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Abstract 
Biochar offers several benefits as a soil amendment, including increased soil 
fertility, carbon sequestration, and water-holding capacity in nutrient-poor 
soils. Here, we performed a series of enzyme assays on pine biochar-amended 
soils, comparing multiple enzyme activities (EAs) simultaneously determined 
in the same soil sample vs. the sum of individual EAs involved in the C, N, S, 
and P cycles to provide information of the impacts of biochar on biogeo-
chemical cycling. The combination of these four EAs has been considered an 
indicator of soil health due to their role in the reactions that release bioavailable 
nutrients in the cycling of C (β-glucosidase), N and C (β-glucosaminidase), P 
(acid phosphomonoesterase), and S (arylsulfatase) in soils. Comparisons of the 
theoretical EAs and the CNPS activity assay approaches in the biochar-modified 
soil revealed similar activity trends with the different concentrations of added 
biochar. Two years after adding biochar, study results showed the amended 
soils did not retain more pNP substrate than the un-amended control soils in 
three different pH buffers (5.5, 5.8, and 6.5) commonly used in EA reactions. 
Finally, we performed a third experiment to determine if the biochar pre-
viously added to the EAs interfered with the reactions’ enzyme or substrate. 
The results indicated that greater activity was measured using the combined 
assay, which suggests the CNPS activity method was less affected by biochar 
than the individual EAs. Our findings indicate that the potential soil bio-
chemical-health index, CNPS activity (combination of four enzymes) assay is 
more robust than the individual EAs and can be used as an alternative tool to 
monitor soil functioning. 
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1. Introduction 

The status of soil physiochemical (aggregates, pH, organic matter, and nutrient 
levels) and biological (microbial biomass and community composition, enzyme 
activities, respiration) properties used to assess soil health vary due to regional 
differences in major soil-forming factors, climate, biota, and time [1]. Biological 
indicators of soil health offer certain advantages over physiochemical methods. 
Thus, the success of soil conservation efforts depends significantly on evaluating 
these soil responses to the amendment [2]. The evaluation of soil health empha-
sizes the soil’s biological components, focusing on the metabolic activities of soil 
microorganisms [3] [4] [5] via their enzymes that mediate many of the rate-limiting 
steps in nutrient transformations in soils [6] [7]. Soil enzyme activities (EAs) are 
used as proxies of ecosystem functions [8] [9]. EAs serve as functional indica-
tors, and variations in production are linked to changes in microbial community 
structure or activities, which are also impacted by resource inputs [10]. EAs are 
widely assayed and sensitive enough to reflect changes in soil biogeochemical 
cycling and soil organic matter (SOM) dynamics due to agricultural manage-
ment and climate variability [11] [12] [13] [14]. Traditionally four of the 15 most 
common enzymes used as soil health indicators include β-glucosidase (C cycl-
ing), Acid phosphatase (P cycling), β-glucosaminidase (C and N cycling), and 
Arylsulfatase (S cycling). However, as protocols that measure each EA indepen-
dently could be laborious and the consumption of resources is costly, there is an 
option in which multiple EAs are assessed simultaneously in the same soil sam-
ple to obtain a comparable potential soil biogeochemical-health index, CNPS ac-
tivity [15] [16]. EAs have distinguished several agricultural management prac-
tices and help with redirection management and assessment. Thus, using the 
novel CNPS activity approach requires an in-depth evaluation of EAs, particu-
larly when biochar is the organic soil amendment. 

Biochar is a C-rich material produced by pyrolyzing organic materials, such as 
agricultural crop residues, wood, and green waste, under low oxygen pressure 
and temperature [17] [18]. Also known as a soil conditioner, biochar materials 
have been proposed to be a compliment or an alternative to the use of fertilizers, 
as they can improve soil’s physical, chemical, and biological properties and 
processes, regulate nutrient bioavailability and reduce the harmful effects of fer-
tilization on the environment [19] [20] [21]. When used as a soil amendment for 
orchards, biochar has been found to positively impact productivity, restore soil 
fertility, sequester C in soil, and reduce atmospheric CO2 concentrations [22].  

EAs have been used to study the effect of biochar on nutrient cycling in the 
soil [23] [24] [25] [26] [27] [28]. The influence of biochar on soil enzyme activity 
mainly depends on the interaction of enzyme and substrate with biochar [27]. 
Some studies report that extracellular binding enzymes to the biochar surface 
inhibit enzymatic reactions [28] [29] [30]. Other research suggests that biochar 
interferes with enzyme substrates such as p-Nitrophenol (pNP), formed as the 
reaction product of the hydrolysis of different nitrophenyl derivatives, resulting 
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in significant reductions in substrate concentrations and extractable product in 
soil enzyme assays [30]. The biochar-substrate interactions vary depending on 
the type and chemistry of biochar, soil type, and soil organic matter status [31]. 
For example, Bayley et al. [32] found that the interaction between biochar and 
enzyme-substrate is variable and depends on the enzyme-substrate properties. 
Additionally, buffer solution pH can influence the interaction of biochar and 
enzyme substrates [33] [34]. Zhang et al. [35] studied the effects of biochar and 
chemical fertilizer applications on the overall bacterial community in different 
soil types. Results suggested that the interactions between measured soil para-
meters, including pH and organic matter, were statistically significant. The en-
zyme conformation, i.e., the specific structure, maintains the active site, shaped 
precisely to break down a particular substrate. Each enzyme acts most efficiently 
within a narrow optimal pH range, temperature, and moisture levels. The en-
zyme catalytic efficiency changes when the soil environment changes [36] [37]. 
This study revealed the importance of formulating biochar and fertilizer applica-
tion schemes based on different soil types. 

Numerous studies have assessed the soil enzymes involved in soil C, N, P, and 
S cycling [38]. Adopting the CNPS activity assay may provide producers with an 
inexpensive way to assess soil health. However, studies evaluating the effects of 
pine-biochar on soil enzyme activities in peach-orchard soils are limited [39]. 
The general objective of the present study was to examine the impact of biochar 
on the four enzyme activities recommended by soil health initiatives such as 
β-glucosidase (C cycling), Acid Phosphatase (P cycling), β-glucosaminidase (C 
and N cycling), and Arylsulfatase (S cycling). More specifically, this study aimed 
to evaluate the effects of biochar on the sorption of the four recommended en-
zymes, their substrates, or the products of the reactions, individually in the bio-
char-treated soils (5% and 10% v/v) compared to non-treated soils. Subsequent-
ly, we examined the effect of biochar on pNP readings with three different pH 
buffers (5.5, 5.8, and 6.5) used for the EAs assayed. Finally, we compared the 
sum of these EAs (theoretical EA) to the activities obtained with the combined 
assay for the same four EAs (CNPS activity) to validate the novel assay. 

2. Material and Methods 
2.1. Site Description 

The peach tree orchard was established in 2017 at the Sandhills Research Station 
in Jackson Springs, NC (35.21˚N, 79.63˚W). The soil is classified as a sandy, 
Kaolinitic, thermic Grossarenic Kandiuduits with a pH of 5.8. The area is located 
in a semi-arid region and has an average annual precipitation of 117 cm. Preci-
pitation was highest between September 2018 and April 2019. The yearly average 
temperature is 16.5˚C. The experimental design at the Research Station was a 
factorial randomized completed block with six replications. Three evaluated 
treatments included two rates of biochar incorporated into the soil (5% and 10% 
v/v) to a depth of 30 cm and untreated control (CT) (without biochar amend-
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ment). The biochar used in this experiment was produced at atmospheric pres-
sure from pine tree wood by controlled pyrolysis at 500˚C. The properties of the 
biochar are as follows: a pH (H2O) of 5.4, cation exchange capacity (CEC) of 189.3 
c·mol·kg−1, organic carbon content of 676.0 g·kg−1, total N content of 3.91 g·kg−1, 
total phosphorus (P) content of 0.933 g·kg−1, and an ash content of 37.1%.  

The soil samples were collected from two depths (0 - 10 and 10 - 20 cm) at the 
Sandhills Research Station in July 2019. Samples were immediately sealed in 
plastic bags, placed on ice in coolers, and transported to the laboratory. Field 
moist samples were used for the microbiological analyses (<2 mm), and sub-
samples were air-dried for EA measures. 

2.2. Biochar Addition before EAs Assays 

Fifty grams (dry weight) of soil subsamples were spiked with biochar in sterile 50 
mL centrifuge tubes to yield final concentrations of 5% and 10% (dry weight ba-
sis) [40]. Six replicates were prepared for each biochar concentration, and the 
soil with no added biochar was the control for both the individual EAs and 
CNPS activity measures. 

2.3. pNP Retention on Biochar Assay 

To study the retention of pNP during the analysis of the different enzyme activi-
ties, the following spiking assay was performed: instead of adding the substrates 
at the beginning of the procedure, reaction product (pNP) was added (150 
mg·L−1) to buffer solution (pH = 5.5, 5.8, and 6.5, corresponding to the EAs as-
says, respectively). After the incubation, the retention of pNP by the biochar was 
evaluated. Controls were performed similarly by adding identical amounts of 
pNP after incubation and before measuring the absorbance in a calibrated spec-
trophotometer (with an external pNP standard solution). 

2.4. Soil Enzymatic Activities 
2.4.1. Individual Soil Enzyme Activities 
Individual assays for the soil enzymes β-glucosidase (BG), β-glucosaminidase 
(NAG), acid phosphomonoesterase (also known as acid phosphatase, PME), and 
arylsulfatase (AS) were conducted according to [12] [41] [42] [43]. For each as-
say, 0.5 g of air-dried soil (sieved <2 mm) was incubated at 37˚C in 2 mL of ap-
propriate buffer and 0.5 mL of the substrate at optimal pH for each enzyme for 1 
h. The samples were assayed in duplicate with one control, to which substrate 
was added after the incubation. Following the incubation, 0.5 mL of 1.0 M CaCl2 
and 2 mL of stop solution (NaOH or THAM buffer depending on the enzyme) 
were added, and the soil suspension was filtered through a Whatman No. 2v filter. 
Activity values obtained from the control samples were subtracted from the sam-
ple value. The release of p-nitrophenol from the substrate analog (p-nitrophenol; 
pNP) was determined colorimetrically at 400 nm in a visible spectrophotometer 
(Thermo Scientific Evolution 60S). 
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2.4.2. CNPS Activity Assay 
The CNPS activity assay used β-glucosidase, β-glucosaminidase, acid phospho-
monoesterase, and arylsulfatase in the same reaction. To maintain a buffer: stop 
solution ratio comparable to the original EA assay methods, substrates were 
prepared in the same corresponding buffer (acetate buffer pH 5.8). For the 
CNPS activity assay, 0.5 g of air-dried soil was incubated with 0.5 mL of buffer 
(acetate buffer or MUB) and 2 mL of the solution with the four substrates (0.5 
mL of each substrate prepared in the same buffer used in the assay) without to-
luene for 1 h at 37˚C. Each sample was assayed in duplicate with one control, to 
which all substrates were added after the incubation. Following incubation, 0.5 
mL of 1 M CaCl2 was added. The reaction was terminated using 2 mL of 0.1 M 
THAM pH 12 instead of NaOH because NaOH can react with β-glucosidase as-
say substrate, causing non-enzymatic degradation of pNP [41] [44], and can ex-
tract dissolved organic matter, which can contribute to absorbance at 400 - 415 
nm. The final total volume (5 mL) of soil suspension was filtered through a 
Whatman No. 2v filter, and pNP released was determined calorimetrically at 400 
nm. Activity values obtained from the control samples were subtracted from the 
sample value. 

2.5. Statistical Analysis 

Both the laboratory assay and the field test were performed using six replicates. 
The “theoretical EA” was used (i.e., the sum of each EA assayed individually us-
ing the original protocol) as a reference value of the expected CNPS activity ob-
tained (CNPS activity) when different substrates were incubated concurrently 
[13]. The difference between treatments (0%, 5%, or 10% biochar) and the dif-
ference between the “theoretical EA” and the CNPS activity was compared using 
paired t-tests, and the significant differences were verified at p < 0.05. All statis-
tical analyses and graphics were performed in Infostat [45]. 

3. Results 
3.1. PNP Retention by Biochar Assay 

Figure 1 illustrates the proportion of change in p-nitrophenol (pNP) released 
from the two different biochar concentrations (5% and 10%) compared to the 
non-biochar treated control soil (0%), which holds the value of 1 on the y-axis. 
Values greater than 1 represent available pNP, and values less than 1 represent 
retained (biochar immobilized) pNP. The buffer with a pH of 6.5 showed a 
greater interaction between biochar and pNP substrate than pH 5.5 and 5.8 buf-
fers. At 0 - 10 cm soil depth, the 5% biochar sample had 2% - 5% more available 
pNP than the control following incubation and filtration in the three buffers. 
The 10% biochar treatment retained 5% more pNP in the buffered samples than 
the control. While at 10 - 20 cm depth, the amount of available pNP decreased 
for both concentrations of biochar added. Nevertheless, the comparison of the 
pNP released between the control and the biochar samples was not significantly  
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Figure 1. The proportion of change of p-nitrophenol (pNP) retention in the two different concentrations of biochar (5% and 10%) 
compared to the biochar-free control (0%). Black: soil samples from 0 - 10 cm; Grey: soil samples from 10 - 20 cm. 
 

different among the three buffers (p > 0.05). 

3.2. Comparison of Theoretical EAs and CNPS Activity Approaches  
Following in Vitro Additions of Biochar 

When measuring the EAs using the theoretical EAs and CNPS activity methods 
following in vitro additions of biochar, comparisons of the 5% and 10% biochar 
samples and the control revealed a more significant decrease (45%) in the theo-
retical EAs in the biochar treated samples compared to the CNPS assay (white 
column), which resulted in a 30% decrease (Figure 2(a)). Evaluation of the 
theoretical EAs (the sum of BG, AP, NAG, and AS activities) and CNPS activity 
approaches using the samples without biochar revealed minimal differences 
(<3%) at both soil depths. While 5% biochar samples resulted in a 27% decrease 
in theoretical EAs compared to the CNPS activity in the 0 - 10 cm soils, the dif-
ference was insignificant (p > 0.05, Figure 2(a)). 

Linear regression comparing the sum of individual EAs and the CNPS activity 
assay showed an R2 of 0.56 and a p-value of 0.0001. The linear equation for the 
linear correlation is Sum = 0.791 × CNPS + 7.61. The sample without biochar 
(white circles) produced a higher sum of individual EA values (Figure 3(a)) 
than the samples with biochar (5%: grey circles; 10%: black circles). 

3.3. Comparison between CNPS Activity Assay and Theoretical  
EAs with Biochar Amended in the Field 

After two years, the 5% biochar field samples revealed a slight increase in meas-
ured activity using CNPS activity and theoretical EAs compared to the control 
treatment at 0 - 10 cm. Still, the increase was insignificant (p > 0.05, Figure 
2(b)). The theoretical EAs (−5%) and CNPS activity assay (+27%, Figure 2(b)) 
in the 10% biochar samples trended differently. The theoretical EAs decreased 
by 15% compared to the CNPS activity assay, but the difference was insignificant 
(p > 0.05, Figure 2(b)). At 10 - 20 cm soil depth, the samples with 10% biochar  
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Figure 2. Comparison between the sum of individual enzyme activity (theoretical EAs) and CNPS activity for (a) samples with 
biochar added in vitro before EAs assay and (b) field applied biochar samples. Black: β-glucosidase (BG); dark grey: β-glucosaminidase 
(NAG); grey: acid phosphomonoesterase; light grey: arylsulfatase (AS); and white: CNPS activity. 

 

 
Figure 3. Linear regression between the theoretical EAs (the sum of BG, AP, NAG, and AS activities) and CNPS activity for (a) 
samples with biochar added in vitro before EAs assay and (b) field applied biochar samples. Both graphics contain Black: samples 
with 10% biochar, grey: samples with 5% biochar, and biochar free (0%) White: control samples. 

 
revealed a significant decrease in the theoretical EAs compared to the CNPS ac-
tivity assay (p = 0.0016, Figure 2(b)). 

Linear regression of individual EAs and the CNPS activity assay resulted in an 
R2 of 0.61 and a p-value of 0.0001. The linear equation for this linear regression 
is Sum = 0.969 × CNPS + 7.01. The sample with 10% added biochar (black cir-
cles) exhibited higher values from the CNPS activity assay, while the samples 
without biochar (control; white circles) yielded higher values of activity using 
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the theoretical EAs approach (Figure 3(b)).  

4. Discussion 

Recent studies have shown that EAs can be sensitive indicators of changes in 
biogeochemical nutrient cycling due to soil management practices. Several stu-
dies compared the functional differences in biochar-treated soil samples, and the 
reports varied, reflecting no biochar effects [46], positive biochar effects [23] 
[26], and adverse biochar effects [24] [47]. Additionally, the consequences of bi-
ochar varied with the enzymes evaluated. For example, Foster et al. [25] showed 
that β-glucosidase and Acid Phosphatase activities decreased by nearly 50% by 
adding biochar to soils, while β-glucosaminidase (C and N cycling) and β-cello- 
biohydrolase increased over 100%. 

One of the objectives of this research was to determine if the effect of biochar 
on the CNPS activity approach was similar to the impact of biochar on the indi-
vidual soil EA methods. Our results showed an average difference between theo-
retical EAs and CNPS activity of 5% (CV = 0.2). Both experiments illustrated 
similar variations within the different treatments; the first experiment displayed 
a CV of 0.17 and the second one a CV of 0.19. Previously, Acosta-Martinez et al. 
[15] demonstrated that CNPS activity behaves similarly to the theoretical EA 
measured separately, having a difference between measurements of 15%. The li-
near correlation based on theoretical EAs and CNPS activity showed a smaller 
value (0.791) for the slope of the fit line when the biochar was added before the 
EAs assay (Figure 3(b)).  

During the initial assay, the different pHs used for the biochar’s colorimetric 
determination of pNP retention did not significantly differ based on the amount 
of biochar added into the soil. However, the lowest biochar concentration pro-
duced a 2% - 5% increase in available pNP, while the 10% addition had the op-
posite effect in the three different buffers. These results agree with other studies 
that reported a similar impact when pine-wood biochar was incorporated at a 
concentration of 3%, but a decrease occurred with soils amended at 15% [31]. 
Trigo et al. [33] suggest that the pH around biochar particles would initially in-
crease in soil solution due to the Lewis basicity law at lower concentrations of 
biochar, and, when higher concentrations of biochar are added, the high sorp-
tion capacity decrease due to the possible formation of acidic functional groups 
on biochar surfaces. However, pH did not significantly affect the retention of 
pNP, and the results are differentiated by [34], who compared two more con-
trasting pHs such as 5 and 11. 

The biochar structurally has surface porosity with a high potential to sorb or-
ganic molecules, including enzymes and substrates, thus altering enzyme activi-
ties [32]. When the biochar was added before measuring EAs, the values of EAs 
decreased by approximately 50%. This result implies a more significant impact 
of biochar on enzyme activities. In another study, Frene et al. [48] reported that 
the soil EAs increased in soil samples after two years of biochar and showed that 
the biochar promotes the activity of EAs. The increase in EAs may be attributed 
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to higher SOC, increased co-location, and stabilization of the enzymes [36]. 
Moreover, due to biochar additions, higher microbial biomass also releases more 
enzymes than the other treatments [49].  

The combined assay (“CNPS activity”) differentiated among the different 
concentrations of biochar in the treated soils, similar to the sum of the individu-
al EAs [15]. Therefore, this study agrees with previous studies that found the 
CNPS activity assay is sensitive and capable of differentiation between the 
amount and type of biochar applied compared to assaying the EAs individually, 
in addition to providing a uniform biogeochemical cycling index while reducing 
time and resources [15] [47].  

5. Conclusion 

Soil health assessments need simple, fast, and low cost-effectivity assays to pro-
vide a better overview of soil geochemical cycle and soil functions. CNPS assay 
has achieved these objectives since it simultaneously evaluates four different en-
zyme activities (β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, 
and arylsulfatase), reducing time and resources. Biochar has shown several in-
consistencies concerning its interaction with soil functions, mainly soil enzyme 
activities. Our study showed that CNPS assays are a robust method to evaluate 
soil biogeochemical cycling and soil health in the presence of biochar. Addition-
ally, we observed that amended soils did not retain more pNP substrate than the 
un-amended control soils in three different pH buffers (5.5, 5.8, and 6.5) com-
monly used in EA reactions. At the same time, the comparisons of the theoreti-
cal EAs and the CNPS activity assay approaches in the biochar-modified soil re-
vealed similar activity trends with different concentrations of added biochar. 
Furthermore, this work facilitates the future adoption of a uniform biogeochem-
ical cycling index (CNPS activity) for producer-oriented soil management deci-
sions that require informative testing. 
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