromatis et al., 2001). Delta (DUL-LL) ranged from 0.085 cm3/cm3 to 0.220 
cm3/cm3 for the soil profile layers for the different county sites (Table 5). The 
final saturation point/volumetric soil water content (SAT) values ranged be-
tween 0.449 cm3/cm3 and 0.690 cm3/cm3 (Table 5). These increases in delta 
(DUL-LL) and SAT were done with reduction in SLPF that led to low RMSE 
percentages and greater than 0.5 d-statistic. 

In all the sites, Soil Root Growth Factor (SRGF) varied throughout the layers 
(Table 6). The slightly high RMSE percentage indicated an uncertainty in soy-
bean annual yield simulations, possibly associated with biotic stresses that the 
model does not simulate (disease, insects, etc.). These uncertainties are reflec-
tions of factors and events that are not considered in the model (Liu et al., 2011). 
The final calibrated SDUL and SLL values were within the ranges for texture and 
water retention data results by Fatliff et al. (1983). The use of generic DSSAT 
soybean genetic coefficients in this study together with the other assumptions 
may have contributed to the higher uncertainties. 

Model R square values was ignored during the assessment of model perfor-
mance because the study used time series data (30-year historic yields) which are 
auto-correlated values. To overcome this, correlation-based statistics (d-statistic 
and RMSE efficiency measures) were used to assess model performance. The 
yield simulations closely mimicked observed yields for the De Kalb and Dallas 
Counties while for Limestone and Baldwin counties the model slightly overesti-
mated during the high yielding years and underestimated for low yielding years. 
The greater than 0.5 d-statistic, indicate that the CROPGRO-Soybean model 
yield simulations were in good agreement with observed yields.  

3.3. Changes in Projected Climate Variables 

To assess the changes in projected climate variables, the baseline period (1981-2010) 
representing current climatic conditions was used as a reference for comparison 
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Table 5. CROPGRO-soybean model Calibrated SLPF values and statistics for research 
counties. 

County Soil Series 

Soil Parameters CROPGRO Model Statistics 

SLPF (0 - 1) 
“Delta” 

(cm3/cm3) 
RMSE 

(%) 
d-Statistic 

Baldwin Dothan sandy loam 0.700 0.085 29 0.572 

De Kalb Dickson silt loam 0.650 0.155 31 0.705 

Limestone Decatur silt loam 0.700 0.220 43 0.758 

Dallas Canton Bend Sandy Loam 0.570 0.201 27 0.506 

 
Table 6. CROPGRO-Soybean model calibrated soil parameters for research Counties. (a) 
Baldwin County Site—TU00000012; (b) Dallas County Site—TU00000014e; (c) De Kalb 
County Site—TU00000013; (d) Limestone County Site—TU00000011. 

(a) 

Dothan Sandy Loam SLPF: 0.70 

Layer Depth (cm) SLL SDUL SSAT SRGF 

A 15 0.068 0.153 0.449 1.000 

E 30 0.046 0.131 0.449 1.000 

Bt1 97 0.116 0.201 0.449 0.379 

Bt2 152 0.169 0.254 0.449 0.219 

Bt3 183 0.296 0.381 0.449 0.160 

(b) 

Canton Bend Sandy Loam SLPF: 0.57 

Layer Depth (cm) SLL SDUL SSAT SRGF 

Ap 7 0.050 0.251 0.480 1.000 

B21t 18 0.188 0.389 0.480 1.000 

B22t 33 0.201 0.402 0.480 1.000 

B23t 52 0.153 0.354 0.480 0.594 

B3 62 0.126 0.327 0.480 0.538 

B4 120 0.101 0.302 0.480 0.301 

B5 160 0.101 0.302 0.480 0.202 

(c) 

Dickson Silt Loam SLPF: 0.65 

Layer Depth (cm) SLL SDUL SSAT SRGF 

Ap 25 0.082 0.237 0.690 1.000 

Bw 51 0.095 0.249 0.690 1.000 

Btx 91 0.115 0.270 0.690 0.403 

2Btx 122 0.112 0.267 0.690 0.295 

2Bt 127 0.131 0.286 0.690 0.280 

https://doi.org/10.4236/ajcc.2020.93019


J. E. Quansah et al. 
 

 

DOI: 10.4236/ajcc.2020.93019 307 American Journal of Climate Change 
 

(d) 

Decatur Silt Loam SLPF: 0.70 

Layer Depth (cm) SLL SDUL SSAT SRGF 

Ap 10 0.113 0.333 0.519 1.000 

Bt1 40 0.180 0.400 0.519 1.000 

Bt2 100 0.235 0.455 0.519 0.368 

Bt3 200 0.240 0.460 0.519 0.135 

 

 
Figure 3. Adjusted county soybean yields (adjusted relative to the year 2004). 
 
for all four selected counties (Table 7). The future annual average maximum and 
minimum temperatures and precipitation for the eight (8) IPSL-CM5A-MR and 
MIROC 5 scenarios were analyzed: 2045 RCP 4.5, 2045 RCP 8.5, 2075 RCP 4.5 
and 2075 RCP 8.5.  

All four sites were projected to experience increases in both maximum and 
minimum average annual temperatures between 1˚C to 4˚C depending on site, 
scenario, and year. However, the trend of change in projected rainfall patterns is 
not uniform for all study sites. Rainfall for Limestone and De Kalb Counties is 
projected to increase in the future scenarios in different amounts. Dallas County 
is projected to experience the highest rainfall increase in 2045 RCP 4.5 of 196 
mm (MIROC 5) and 117 mm (IPSL-CM5A-MR). Rainfall for Baldwin County is 
projected to decrease under the extreme scenarios. Climate projections by MIROC 
5 appear to be less extreme when compared to projections from IPSL-CM5A- 
MR. 

3.4. Climate Change Impact Assessment 

Simulation results reflect the yield responses of the three maturity groups (MG5, 
MG6 and MG7) to the different projected climate scenarios and different county 
soils. The MG5 yields were simulated for both De Kalb and Limestone Counties 
while MG6 and MG7 maturity groups were simulated for Dallas and Baldwin  
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Table 7. Annual average rainfall, maximum and minimum temperatures [Tmax & Tmin] 
for current and projected climate scenarios at each study site. 

Climatic Variables 
County 

Limestone De Kalb Dallas Baldwin 

Rainfall (mm)     

Current Rainfall 1441 1401 1371 1620 

2045 RCP 4.5-M 1464 1452 1567 1603 

2045 RCP 4.5-I 1448 1438 1488 1600 

2045 RCP 8.5-M 1491 1448 1384 1581 

2045 RCP 8.5-I 1468 1430 1256 1577 

2075 RCP 4.5-M 1453 1431 1340 1567 

2075 RCP 4.5-I 1453 1426 1261 1580 

2075 RCP 8.5-M 1524 1427 1324 1564 

2075 RCP 8.5-I 1487 1419 1164 1491 

Maximum Temperature (˚C)     

Current Tmax 22 21 24 25 

2045 RCP 4.5-M 24 24 26 27 

2045 RCP 4.5-I 25 23 26 28 

2045 RCP 8.5-M 25 24 26 27 

2045 RCP 8.5-I 25 23 27 28 

2075 RCP 4.5-M 25 24 27 28 

2075 RCP 4.5-I 25 25 27 28 

2075 RCP 8.5-M 26 26 28 29 

2075 RCP 8.5-I 27 26 29 29 

Minimum Temperature (˚C)     

Current Tmin 9 8 11 14 

2045 RCP 4.5-M 11 10 13 16 

2045 RCP 4.5-I 11 10 14 16 

2045 RCP 8.5-M 11 10 13 16 

2045 RCP 8.5-I 11 10 14 16 

2075 RCP 4.5-M 11 10 14 16 

2075 RCP 4.5-I 12 10 14 16 

2075 RCP 8.5-M 12 12 15 17 

2075 RCP 8.5-I 14 13 16 18 

I = IPSL-CM5A-MR; M = MIROC 5. 

 
Counties, respectively. Rain-fed production without CO2 for the years 2045 and 
2075 was first analyzed followed by an analysis of rain fed production with CO2 
fertilization for the year 2075 when carbon dioxide concentration was projected 
to exceed ambient concentrations by 100 ppm. Percent changes in projected av-
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erage future soybean yields in comparison to current baseline average yields are 
shown in Figure 4 and Figure 5. The simulations for the year 2045 show soy-
bean yield decreases in all counties for both climate scenarios (Figure 4). Pro-
jected yields decreased between 6% to 64% and between 4% to 41% for 2045 
RCP 4.5 and RCP 8.5 respectively. 

The simulations for the year 2075 show soybean yield decrease over all the 
counties in both climate scenarios (Figure 5). Yields is projected to decrease 
between 5% to 43% in RCP 4.5 and between 16% to 64% in RCP 8.5. 

When CO2 fertilization was introduced into the IPSL-CM5A-MR scenario 
soybean yield simulations of 2075, the decreases were lower compared to the 
simulations without CO2 (Figure 6). These decreases ranged approximately 12% 
to 19% lower in the medium emission scenarios (RCP 4.5) and between 8% to 
18% lower in the high emission scenarios (RCP 8.5) when compared to simula-
tions without CO2 fertilization. The CO2 fertilization led to yield increases of 
10% in Limestone County in the medium emission scenario. Overall, the CO2  
 

 
Figure 4. Projected soybean yield changes (2045). 
 

 
Figure 5. Projected soybean yield changes (2075). 
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Figure 6. IPSL-CM5A-MR scenario projections of soybean yield changes for 2075. Pro-
jections are with and without carbon dioxide fertilization. 
 
fertilization effect resulted in projected average yield decreases of between 9% to 
41% under RCP 4.5 and RCP 8.5 respectively.  

When CO2 fertilization was introduced into the MIROC 5 scenario soybean 
yield simulations of 2075, the decreases were also lower compared to the simula-
tions without CO2 (Figure 7). These decreases were approximately 15% - 23% 
lower in the medium emission scenarios (RCP 4.5) and 22% - 32% lower in the 
high emission scenarios (RCP 8.5) when compared to the “without CO2 fertiliza-
tion” simulations. 

The CO2 fertilization led to yield increases of 14% and 12% in Limestone 
County in RCP 4.5 and RCP 8.5 respectively. Overall, the CO2 fertilization effect 
resulted in projected average yield decreases of 7% and 9% under RCP 4.5 (me-
dium emissions) and RCP 8.5 (high emissions) respectively for the time period 
2075 (2060-2090). In Limestone County, carbon dioxide fertilization effect was 
high enough to compensate negative effects of climate change resulting to pro-
jected yield increases of 14% and 12% in the medium and high emission scena-
rios, respectively. These results are in agreement with other studies which show 
that increasing atmospheric CO2 could have a compensation effect on yield de-
creases (Southworth et al., 2002; Res, Brassard, & Singh, 2007). 

4. Discussion 

The research results highlight the unique response of soybeans to increasing 
temperatures and the model’s ability to capture these responses (Tsuji et al., 
1998). In soybeans, the vegetative and reproductive stages co-exist for some pe-
riod of the crop life cycle with their vegetative growing periods lengthening once 
temperatures exceed their optimum i.e. 22˚C - 28˚C (Boote, 2011) and the crop 
is exposed to these temperatures continuously (Setiyono et al., 2007). Observa-
tions from field experiments, showed that this temperature-induced lengthening  
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Figure 7. MIROC 5 scenario projections of soybean yield changes for 2075. Projections 
are with and without carbon dioxide fertilization. 
 
of the life cycle leads to an improvement in sources (Kumagai & Sameshima, 
2014), i.e. increase in leaf area and leaf photosynthesis which contributes to an 
increase in photosynthesis and assimilate partitioning which results in increased 
yields. However, Thuzar et al. (2010) showed that the same increase in tempera-
ture that prolongs and enhances soybean vegetative growth and development 
also depresses reproductive growth leading to a decrease in the number of seeds 
produced. Findings by Setiyono et al. (2007) showed that reproductive growth 
would only be depressed if increased temperatures are experienced during flo-
wering as there was no correlation between mean temperature and post flower-
ing duration. The response of the different developmental stages to temperature 
and the influence of the timing when increased temperatures are experienced all 
combine to explain the inconsistent response in the medium and high emission 
scenarios of the soybean maturity groups simulated in Limestone and Baldwin 
counties. Additionally, cultivar specific day-length requirements influence the 
manner in which different maturity groups of soybeans respond to increasing 
temperatures (Kumagai & Sameshima, 2014). Boote (2011) highlighted this rela-
tionship when he showed that for early maturing groups, increasing tempera-
tures would lead to a shorter vegetative growth period, smaller leaf area, earlier 
flowering and pod set and eventual decreased yields. Additionally, his simula-
tions showed that yield reductions by increasing temperatures would be smaller 
in late-maturing soybean groups (higher maturity groups and higher day length 
sensitive groups), creating an impression that late-maturing soybean cultivars 
would benefit from projected future temperature increases. This explains why 
MG7 simulated in Baldwin County on soils with poor water holding capacity 
still showed resilience under climate change.  

The CROPGRO-Soybean model’s soybean phenological simulations show how 
increased temperatures in future climate scenarios affected both the time of an-
thesis (and subsequent seed formation) and the time to maturity (Figure 8 and 

https://doi.org/10.4236/ajcc.2020.93019


J. E. Quansah et al. 
 

 

DOI: 10.4236/ajcc.2020.93019 312 American Journal of Climate Change 
 

Figure 9). Both shortening and lengthening of the growth stages were experienced 
depending on whether the temperatures exceeded the optimum soybean tem-
peratures (22˚C - 28˚C). The anthesis period was lengthened by 1 to 6 days de-
pending on site location, GCM, RCP scenario and simulation year. The short-
ened development stages resulted in shortened life cycle, which means that crops 
will have less time to make use of available resources resulting in decreased yields. 
Similar studies found that hastened maturity and shortened life cycles contribute 
to decrease in yields (Tubiello et al., 2002; Southworth et al., 2000; Wang et al., 
2011). Lengthening of the development stages, especially the time to anthesis, 
contributes to increase in yields or less yield decreases observed. As the vegeta-
tive and reproductive stages co-exist, the overall time to maturity was not greatly 
changed. 
 

 
Figure 8. Soybean anthesis dates based on MIROC 5 (M) and IPSL-CM5A-MR (I) scena-
rio simulations. 
 

 
Figure 9. Soybean maturity date based on MIROC 5 (M) and IPSL-CM5A-MR (I) scena-
rio simulations. 
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The CROPGRO-Soybean model simulations revealed the different inter- and 
intra-specific responses of different soybean maturity groups to climate change. 
MG5 simulated in Limestone County with Decatur silt loam, a soil with a high 
water holding capacity, showed less vulnerability to climate change, while MG7 
simulated in Baldwin County with Dothan sandy loam, a soil with a low water 
holding capacity, also showed resilience to climate change as it is a late maturing 
cultivar.  

This study employed a stepwise hindcast method to estimate spatially variable 
soil parameters in calibrating the CROPGRO-Soybean model. The model was 
run to assess its performance with different combinations of soil parameters and 
a 1:1 scatter plot was used to determine and select the set of parameters that gave 
the highest d-statistic and lowest Root Mean Square Error (RMSE). The study 
found that estimating soil parameters using aggregated regional data (in this case- 
county level data) resulted in calibrated model simulations that satisfactorily mi-
micked long-term regional yields under current climate conditions, thus ensur-
ing reliability in regional climate change studies. This method was practical for 
calibrating crop models to historical yields using aggregated regional data sets. 

The calibrated crop models showed that climate change will adversely affect 
soybean production under both medium (RCP 4.5) and high (RCP 8.5) radiative 
forcing conditions used in the study. Soybean yield was projected to decrease by 
an average of 29% and 23% in 2045, and 19% and 43% in 2075, under RCP 4.5 
and RCP 8.5, respectively. The projected decreases were lower in MIROC 5 sce-
narios compared to IPSL-CM5A-MR scenarios, which had extreme projections 
of increase in temperature and decrease in rainfall. Considering current ongoing 
global efforts to mitigate climate change, the study concludes that realistic cli-
mate change impacts on soybean yields in Alabama would more likely to be 
within projections obtained under RCP 4.5 scenarios. Phenological simulations 
show that yield decreases were mainly caused by shortening crop life cycles. How-
ever, certain factors counteracted the impact of shortened life cycles on crop 
yields. Factors such as soil water holding capacity, soybean maturity group, tim-
ing of above optimum temperatures and water availability during the growing 
season, influence the crop response to climate change. The overall negative yield 
projection is a clear call for the development of adaptation strategies and policies 
to sustain current crop yields. This may involve the adaptation of new maturity 
groups, and development of improved cultivars, which are heat tolerant.  
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