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Abstract 
In recent years, significant advancements in music-generating deep learning 
models and neural networks have revolutionized the process of composing 
harmonically-sounding music. One notable innovation is the Music Trans-
former, a neural network that utilizes context generation and relationship 
tracking in sequential input. By leveraging transformer-based frameworks 
designed for handling sequential tasks and long-range functions, the Music 
Transformer captures self-reference through attention and excels at finding 
continuations of musical themes during training. This attention-based model 
offers the advantage of being easily trainable and capable of generating musi-
cal performances with long-term structure, as demonstrated by Google 
Brain’s implementation. In this study, I will explore various instances and ap-
plications of the Music Transformer, highlighting its ability to efficiently 
generate symbolic musical structures. Additionally, I will delve into another 
state-of-the-art model called TonicNet, featuring a layered architecture com-
bining GRU and self-attention mechanisms. TonicNet exhibits particular 
strength in generating music with enhanced long-term structure, as evi-
denced by its superior performance in both objective metrics and subjective 
evaluations. To further improve TonicNet, I will evaluate its performance us-
ing the same metrics and propose modifications to its hyperparameters, ar-
chitecture, and dataset. 
 

Keywords 
Transformer, Attention, Long-Term Structure, Architecture 

 

1. Introduction to the Music Transformer  

Musical composition is the process of making or forming a piece of music by 
combining the parts, or elements of music by applying a system, structure, and 
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motif throughout the entire piece. Most people come to music composition with 
a lifetime of listening experiences. Music composition takes learning one skill at 
a time and adopting it in the composition, whether it’s harmony, melody, or 
form.  

However, with the Music Transformer (Huang et al., 2019), we see a more 
innovative, dynamic, and progressive approach to music generation (Briot et al., 
2019; Ji et al., 2020). Music transformers are revolutionary in the music industry 
as it enables automated music composition, allowing composers to generate 
original pieces by inputting a few parameters, such as genre, mood, or length, 
and the model can create fully orchestrated compositions. Before the introduc-
tion of transformers, recurrent neural networks (RNNs) with installed attention 
mechanisms were used in deep learning to develop models where output trans-
lations would be fed in as inputs, forming a recurrent process with temporal da-
ta, and making it proficient at language translation and processing. The trans-
former model, however, is able to match this performance without recurrent 
processing and limited training data with its cutting-edge operations with atten-
tion mechanisms. With the example of translation, words are rendered into vec-
tors with different degrees and orientations. In a procedure of encoding and de-
coding the data, the model analyzes the source input, encodes and decodes it in-
to weighted data, allowing it to predict the most accurate translation.  

In general, the analysis of all AI-generated music software and models comes 
down to three important elements—hyperparameters, architecture, and data-
set—which we will be evaluating in this paper. The concepts of hyperparameters, 
architecture, and dataset are closely interconnected when it comes to training 
and modifying a machine learning model like TonicNet. Making changes to 
these elements can ultimately help the model converge faster, avoid overfitting, 
or handle specific types of datasets, while improving feature extraction. Modify-
ing hyperparameters can significantly impact the model’s performance, conver-
gence speed, and ability to generalize to new data, architecture refers to the 
overall arrangement and connectivity of its layers and the types of operations 
performed in each layer, while the dataset is essential for testing the model’s 
performance through training and evaluating its results. Changes in the dataset 
can influence the model’s ability to generalize, handle different types of inputs, 
and mitigate background noise present in the data, in the case that the input is in 
an audio file.  

2. Data Processing with Music Transformer  
2.1. Process  

Starting by looking at the basic encoding protocol of RNNs commonly using 
MIDI files, we can see that a keystone concept of performance encoding is the 
serialization of micro-timing and velocity. This is derived from the event se-
quence of turning on and off notes, which captures the velocity and polyphonic 
structure of the dataset with global clock networks (GCLKs) specializing in this 
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variety of digital signal processing. This includes a crucial step: quantization, in 
which the continuous timing information in the MIDI file is converted into dis-
crete time steps that align with the beat and tempo of the music.  

With the basic processing structure of Transformers, it is able to capture a 
more coherent and long-term structure and establish a dominant motif in the 
musical dataset. Specifically, after the audio is transcribed as symbolic music into 
a MIDI file and synthesized, the Transformer model is able to adhere to the 
theme that it captures, and essentially endures this theme throughout the predic-
tive segment of the musical composition. Ultimately, it produces as output a se-
quence of new MIDI events that are intended to be a continuation of the input 
sequence. It does this by predicting the probability distribution over the set of 
possible MIDI events at each time step, based on the input sequence seen so far.  

Sequence length normalization ensures that all input sequences have the same 
length, typically by truncating or padding them. This is achieved by dividing the 
data into subsets for training, validation, and evaluation. The preprocessing 
software for this process uses music21, a Python library for computer-aided mu-
sicology, providing a set of tools for working with music notation, analysis, and 
performance. It can be used to read and write music notation in various file 
formats, manipulate music scores and parts, perform music analysis, and gener-
ate new music compositions.  

2.2. Self-Attention Mechanism  

The Transformer employs the use of self-attention (Jagannathan et al., 2022), 
and this mechanism comes down to the layers of data from the encoder and de-
coder. The self-attention mechanism allows it to relate different positions of a 
sequenced encoder in order to compute a representation of the same sequence as 
a decoder. The implication of this procedure allows every position in the decod-
er to oversee all positions in the encoder sequence.  

In essence, the process of self-attention, also known as multi-head attention in 
the applications of attention in the Transformers model, is the model’s ability to 
procure values and queries from the previously processed layers of encoding. 
This produces the decoder’s autoregressive modeling which enables it to manage 
all previously processed positions including the current position. Therefore, the 
self-attention technique implemented by the Transformer enables it to detect 
subtle ways in which data elements influence each other.  

Relative Positional Self-Attention Shaw et al. (Shaw et al., 2018) introduces a 
methodical approach: using position encodings with input elements to expose 
position information to the model, they can be a deterministic function of posi-
tion or learned representations. It is an extension of the Music Transformer self 
attention mechanism, which allows the model to weigh the importance of dif-
ferent parts of the input sequence when making predictions. Convolutional 
neural networks inherently capture relative positions within the convolution 
window. They proposed an extension to self-attention to consider the pairwise 
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relationships between input elements by modeling the input as a labeled, di-
rected, fully connected graph and modified the Transformer’s self-attention 
mechanism to consider the relative distances between sequence elements. The 
authors proposed adding a set of trainable embeddings to the Transformer so as 
to make its output representations also represent the sequential information in 
its inputs. These vector embeddings are employed in the process of computing 
the attention weight and value between two words in the input sequence. These 
embeddings represent the distance (number of words) between words; thus, the 
name Relative Position Representation (RPR) was coined.  

Relative Positional Self-Attention takes into account the relative positions of 
the elements in the input sequence, as well as their absolute positions. This is 
important in musical contexts, where the timing and rhythm of notes are crucial. 
By incorporating relative positional information, the model is better able to 
capture the structure and relationships within the input sequence.  

In practice, Relative Positional Self-Attention is implemented using learned 
position embeddings, which are added to the input embeddings before being fed 
into the attention mechanism. The position embeddings capture information 
about the relative positions of the elements in the sequence, and are learned 
during training along with the other parameters of the model.  

2.3. Architecture  

The Music Transformer architecture consists of an encoder and a decoder, simi-
lar to the original Transformer architecture (Hsu & Chang, 2021). The encoder 
processes the input sequence and generates a set of “context vectors” that are 
used by the decoder to generate the output sequence. The decoder is responsible 
for generating the output sequence, one event at a time, based on the context 
vectors and the events generated so far. The Music Transformer can be trained 
on a large corpus of MIDI files using maximum likelihood estimation, where the 
goal is to maximize the probability of generating the correct output sequence 
given the input sequence. Once trained, the model can be used to generate new 
music by sampling from the output distribution at each time step, or by using 
beam search to find the most likely sequence of events.  

2.4. LSTM  

LSTM (Long Short-Term Memory) is a type of RNN architecture that was de-
veloped to address the vanishing gradient problem in traditional RNNs.  

In traditional RNNs, the gradient signal can become smaller and smaller as it 
is propagated back through time, which can result in the weights of the network 
not being updated effectively and the network being unable to learn long-term 
dependencies. LSTM networks solve this problem by introducing a memory cell 
that can store information for long periods of time, along with three gates (the 
input gate, forget gate, and output gate) that regulate the flow of information 
into and out of the cell.  
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The input gate controls whether to allow new information to enter the mem-
ory cell, the forget gate controls whether to erase old information from the 
memory cell, and the output gate controls whether to output information from 
the memory cell to the next layer of the network. By using these gates to selec-
tively update the memory cell, LSTM networks can effectively learn long-term 
dependencies and are particularly well-suited for tasks that involve sequential 
data, such as natural language processing and speech recognition. 

Encoder. To analyze the encoder of the Transformer, we can take language 
translation as an example. In contrast to the slow-processing RNNs, the Trans-
former can simultaneously embed all the inputs without loss of gradients, be-
cause the input sequence of the sentence is passed in parallel. In the Music 
Transformer, a sequence of musical events is taken as input takes as input and 
represented as one-hot vectors. They are mapped to a sequence of continuous re-
presentations, or embeddings, that capture the underlying structure of the music. 
Each embedding is computed by applying a series of multi-head self-attention 
layers and position-wise feedforward layers to the previous embeddings in the 
sequence. An important component of this is the embedding space, where the 
word is assigned to a vector. In positional encoding, the vector is assigned that 
provides context in regard to its position in the dataset. An essential part of this 
process is the multi-head attention mechanism whereby the inputs are run in 
parallel and then output a concatenated representation (Figure 1).  

 

 
Figure 1. Transformer’s encoder-decoder 
architecture.  
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Decoder. During the training phase in language translation, in order for the 
computer to undergo the translation phase, the model must be fed information 
that it can decode. In this case, it would be the input embedding from the en-
coder and also the positional vector in order for it to understand the structure of 
the sentence and the context of each word. These vectors relate each word in the 
sentence to every other word in the sentence, and as each word is fed into the at-
tention mechanism, feedforward layers make the output easily computable to the 
computer, allowing it to predict the next word that logically follows. Similarly, in 
the Music Transformer, a sequence of embeddings generated by the encoder is 
taken and it autoregressive generates a sequence of musical events. At each time 
step, the decoder takes as input the embedding of the previously generated 
event, as well as the context vectors computed by the multi-head self-attention 
mechanism over the encoder output. It then applies a series of self-attention lay-
ers and position-wise feedforward layers to the previous embeddings to generate 
the embedding of the next event, which is then decoded into a musical symbol 
using a softmax classifier.  

3. Other Methods  

We will first look at some techniques, architectures, and elements crucial to 
model the complex relationships between musical notes and rhythms in a way 
that can capture the flow and structure of music. These methods can play a large 
role in the generation of new sequences of music by sampling from the probabil-
ity distribution of the model, allowing for the creation of novel and unique mus-
ical compositions.  

Dropout. Srivastava et al. (Srivastava et al., 2014) introduced the fundamen-
tal application of dropout, a regularization technique for neural networks, 
drops units and connections at specified training times with specific probabili-
ties, and “each hidden unit in a neural network trained with dropout must learn 
to work with a randomly chosen sample of other units. This should make each 
hidden unit more robust and drive it towards creating useful features on its 
own without relying on other hidden units to correct its mistakes”. Srivastava et 
al. hypothesize that by nullifying the presence of hidden layers, dropout pre-
vents co-adaptation, or a correlation of structural composition of each hidden 
unit. While all units are present, weights are scaled by probability. This me-
chanism prevents a situation where the neural network becomes too dependent 
on specific connections, as this could be an indication of overfitting and be-
coming too similar to the training data. Therefore, we can consider dropout as 
the creation of an implicit ensemble of neural networks. In many Music Trans-
former-based models, dropout can be used to randomly drop out some of the 
connections between the neurons in the network during training. This helps to 
prevent the network from relying too heavily on any one feature or set of fea-
tures, and encourages it to learn more rich representations of the processing 
data (Figure 2).  
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Figure 2. The use of regularization methods to drop nodes 
in the input and hidden layer to address overfitting. (a) 
Standard neural net; (b) After applying dropout. 

 
Gated Recurrent Unit. A Gated Recurrent Unit (GRU) is a type of recurrent 

neural network very much similar to a long short-term memory (LSTM) (Dua et 
al., 2020). However, it only has two gates: a reset gate and an update gate. GRUs 
have fewer parameters, as they lack an output gate, thus making them generally 
easier to train than LSTMs. It is often employed in place of the original trans-
former layers. The GRU for Transformer was proposed as a way to reduce the 
computational cost of the original Music Transformer while still achieving good 
performance on music generation tasks. The use of GRUs allows the model to 
learn and remember longer-term dependencies in the music, which is important 
for generating coherent and musically pleasing sequences.  

Softmax. The softmax output function takes the output of a previous layer 
and converts it into a vector of probabilities. In the output, the final layer of the 
neural network will be represented as a probability distribution over possible 
next notes or chords in a musical sequence. This is then used to sample the next 
note or chord to be added to the sequence. The softmax function ensures that 
the output probabilities sum to one and that the output values are between 0 and 
1, allowing the model to generate a valid probability distribution over possible 
notes or chords. In the context of multiclass classification, an input vector and a 
weighting vector can be expressed with:  
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Variational Dropout. Variational Dropout is described as a regularization 
technique constructed on the fundamental concepts of dropout techniques but 
employs variational inference in its approach. In Variational Dropout, a dropout 
mask with each element of the mask is a Bernoulli random variable that takes a 
value of 1 with probability p, and a value of 0 with probability 1 - p, where p is 
the dropout rate is cycled through at each time step for inputs, outputs, and re-
current layers while dropping the same network units during its traversal. This is 
essentially different from the regular Dropout data for faster processing speed, as 
various dropout masks are sampled at each individual time step solely to retrieve 
the inputs and outputs individually.  
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4. Related Experiments  
4.1. TonicNet  

Perecha (Peracha, 2019) has developed TonicNet in an effort to focus on valida-
tion set loss of the Transformer rather than architecture in his refinement mod-
el. TonicNet is a GRU-based model trained to initially predict the chord at a 
given time-step before predicting the notes of each voice at that time step, con-
trasting with the typical approach of predicting only the notes, while generating 
melodies and chord progressions. It is based on a recurrent neural network ar-
chitecture and uses a combination of self-attention and relative position repre-
sentations to capture the long-term dependencies in music. The model can ei-
ther be trained to predict preconditioned features as well as the extra compo-
nents of the sequences being modeled, significantly improving the overall results 
when we analyze the model performance. The goal of TonicNet is to create mu-
sic that sounds more natural and coherent, and it has been trained on a large 
dataset of MIDI files from various genres.  

Process and Architecture  
RNN. TonicNet uses Recurrent Neural Networks (RNNs) to learn and generate 
music. RNNs are a type of neural network that has a feedback mechanism that 
allows information to be passed from one step of the network to the next. In To-
nicNet, the RNN is trained on a large corpus of music, and learns to predict the 
next note in a sequence given the previous notes (Figure 3).  

 

 
Figure 3. TonicNet’s GRU architecture for time-step 
prediction.  
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This process is called sequence modeling. TonicNet uses a specific type of 
RNN called a Gated Recurrent Unit (GRU), which is designed to address the 
problem of vanishing gradients in traditional RNNs. The GRU allows informa-
tion to be selectively passed on from one time step to the next, while filtering out 
irrelevant information. During the training process, TonicNet learns to generate 
music that is similar to the input corpus. The output music can be controlled by 
adjusting various hyperparameters, such as the number of RNN units and the 
length of the generated sequence.  

TonicNet has two inputs: an integer value represented by x storing the class 
label for the previous time-step’s class label, while the second integer represented 
by z stores the repetition count. These inputs are each converted to vector re-
presentations and by an embedding respectively. The embedding outputs are 
then concatenated with both the class label embedding, and the repetition count 
embedding processed during training from scratch. With the parameters that are 
used by Peracha, the concatenated embeddings have a Variational Dropout 
function applied with a 0.1 rate. This is then processed to a 256-unit GRU with 
three layers alternating with two layers of dropout applied after each of the first 
two layers at a 0.3 rate.  

This process is complemented with a 5-layer Transformer encoder model. 
Layers refer to the individual building blocks that make up the neural network. 
A layer can be thought of as a computational unit that performs a specific opera-
tion on its input data and produces an output. Different types of layers in a 
neural network can include convolutional layers, activation layers, pooling lay-
ers, and fully connected layers. The number and types of layers used in TonicNet 
can greatly impact its performance and ability to learn from data. Perecha en-
codes an absolute position in the time-step sequence through a position embed-
ding with 256 dimensions, which is processed by the model as an input embed-
ding. A feedforward layer with 1024 units and set with a dropout rate of 0.1 
within the encoder module has 1024 units has the input masked to ensure the 
model can only rely on the sequence’s previous time-steps when making a pre-
diction. Unlike other models, repetition encoding is not used whatsoever when 
training this model. 

4.2. Quantitative and Qualitative Evaluation  

We will be assessing the performance of AI models in generating music using 
both objective and subjective measures. The quantitative evaluation of ten in-
volves measuring the model’s accuracy, precision, recall, F1 score, and other 
performance metrics using established benchmarks or ground truth data. The 
qualitative evaluation often involves assessing the generated music’s quality, 
creativity, coherence, and aesthetics, among other subjective measures, through 
surveys, human expert evaluations, and other means (Figure 4).  

NLL. The NLL (negative log likelihood) loss is our considered benchmark in 
our qualitative evaluations of the models. When we look at this metric generally,  
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Figure 4. TonicNet NLL loss training data. 

 
relative attention achieves a better NLL loss as compared to vanilla Transformers 
and other architectures. The benchmark is calculated when taking the log of the 
probability value after the softmax function has been applied and subsequently 
adding the probability value of the result to the average. In the music modeling 
sector, we see TonicNet currently having the best NLL metric as measured at 
0.220. In Perecha’s training from scratch based on the 60-epoch run, we see an 
optimal performance of a loss of 0.317. In my personal replications running with 
the 60-epoch run, I saw a 0.323 loss of optimal performance using the same 
hyperparameters and training from scratch.  

In the context of machine learning and deep learning, NLL loss is a type of 
loss function that is used to measure the error or difference between the pre-
dicted output of a model and the actual target output. It is commonly used in 
multi-class classification problems, where the goal is to assign an input data 
point to one of several classes.  

The NLL loss function is based on the concept of maximizing the likelihood of 
the correct class label given the input data. The negative log-likelihood is taken 
of this probability, which is then used as a measure of the error. The idea is to 
minimize this error during training by adjusting the model’s parameters using 
techniques like gradient descent.  

TonicNet was evaluated on the JSB Chorales dataset using the NLL loss and 
achieved a test set NLL of 0.88 bits per note. This was compared to the previous 
state-of-the-art model, which achieved a test set NLL of 0.94 bits per note and a 
Tonic Identification Accuracy (TIA) score of 91.8% compared to the sub-90% 
losses of previous models. These results demonstrate the effectiveness of Tonic-
Net in modeling tonal music and generating coherent and tonally consistent 
musical sequences (Figure 5).  
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Figure 5. NLL benchmark statistical comparisons between 
different standard transformer models. 

 
TonicNet has shown promising performance in generating music with tonal 

coherence. According to the paper by Peracha, it achieved over an 85% success 
rate with correctly predicted tonics (over 85%) in the test set, as well as over a 
95% success rate for high mean pitch accuracy in the generated melodies. Addi-
tionally, the generated music was evaluated by human listeners in a listening 
test, where it was found that the generated music was often perceived as cohe-
rent and musical. 

For the Vanilla Transformer, it is common for it to be evaluated against the 
metrics of accuracy, perplexity, and F1 score. For language modeling tasks, lower 
perplexity indicates better performance, while for classification tasks, higher ac-
curacy and F1 score indicate better performance. The original transformer paper 
by Vaswani et al. (Vaswani et al., 2017) reported state-of-the-art results on the 
machine translation task using the WMT 2014 English-German dataset, achiev-
ing a BLEU score of 28.4 (Figure 6).  

5. Refinements and Experimentation  
5.1. Potential Improvements  

First, TonicNet was trained on a specific dataset, and its performance may be li-
mited if applied to a different musical style or genre. This makes TonicNet sus-
ceptible to overfitting the training data. This risk can be mitigated by using tech-
niques such as dropout and early stopping.  

As with many deep learning models, it can additionally be difficult to interp-
ret how TonicNet arrives at its predictions. This may limit its usefulness in cer-
tain contexts where interpretability is important. While TonicNet may perform  
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Figure 6. Vanilla transformer NLL loss training data.  

 
well on generating novel music within the range of its training data, it may not 
necessarily capture the essence of the musical style or be able to generate music 
that is considered high quality or stimulating.  

Refinements. In an effort to improve and optimize the qualitative perfor-
mance of TonicNet, I will be tuning several of TonicNet hyperparameters, fo-
cusing on the RNN units and dropout rate. TonicNet is a neural network archi-
tecture used for audio classification tasks, and it includes a recurrent neural 
network (RNN) to model the temporal dependencies of the audio data. The 
number of RNN units, also known as hidden units, is a hyperparameter that 
controls the capacity and complexity of the RNN.  

Changing the number of RNN units in TonicNet can have several effects on 
the network’s performance and behavior, including the capacity of the network; 
a larger capacity allows it to capture more complex temporal patterns in the au-
dio data improving the accuracy of the model, especially if the input data con-
tains long-term dependencies. Nonetheless, increasing the number of RNN units 
could potentially lead to overfitting if the training data is not sufficient. If the 
number of RNN units is too small, the network may not be able to capture im-
portant temporal patterns in the data, and this will be reflected in poor accuracy 
results. In this case, increasing the number of RNN units can improve perfor-
mance. Generally, we can approach this problem by starting with a moderate 
number of RNN units and gradually increasing or decreasing it while monitor-
ing the performance on a validation set.  

The implementation of TonicNet’s dropout regularization to prevent overfit-
ting is a technique that randomly drops out (sets to zero) some neurons during 
training to force the network to learn more robust features. Changing the dro-
pout rate in TonicNet can have several effects on the network’s performance and 
behavior. Higher dropout rates can increase the network’s generalization ability 
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by reducing overfitting. However, too high a dropout rate may lead to underfit-
ting, where the network fails to learn important features. Lower dropout rates 
may result in better accuracy on the training data but can also lead to overfitting. 
This means that the network may perform well on the training data but general-
ize poorly to new, unseen data. The dropout rate can affect the convergence 
speed of the network. Too high or too low a dropout rate may slow down the 
training process. Thus, with the dropout rate, I will conduct careful experimen-
tation and tuning to find the optimal value that balances preventing overfitting, 
improving generalization, and maintaining convergence speed.  

5.2. Quantitative Results  

In order to achieve the optimal coherence of the music patterns, we will first 
need to adjust hyperparameters to reduce the NLL loss in order to ensure that 
the network of the model is capable of predicting the correct notes and timing in 
the generated music. Therefore, reducing the NLL can help improve the overall 
quality of the generated music by making it more accurate and closer to the 
training data. We will not need to adjust the number of layers in the GRU archi-
tecture as the preset 3 layers is the optimal standard for the number of hidden 
layers and passing this threshold might result in an increase in time complexity 
concerning accuracy gain. We will first tweak the nb_rnn_units in TonicNet, 
which refers to the number of units (or neurons) in the recurrent neural network 
(RNN) layer of the model. The RNN layer is responsible for processing sequen-
tial data, such as time-series or text data, by maintaining a hidden state that 
captures information from previous time steps.  

The number of units in the RNN layer determines the complexity of the mod-
el’s representations and its ability to capture long-term dependencies in the in-
put data. Typically, increasing the number of units can improve the model’s 
performance but also increases the computational cost and risk of overfitting. 
Increasing the number of nb_rnn_units in TonicNet generally improves its abil-
ity to model and generate complex musical patterns and structures. This is be-
cause the RNN units in TonicNet learn to capture patterns in the input data over 
time, and increasing the number of units can provide more capacity for the 
model to learn complex patterns and relationships. We will be attempting the 
common approach of slowly incrementing the RNN units and seeing how this 
affects the overall loss function that is plotted as the number of units increases. 

Increasing the number of RNN units in TonicNet can initially improve the 
model’s loss because it allows the network to capture more complex temporal 
patterns and dependencies in the input music data. With more RNN units, the 
model can potentially better learn the underlying structure of the music and 
generate more coherent and musically pleasing sequences. However, increasing 
the number of RNN units beyond a certain point may lead to overfitting, where 
the model performs well on the training data but poorly on new, unseen data. As 
the capacity of the model increases, it becomes more prone to overfitting, 
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meaning that it begins to memorize the training data rather than learning gener-
al patterns. This results in a decrease in the model’s ability to generalize to new, 
unseen data, and a corresponding increase in its loss on the validation set. As we 
can see, testing the incrementation of the number of RNN units in 20-unit in-
crements, we find that In conclusion, it is important to strike a balance between 
model capacity and generalization by choosing an appropriate value for the 
nb_rnn_units parameter and possibly adjusting other hyperparameters, such as 
dropout, to prevent overfitting. Thus, I will then adjust the dropout rate to pre-
vent poor generalization to new, unseen data. Essentially, we want to reduce the 
complexity of the model and evade the situation where it starts to memorize the 
training data instead of learning more general patterns that can be applied to 
new data.  

To address overfitting, I will try reducing the number of layers or adding re-
gularization techniques such as dropout, weight decay, or early stopping. These 
methods can help the model to generalize better to new data and prevent overfit-
ting. Although I can try increasing the size of the training dataset, since having 
more data can help the model to learn more general patterns and avoid overfit-
ting, we can also tweak the dropout rate to adjust the proportion of neurons that 
will be dropped during training.  

Increasing the dropout rate in TonicNet can have both positive and negative 
effects on the network’s performance, depending on the specific task and dataset. 
Here are some potential effects. Dropout is a regularization technique that helps 
prevent overfitting, which occurs when a model fits too closely to the training 
data and fails to generalize well to new, unseen data. Increasing the dropout rate 
can improve the model’s generalization performance by reducing overfitting, 
especially if the model is complex and has many parameters. Dropout can also 
be seen as a form of noise reduction because it encourages the network to learn 
more robust and invariant features that are less affected by noise and variations 
in the input data. In general terms, this can be especially beneficial if the input 
audio data contains a lot of background noise or other variations in sound. In-
creasing many of the hyperparameters such as the dropout rate can result in a 
reduced capacity of the model, making it harder for the network to learn impor-
tant patterns in the data. I saw that this resulted in underfitting, where the model 
is not able to capture the complexity of the audio data and performs poorly on 
both the training sets (Figure 7).  

In my experimentation with the dropout rate, I found that increasing the 
dropout rate can slow down the convergence speed of the network because more 
training iterations are required to compensate and strive for an on-par level of 
accuracy, increasing the training time and computational cost if the dataset or 
the model is complex. Overall, increasing the dropout rate in TonicNet requires 
careful experimentation and tuning to find the optimal value that balances pre-
venting overfitting, improving generalization, and maintaining the network’s 
capacity and convergence speed.  

https://doi.org/10.4236/adr.2023.113015


C. Zhang 
 

 

DOI: 10.4236/adr.2023.113015 203 Art and Design Review 
 

 
Figure 7. TonicNet NLL loss training data with RNN and hyperparameter 
modifications. 

 
I slowly tested out the dropout rate by incrementing the dropout rate after 

each testing phase to address issues with overfitting and identifying improve-
ments in generalization performance of the model. However, I must be careful 
not to set the dropout rate too high, and cause the network to lose important in-
formation during training, making it harder to learn useful features. I saw this 
setting the dropout rate to 0.5, as I speculate that too many neurons were 
dropped out during training, leading to an evident overall decrease in perfor-
mance. A lower dropout rate may be more appropriate for the specific dataset 
and model architecture and we also must note that the optimal dropout rate may 
vary depending on the specific task and dataset being used. As seen with the re-
sults, the optimal dropout is seen at 0.4, as trying to decrement the dropout to 
0.2 also caused a poor generalization of the validation set and also resulted in 
overfitting.  

5.3. Qualitative Results  

TonicNet’s quantitative performance can be evaluated using metrics such as 
Mean Opinion Score (MOS), root mean square error (RMSE), and signal-to-noise 
ratio (SNR) (Bhagat, Bhatt, & Kosta, 2012). MOS is a subjective measure that can 
be obtained from human listeners who rate the quality of the generated audio. 
RMSE measures the average difference between the predicted audio signal and 
the ground truth audio signal. SNR measures the ratio of the power of the audio 
signal to the power of the background noise. A lower RMSE and a higher SNR 
indicate better performance of the TonicNet model (Figure 8).  

Increasing the number of RNN units in TonicNet may also improve the sound 
quality by allowing the model to capture more complex patterns in the input data, 
and therefore generate more accurate and diverse output sequences. In my 
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Figure 8. TonicNet NLL loss training data with dropout hyperparameter 
modifications. 

 
qualitative evaluation of the generated datasets with the desired hyperparame-
ters, I will listen to the generated music and assess its overall quality, including 
how smooth and clear the melody is, if it has variations and dynamics, while also 
assessing the coherence of the generated music to evaluate if it sounds dis-
jointed. I will then compare this performance to other models. In many surveys, 
TonicNet’s qualitative performance is generally considered to be good, with 
many samplers reporting that the generated music sounds pleasant and coherent 
(Chu et al., 2022). 

My adjustments with the RNN units and individual analysis of the generated 
mp4 datasets definitely showed an increased performance. I found a more effi-
cient attempt at capturing more variation and creativity in the music, making 
the generated result sound more human-composed. The melody also introduced 
a smoother flow with better incorporation of melody.  

6. Conclusion  

The importance of music transformers lies in their ability to model long-term 
dependencies in music sequences and generate coherent, high-quality musical 
compositions. Traditional recurrent neural networks (RNNs) struggle with 
modeling long-term dependencies, as the gradients can vanish or explode during 
training. Transformers overcome this limitation by using a self-attention me-
chanism and architecture that allows them to selectively attend to different parts 
of the input sequence, making it one of the most flexible, dynamic, scalable, and 
most importantly, coherent models in the recent years of developments in deep 
learning music composition. TonicNet’s musically coherent and structurally ro-
bust architecture makes it a model for very high-quality AI music generation, 
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especially when we consider the creativity and flexibility in music generation. 
My combined quantitative and qualitative evaluation by adjusting very critical 
hyperparameters, the number of RNN units and the dropout, helps determine 
the model’s strengths and weaknesses, identify areas for improvement, and pro-
vide insights for future research and development, in order to address its espe-
cially limited output variety and attempt to tackle or at least mitigate the effects 
of overfitting. Through further training on diverse and representative datasets, 
we can then take steps to achieve an indistinguishable AI music generation 
sound from human-composed music.  
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