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Abstract 
The pathogenesis-related proteins 1 (PR-1) gene family play important roles 
in the plant metabolism in response to biotic and abiotic stresses. The wheat 
TdPR1.2 has been previously isolated and characterized. Here we showed by 
bio-informatic analysis that TdPR1.2 contains six cysteine residues that are 
conserved between all PR-1 proteins tested. Using ScanProsite tool, we found 
that TdPR1.2 structure has a CRISP family signature 1 and 2 located at the 
C-terminal part of the protein. Those two domains are conserved in many 
identified PR1.2 proteins in plants. Moreover, SignalIP-5.0 analysis revealed 
that TdPR1.2 contains a putative signal peptide formed by 25 amino acids at 
the N-terminal extremity. The presence of this signal peptide suggested that 
the mature proteins will be secreted after the cleavage of the signal sequence. 
Further, we investigate the role of the TdPR1.2 proteins in the growth of Esche-
richia coli transformants cells under different abiotic stresses. Our results 
showed that the full-length form of TdPR1.2 enhanced tolerance of E. coli 
against salt and osmotic stress but not to KCl. Moreover, TdPR1.2 protein con-
fers bacterial tolerance to heavy metals in solid and liquid mediums. Based on 
these results, we suggest that the TdPR1.2 protein could play an important 
role in response to abiotic stress conditions. 
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1. Introduction 

Plants have developed complex mechanisms to protect themselves against pa-
thogens. Pathogenesis-related (PR) genes are the key elements of these mechan-
isms, and are activated in response to pathogen attacks. They regulate produc-
tion of several proteins, peptides or compounds which are toxic to pathogens or 
prevent pathogen infections where they start [1]. PR proteins have been classi-
fied under 17 different families based on their main properties [2]. Having anti-
fungal activities, PR-1 constitutes the main family of the PR proteins induced by 
pathogens or salicylic acid [3]. The first member of PR-1 family, PR1-a was identi-
fied in Nicotiana tabacum plants infected with Tobacco Mosaic Virus (TMV) 
[4]. Subsequently, several other PR-1 proteins have been identified and charac-
terized in monocot and dicot plant species, such as tomato (Solanum lycopersi-
cum) [5], Triticum aestivum [6], Piper nigrum [7], Grapevine [8], Arabidopsis 
thaliana, Oryza sativa [9] and cassava (Manihot esculenta) [10]. Their important 
roles were reported in response to stress conditions [5]-[10]. The PR-1 family 
belongs to PR proteins (known as antimicrobial peptides, AMPs) which are clas-
sified into 17 families based on their protein sequence similarities, enzymatic ac-
tivities and other biological features [2]. PR-1 proteins are considered mainly se-
creted and accumulated in the extracellular/apoplastic space facilitated by means 
of their N-terminal secretion peptide. In contrast, it was shown that some PR-1 
were proteins accumulated in the vacuoles of protoplasts in tobacco [1]. Alex-
ander et al. [11] reported that approximately 2% of the total leaf proteins in pa-
thogen-infected tobacco plants were PR-1 proteins produced through defense re-
sponse. In tomato, the expression of BG124298 (a pathogenesis-related protein-like 
protein gene) was 5.57-fold upregulated in a resistant genotype while 1.63-fold 
upregulated in susceptible genotype under Alternaria solani infection [12]. In 
another study, three distinct alkaline 14-kD proteins, P14a, P14b and P14c re-
lated to the PR-1 family, showed antifungal activity against Phytophthora infes-
tans both in vitro and in vivo conditions [13]. PR-1 genes also play important roles 
in response to abiotic stresses. In rice, stress-associated proteins 1 (OsSAP1) in-
duce endogenous stress-related genes such as aminotransferase (OsAMTR1), 
SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) [14]. Besides, to-
matoes present 13 SlPR-1 genes which were all up-regulated upon drought stress 
treatment [5]. Liu et al. [15] showed that a transcription regulator, Di19 (Drought- 
induced) gene induced up-regulation of pathogenesis-related PR-1, PR-2 and 
PR-5 genes expressions in Arabidopsis. Seo et al. [16] reported that plasma mem-
brane-tethered NAC (NAM/ATAF1/2/CUC2) transcription factor NTL6 induced 
some PR genes by directly binding to promoter sequences of cold-responsive PR 
genes, PR-1, PR-2 and PR-5. In Arabidopsis thaliana, NPR1 (the non-induced 
pathogenesis-related genes) control systemic acquired resistance (SAR) by regu-
lating PR genes. NPR1 physically interacts with the TGA2 transcription factor to 
regulate the expression of different plant defense genes, like PR1 and PR5 [17] 
[18]. In a similar study, it was demonstrated that Arabidopsis PR genes were 
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temporally and spatially expressed and regulated by diverse abiotic stresses and 
plant growth hormones such as salicylic acid (SA), jasmonic acid (JA), ethylene 
(ET) and brassinosteroid (BR). Interestingly, PR-3 was highly upregulated under 
excess salt stress in an ABA-dependent manner [16]. In wheat, TaPR-1-1 expres-
sion was induced by freezing, salinity and osmotic stresses, and the overexpres-
sion of TaPR-1-1 granted tolerance to them in yeast and Arabidopsis [19]. In to-
mato, pathogenesis-related protein 1b1 (PR-1b1) abundance increased and re-
mained stable till day 15 post warming in both the 556HO and 579HO transgen-
ic tomato lines exposed to chilling temperature [20]. Over-expression of PR-1a 
gene in tobacco ameliorates its response to the pathogens Phytophthora parasi-
tica var. nicotianae and Peronospora tabacina [11]. In tomato, it has been dem-
onstrated that PR-1 strongly inhibited Phytophthora infestans’s zoospores ger-
mination and the development of symptoms [13]. In pepper, CABPR1 proteins 
were strongly expressed after ethephon treatment, and with a lesser extent after 
wounding and infection by the bacterial pathogen Xanthomonas campestris pv. 
Vesicatoria [21]. CABPR1 proteins also ameliorate plant tolerance to heavy metal 
(CdCl2 or HgCl2) and pathogen (Pseudomonas syringae pv. Tabaci; Phytophthora 
nicotianae and R. solanacearum) stresses [22].  

Durum wheat, Triticum turgidum L. ssp durum is a tetraploid cereal (2n = 4x 
= 28 chromosomes; AABB), used essentially for the production of pasta and 
other semolina [23] that was considered as a prominent crop for 2000 years ago 
[24] and considered as one of the 10 most important crops all over the world 
[25]. Like other crops, wheat could be subjected to different abiotic and biotic 
stresses such as osmotic stresses which are differentially perceived by different 
plant organs (spike, root and shoot) [26]. For example, application of heavy 
metal stress CuSO4 at two different levels (5 mM and 25 mM) causes a reduction 
of fresh weight, dry matter and length. Durum wheat response to such stresses 
includes accumulation of soluble sugar and soluble proteins and nitrate reduc-
tase [26]. 

We have recently isolated and characterized a novel PR1.2 gene (TdPR1.2) 
from durum wheat [27]. TdPR1.2 gene was up-regulated in roots, stems and 
leaves after plant treatment with Salicylic Acid (SA). Besides, TdPR1.2 showed 
an antibacterial activity against some Gram+ and Gram− bacteria and against the 
fungi Septoria tritici. Moreover, we provide experimental evidence that TdPR1.2 
binds to calmodulins (CaMs) in Calcium dependent manner and that this bind-
ing stimulates the antimicrobial effect of TdPR1.2 in presence of both Ca2+ and 
Mn2+ cations [27]. In the present study, we show that TdPR1.2 protein represents a 
putative SCP_PR-1_like domain that belongs to SCP superfamily, conserved in 
other PR1 homologues. Besides, TdPR1.2 protein is much closed to monocoty-
ledonous and dicotyledonous PR1 proteins isolated from many species indicat-
ing evolutionary conservation of PR1 genes among species. Further, we demon-
strate that TdPR1.2 confers bacterial tolerance to salt and osmotic stress and not 
for KCl in E. coli transformant cells. Moreover, TdPR1.2 protein confers bacteri-
al tolerance to heavy metals in solid and liquid mediums. As far as we know, this 
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is the first report that describes the role of PR1 proteins in response to abiotic 
stresses in bacteria. 

2. Material and Methods 
2.1. TdPR1.2 Protein in silico Analysis 

The 3D structure of TdPR1.2 protein was performed via the Swiss-Model server 
[28]. The presence of transmembrane structures was revealed by PSIPRED da-
tabase (http://bioinf.cs.ucl.ac.uk/psipred). The sequence of TdPR1.2 was further 
studied by different database such as ScanProsite tool (https://prosite.expasy.org/). 
Signal sequences presence and location of their cleavage sites were predicted 
through SignalIP-5.0 server (http://www.cbs.dtu.dk/services/SignalP/). The sub-
cellular localization prediction was carried out by using Plant-mPLoc server 
available at: http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ [29]. 

2.2. TdPR1.2 Protein Expression  

In order to construct the expression vector pET28a-TdPR1.2, specific primers 
with restriction enzyme sites (EcoRI) were designed as follows in order to ensure 
an in-frame cloning sense, PR1_Ec1_Fw  
(5’-GAATTCATGGCATCTTCCAAGAGT-3’) and PR1_Ec1_Rev  
(5’-GAATTCGGCTTCGGCGTCAAG-3’). The amplified products were cloned 
into the pET28a vector at the EcoRI site to express the pET28a-TdPR1.2 fusion 
protein, which has a poly-Histidine tag at the N-terminus [27]. The recombinant 
protein His_TdPR1.2 was produced in the Rosetta E. coli strain (DE3) (Nova-
gen) after cloning of the corresponding ORF in-frame with a poly histidine tag 
into the pET28a expression vectors (Novagen, Madison).  

2.3. Assays for Abiotic Stress Tolerance of E. coli Transformant  
Cells 

The pET28a vector and pET28a-TdPR1.2 plasmid were transformed into E. coli 
BL21 (DE3), respectively. The transformant E. coli cells containing either the 
empty vector (pET28a) or the recombinant form (pET28-TdPR1.2) were grown 
in Luria-Bertani (LB) liquid medium supplemented with 100 μg/mL kanamycine 
at 37˚C for overnight. The overnight cultures were then inoculated into fresh LB 
medium (1:100 dilution) supplemented with 100 μg/mL kanamycine and incu-
bated for 2 - 3 h at 37˚C until the exponential growth phase (OD600 = 0.5 - 0.6). 
Isopropylthio-β-D-galactoside (IPTG) was added to cultures to a final concen-
tration of 1 mM, which were incubated at 37˚C for up to 3 h to induce expres-
sion of the inserted gene. After induction with IPTG and incubation for 3 h, the 
cells were subjected to different abiotic stress conditions (200 mM NaCl, 0.5M 
LiCl, 400 mM Sorbitol and 200 mM KCl) and metallic stress conditions (750 µM 
CuCl2, 1 mM MnCl2, 750 µM CdCl2, 750 µM AlCl3, 750 µM ZnSO4, 750 µM Fe-
SO4 and 750 µM CaCl2). A culture without stress was also used as a control. In 
LB agar medium, the concentration of all induced cell cultures was diluted 10−1, 
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10−2, 10−3 10−4, 10−5 and 10−6-fold with fresh LB medium. Then, 5 µL of each dilu-
tion was spotted on mediums containing or not the appropriate stress. The re-
sults were observed then after incubation at 37˚C for 16 h.  

For LB liquid medium, 600 µL of induced cell cultures were diluted in 15 mL 
fresh LB medium and the growth pattern of control as well as stress treated cells 
was noted for 26 h by taking OD at 600 nm after every 2 h time point. The data 
obtained in triplicates was averaged and used to plot the graph. 

2.4. Viability Test 

50 µL of liquid assay was spaced on LB basal plate then incubated at 37˚C for 
overnight. The result was observed by counting the number of colonies present 
on the medium.  

2.5. Statistical Analysis 

Each experiment was carried out in at least three replicates. Student’s t was per-
formed to determine significant differences between the means of bacterial 
growth in unstressed and stressed mediums. The percentage presented in the 
following figures was calculated by the data of survival of bacteria transformed 
by empty pET-28a or pET-28a_TdPR1.2 grown in LB medium supplemented or 
not with the mentioned stress. The results were compared statistically by bacte-
ria grown in unstressed medium and differences were considered significant at p 
< 0.01. Mean values that were significantly different at p < 0.01 from each other 
are marked with asterisks (*). 

3. Results  
3.1. In silico Sequence Analysis of TdPR1.2 Protein 

The full-length cDNA sequence of TdPR1.2 (GenBank accession no. MK570869.1) 
was structurally characterized. Sequence analysis present an ORF length of 525 
bp, which encoded a protein of 174 amino acids with a predicted molecular 
weight of approximately 19 kDa and an isoelectrical point (pI) of 9. In order to 
obtain structural insights into the TdPR1.2 protein, a 3D structural model of to-
tal protein sequence from TdPR1.2 was successfully generated using the PHYRE 
server [30]. The 11 best structural alignments, as provided by the server, show 
E-values ranging from 3e-27 for the best hit to 0.028 for the most distant hit. The 
3D model obtained with 98% coverage and has been modeled with 97.3% confi-
dence by the single highest scoring template. The generated model illustrated the 
typical topology of 153 aa of TdPR1.2 protein composed of four stranded β-sheet 
packed against four α-helixes (Figure 1(a)). Besides, TdPR1.2 structure was 
examined by Swiss model tool  
(https://swissmodel.expasy.org/interactive/KZLSLh/models/01). The analysis in-
dicated the presence of the six-cysteine motif (Figure 1(b)). Subcellular localiza-
tion prediction using Plant-mPLoc server showed a vacuole localization of 
TdPR1.2 protein (data not shown). 
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Figure 1. Bio-informatics analysis of TdPR1.2 structure. (a) 3D structure of TdPR1.2 using swiss model program 
(https://swissmodel.expasy.org/interactive/). (b) Sequence alignment analysis of 9 different pathogen related pro-
teins showing the conservation of cysteine residues. Proteins used in this analysis are isolated from Triticum aesti-
vum TdPR1-18 (AEH25633.1), PRB1.2 of Aegilops tauschii subsp. tauschii (XP_020170282.1), Hordeumvulgare 
(CAA88618.1), Oryza brachyantha (XP_006661674.1), Eutrema salsugineum (XP_006409652.1), Eutrema japoni-
cum (BAF03626.1), Camelina sativa (XP_010467245.1) and Arabidopsis thaliana (NP565038.1). 

 
To gain insights into the occurrence of signatures, the TdPR1.2 protein was 

analyzed by ScanProsite tool. This analysis showed that TdPR1.2, present two 
well conserved CRISP domains (CRISP family signature 1 and 2 (Figure 2(a)). 
Those domains are also conserved in some other studied proteins (Figure 2(b)). 
In fact, the first domain is well conserved in monocotyledonous and dicotyle-
donous plants investigated whereas the second domain is less conserved between 
monocyledonous and dicotyledonous (Figure 2(b)). Moreover, SignalIP-5.0 
analysis revealed that PR1.2 contains a putative signal peptide formed by 25 
amino-acids at the N-terminal extremity (Figure 3). The presence of this signal 
peptide suggested that the mature proteins will be secreted after the cleavage of 
the signal sequence. Moreover, bio-informatic analysis of TdPR1.2 sequence  
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Figure 2. Identification of CRISP domain in TdPR1.2 protein. (a) TdPR1.2 contains two 
conserved CRISP domains in the C-terminal part of the protein as revealed by prosite da-
tabase (https://prosite.expasy.org/). (b) Protein sequence alignment of different monoco-
tyledonous and dicotyledonous proteins as revealed by multalin database. 
 

 
Figure 3. Schematic representation of structure and localization of the putative domains 
of TdPR1.2 proteins. Bioinformatic analysis reveals the presence of different conserved 
domains. TdPR1.2 contains a cleavage site (25 - 26 aa) and harbors a putative peptide 
signal region in its N terminal part. The peptide signal is considered as a disorder protein 
binding region (1 - 25 aa). Another peptide signal is also found in the C-terminal part of 
the protein (171 - 174). TdPR1.2 harbors also two conserved CRISP domains (120 - 130) 
and (147 - 158) near to the CaMBD (124 - 145). 

Clivage site 25-26 aa

CRISP  family signature 1 (120-130) and 2 (147-158) 

Calmodulin Binding domain CaMBD (124-145)
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showed that TdPR1.2 structure does not have a Calcium binding domain as re-
vealed by Prosite database (https://prosite.expasy.org/) (data not shown). 

3.2. Recombinants TdPR1.2 Proteins Confers Contrasting  
Bacterial Tolerance to Ionic and Osmotic Stress  

The biological role of TdPR1.2 in abiotic stress tolerance has been studied in vi-
vo. For this, we used heterologous expression in E. coli cells. The full-length 
cDNA was cloned in the pET28a expression vector transformed into E. coli 
(BL21 strain) as previously described [27]. To investigate the protective proper-
ties of recombinant TdPR1.2 proteins in vivo, the growth of transformed E. coli 
cells with TdPR1.2 or the empty vector was determined under different stresses 
(LB media containing or not 0.5 M LiCl; 400 mM Sorbitol; 200 mM NaCl, or 200 
mM KCl) in solid and liquid mediums. Under standard conditions, there was no 
significant growth difference between all tested strains and both strains grew 
equivalently in solid medium (Figure 4(a)). Whereas, under stress treatments,  
 

 
Figure 4. Functional characterization of TdPR1.2 expressed in E. coli (BL21 strain) in response to abiotic 
stress. Bacterial cells transformed with the empty vector (pET28a) and with the recombinant vector 
(pET28a + TdPR1.2) were grown for 24 h under normal growth conditions (a) (LB medium) or after the 
addition 0.5 M LiCl; 400 mM Sorbitol; 200 mM NaCl, or 200 mM KCl.  
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cells transformed with TdPR1.2 recombinant plasmids exhibited greater growth 
rates in comparison with cells transformed with empty vector for all applied 
stresses (Figures 4(b)-(d)) except for KCl (Figure 4(e)). In the last case, the 
empty vectors transformed bacteria were more tolerant to KCl comparing with 
TdPR1.2. The same result was also observed for bacteria grown on liquid me-
diums. In fact, bacteria were growing equivalently in absence of stresses (Figure 
5(a)) whereas in the presence of mentioned stresses, TdPR1.2 confirmed salt to-
lerance to LiCl; Sorbitol; NaCl (Figures 5(b)-(d)) and susceptibility to KCl 
(Figure 5(e)). The percentage of viable cells was also investigated. The number 
of the recombinant cells was almost the same for bacteria grown under normal 
conditions (Figure 6(a)), about 2.25-fold higher than control cells under LiCl 
stress (Figure 6(b)), 1.6-fold under Sorbitol stress (Figure 6(c)) and 2-fold 
higher under NaCl stress (Figure 6(d)). As expected, under KCl stress, bacteria 
transformed with empty vectors were 2-fold higher comparing with cells trans-
formed with pET28a (Figure 6(e)). These results indicated that the expression of 
TdPR1.2 in E. coli cells have different effects on their growth under different 
stress conditions. 

3.3. TdPR1.2 Have Dual Role in Response to Heavy Metal Stress of  
E. coli Cells 

The growth of E. coli cells containing pET28a-TdPR1.2 vectors or the empty  
 

 
Figure 5. Behavior of TdPR1.2 transformed Bacteria in liquid LB medium in presence or absence of abiotic stress. Bacterial cells 
transformed with the empty vector (pET28a) and with the recombinant vector (pET28a + TdPR1.2) were grown for 24 h under 
normal growth conditions (LB medium) or after the addition 0.5 M LiCl; 400 mM Sorbitol; 200 mM NaCl, or 200 mM KCl.  
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Figure 6. Presentation of percentage of cells viability under control, salt, osmotic and ionic stress conditions. Data presented are 
means of at least 3 independent experiments ± S.E. Bars carrying diverse letters are significantly different (p ≤ 0.001) from each 
other, according to Duncan test results, while bars carrying the same letters are not significantly different.  

 
vector pET28a have been analyzed in medium containing AlCl3, CuCl2, CdCl2, 
ZnSO4, FeSO4, CaCl2 and MnCl2 (Figure 7). In drop assays and under normal 
conditions, the growth pattern of recombinant cells was similar to the growth of 
control cells (Figure 7). However, cells transformed with pET28a-TdPR1.2 ex-
hibited better growth in comparison with cells transformed with empty vector in 
the presence of all heavy metals treatments except for MnCl2 (Figure 7). These 
results suggested that TdPR1.2 could play a potential role in heavy metal stress 
tolerance. 

4. Discussion 

Abiotic stress is one of the major threats to the modern agriculture that causes 
not only enormous yield losses [31] [32] [33] [34], but also provides the entry 
points to various microbial pathogens. Subsequently, the global climate change 
is another threat to crop system because of increased emergence of more virulent 
and broad host range pathogenic strains. Therefore, studying the molecular me-
chanisms of plant resistance or tolerance to either biotic and abiotic stresses or 
multiple stresses will provide novel opportunities to develop multiple stress to-
lerance crops [31] [32] [33] [34] [35]. Pathogenesis-related proteins are induced 
by multiple stresses and seem to be important candidates for generating multiple 
stress tolerant crop varieties [31]-[37]. Abiotic stress mediated expression of PR  
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Figure 7. Functional characterization of TdPR1.2 expressed in E. coli (BL21 strain) in response to heavy metals stress. Bacterial 
cells transformed with the empty vector (pET28a) and with the recombinant vector (pET28a + TdPR1.2) were grown for 24 h 
under normal growth conditions (LB medium) or after the addition of 750 µM AlCl3, CuCl2, CdCl2, ZnSO4, FeSO4, CaCl2 and 
MnCl2. 

 
genes is not fully understood at molecular level. The members of the pathogene-
sis-related protein 1 (PR-1) family are among the most abundantly produced 
proteins in plants on pathogen attack. However, despite considerable interest 
over several decades, their requirement and role in plant defense remains poorly 
understood. 

The primary translation products of TdPR1.2 contain a hydrophobic signal 
sequence, which is cleaved off upon entry in the endoplasmic reticulum. The 
mature proteins are mostly about 149 amino acids long, contain six conserved 
cysteine residues forming disulphide bridges, and show a high level of sequence 
conservation throughout different plant families, including both mono- and di-
cotyledons. The TdPR1.2 protein showed the presence of two well conserved 
CRISP domains (CRISP family signature 1 and 2. Aligned amino acid sequences 
of tobacco PR-1a (NtPR1a), including signal sequence, and corresponding parts 
of PR-1 type proteins from vertebrates has been described as cysteine-rich se-
cretory proteins (CRISPs) [32]. The homology of the CRISPs with plant PR-1 
proteins is restricted to their N-terminal part, with 22% - 31% identity and up to 
46% similarity with tobacco PR-1a. The amino acid sequence GHYTQVVW is a 
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particularly well-conserved region in the two groups of proteins, suggestive of an 
important functional role of this domain. Mostly, two of the conserved PR-1 Cys 
residues involved in the formation of the disulphide bridges are absent from the 
vertebrate proteins. On the other hand, CRISPs contain a conserved spacing of 
up to 16 Cys residues in the C-terminal half, which most probably forms a dis-
crete, compact domain [33]. It has been speculated that CRISPs might encode 
lytic enzymatic activities, which would be consistent with the potential role of 
PR1.2. These observations that PR-1 proteins form a specific family within the 
plant kingdom and show homologies and structural motifs in common with 
proteins from fungi, invertebrate and vertebrate animals and humans, make the 
PR-1 family a distinct and highly conserved group of proteins. Their widespread 
occurrence suggests that these proteins share an evolutionary origin and possess 
activity essential to the functioning of living organisms. 

To gain insight into the role of TdPR1.2 in response to various abiotic stresses, 
we overexpressed it in E. coli cells exposed to different stresses. Our results have 
showed that TdPR1.2 positively regulate bacterial response to salt, sorbitol and 
LiCl except KCl stress. Taken together, we suggested that TdPR1.2 is functional 
and plays a crucial role in E. coli response to these abiotic stresses. In parallel, 
TdPR1.2 has a positive role in improving tolerance of E. coli cells grown in dif-
ferent heavy metals mediums (AlCl3, CuCl2, CdCl2, ZnSO4, FeSO4 and CaCl2) but 
not to MnCl2. A PR-1 protein isolated from pepper, called CABPR1 was shown 
to have a positive role in improving tobacco plant tolerance to heavy metal 
stresses (CdCl2 or HgCl2) [24]. Interestingly, the durum wheat TdPR1.2 protein 
ameliorates the growth of E. coli cells grown under heavy metal stresses (Cd, Cu, 
Ca, Fe, Al and Zn) and ionic/osmotic stresses (NaCl, LiCl, Sorbitol). Wang et al. 
[21] demonstrated that TaPR-1-1 expression was also induced by freezing, salin-
ity, and osmotic stresses. Overexpression in yeast and Arabidopsis showed that 
TaPR-1-1 conferred tolerance to these stresses. Hence at least some PR-1 pro-
teins have function in biotic and/or abiotic stress tolerance. Although expression 
profiles of some PR-1 members were tested under pathogen attack, expression 
profiles of PR-1 members under abiotic stress are still not adequately studied. 
Some evidence indicates that PR proteins, such as PR-2 (glucanase), PR-3 (chi-
tinase) and PR-5 (thaumatin-like protein), inhibit microbial growth through 
enzymatic activity [36] [37]. PR-1 proteins that contain a CAP-derived (cyste-
ine-rich secretory protein, antigen 5, and pathogenesis-related-1) peptide 1 have 
been shown to confer stress tolerance [38]. However, the actual mechanism of 
PR-1 in abiotic stress tolerance and whether PR-1 takes part in tolerance to both 
abiotic and biotic stress through the same pathway remains to be addressed. 

5. Conclusion and Future Prospects 

Although it was suggested that all proteins of the PR protein superfamily could, 
on the basis of present knowledge of the molecular structure, have similar func-
tions, the most convincing homology is observed with the proteins from yeast, 
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which have been implicated in morphogenesis. It must be concluded that the 
high extent of sequence conservation of the plant PR-1 proteins from different 
plant families is remarkable, but so far does not offer any clues concerning their 
mode of action. We characterized a novel wheat PR1 gene, TdPR1.2 in vitro after 
expression in E. coli transformant cells. To the best of our knowledge, this is the 
first report of a PR1 gene from wheat to describe its functional accreditation in 
imparting defense against abiotic stress in vitro. Further characterization of 
TdPR1.2 and its regulation under ambient and stress environments in planta will 
enhance our understanding of the molecular cross-talk among various signaling 
pathways mediating plant defense responses. 
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