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Abstract 
Tropical cyclones (TCs) and storms (TSs) are among the devastating events 
in the world and southwestern Indian Ocean (SWIO) in particular. The sea-
sonal forecasting TCs and TSs for December to March (DJFM) and Novem-
ber to May (NM) over SWIO were conducted. Dynamic parameters including 
vertical wind shear, mean zonal steering wind and vorticity at 850 mb were 
derived from NOAA (NCEP-NCAR) reanalysis 1 wind fields. Thermody-
namic parameters including monthly and daily mean Sea Surface Tempera-
ture (SST), Outgoing Longwave Radiation (OLR) and equatorial Standard 
Oscillation Index (SOI) were used. Three types of Poison regression models 
(i.e. dynamic, thermodynamic and combined models) were developed and 
validated using the Leave One Out Cross Validation (LOOCV). Moreover, 2 
× 2 square matrix contingency tables for model verification were used. The 
results revealed that, the observed and cross validated DJFM and NM TCs 
and TSs strongly correlated with each other (p ≤ 0.02) for all model types, 
with correlations (r) ranging from 0.62 - 0.86 for TCs and 0.52 - 0.87 for TSs, 
indicating great association between these variables. Assessment of the model 
skill for all model types of DJFM and NM TCs and TSs frequency revealed 
high skill scores ranging from 38% - 70% for TCs and 26% - 72% for TSs fre-
quency, respectively. Moreover, results indicated that the dynamic and com-
bined models had higher skill scores than the thermodynamic models. The 
DJFM and NM selected predictors explained the TCs and TSs variability by 
the range of 0.45 - 0.65 and 0.37 - 0.66, respectively. However, verification 
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analysis revealed that all models were adequate for predicting the seasonal 
TCs and TSs, with high bias values ranging from 0.85 - 0.94. Conclusively, the 
study calls for more studies in TCs and TSs frequency and strengths for en-
hancing the performance of the March to May (MAM) and December to Oc-
tober (OND) seasonal rainfalls in the East African (EA) and Tanzania in par-
ticular. 
 

Keywords 
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Models, Skill Scores TCs/TSs Variability and Verification, Leave One out 
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1. Introduction 

The short rainy season of December to March (DJFM) over the East African 
(EA) coast, including Tanzania is characterized by the presence of the northeast 
monsoon winds which induce the annual fluctuation of weather systems and 
hence results into the existence of favorable conditions for TSs and TCs occur-
rences. The meteorological and oceanographic parameters which trigger the 
TCs/TCs formation and their development in the SWIO basin include advected 
moist air from Congo air mass, long track air flows from the northeastern Indian 
Ocean (IO) and the northwesterly IO [1]. Other parameters include the IO 
monsoon trough and surges which enhances low level cyclonic circulation i.e. 
vorticity [2] [3], warmth of the ocean in areas bounded by 2.5˚ - 24˚S and 39.5˚ - 
71˚E especially over the northeastern Madagascar during November to May 
(NM) [4] vertical wind shear at 200 - 850 mb [5] [6] [7] and mean zonal steering 
winds (500 - 700 mb) [8] [9] at the genesis positions of the TCs/TCs. Moreover, 
the fluctuations of the convection levels which move in line with the Inter Trop-
ical Convergence Zone (ITCZ) and tele-connections such as easterly waves [3], 
Quasi Biennial Oscillations [1] and Madden Julian oscillations [10] are among 
the parameters which are considered to be responsible for the TCs/TSs genesis 
and development. Most of the TCs/TSs occurring in the SWIO basin is not as 
strong as those reported for the Atlantic Ocean basin, although there are few ex-
ceptions such as Bondo, Bongani, Gafilo, Fantala, Eline and Idai TC/TS events 
which were relatively strong. These TCs were accompanied with violent winds 
heavy rainfall and severe floods which devastated most of the Eastern African 
countries including Mozambique, Madagascar, Zimbabwe, Malawi and some 
parts of EA countries like Tanzania and Kenya [10] [11] [12] [13] [14]. Over the 
SWIO basin TCs/TSs landfalls (i.e. TCs/TSs to hit on land) frequently happens 
in Madagascar and rarely in Mozambique. As for the EA coast only a few occa-
sions of TSs landfall have been reported to cross direct over EA coast with ad-
verse impacts, these include TC Lindi, 1953 and TS Lily 1967 [15] [16] [17]. The 
frequency of the TCs over SWIO has been much linked with the aforementioned 
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environmental global large scale parameters whose monthly to seasonal fluctua-
tion is caused by various atmospheric and oceanic oscillatory phenomena in-
cluding Madden Julian Oscillations (MJO) [18] [19], Quasi Biennial Oscillations 
(QBO) as well as El Niño Southern Oscillations (ENSO), and the two (ENSO and 
MJO) normally linked to bring the changes in SSTs, tropical convection, and 
large-scale atmospheric circulation over vast tropical oceans on inter-annual and 
sub seasonal time scales [19] [20].  

Different studies on the TCs characteristics and variability over the basin have 
been conducted both at a local level [1] [3] and over the entire SWIO basin. Ref-
erences [4] [20] worked on climate and weather variability over SWIO, while [2] 
looked at the climatologically associations and characteristics of SWIO TCs; 
while [3] worked on statistical prediction of TCs days. Reference [3] observed 
positive correlation between SST with TC frequency (TC days) over the entire 
SWIO during the season spanning from September to March. Moreover, their 
linear statistical model for forecasting TC days revealed a model fit (r2) of 59% 
with a (Jackknife) cross validation resulting a correlation of 0.7 and a true 
model skill of 46% indicating that, their model performance was adequate. 
Using T42 model for the period of 1979-88, [21] showed that TCs inter-annual 
frequency of the ensemble mean was strongly anti-correlated with observa-
tions over the SIO, indicating that TCs frequency inter-annual variability is 
not consistent with observations. On further analyzing characteristics of SWIO 
TCs, reference [10] noted that South Indian Ocean (SIO) TCs had tracks 
which was more or less zonal during La Niña event and tend to be more fre-
quent when local SSTs were relatively warm. Moreover, using Gaussian at-
mospheric model (TL159) and SSTs as an ENSO indicator, [10] showed the in-
fluence of La Niña conditions and warmer local SSTs on the frequency of TCs 
landfalls over Mozambique. 

Reference [22], discussed the inter-annual variability and statistical predic-
tion of intense TCs days whereas [23] discussed the TCs spiral rains bands, 
evaluation of reanalysis data using the satellite microwave (e.g. QuikSCAT and 
TRMM) as well as evaluating the impacts of storm surges and swells in the 
SWIO. Most of the statistical studies by [2] focused on prediction of TCs days 
over SWIO using various techniques. Though these studies provide very useful 
information on the understanding of TC activity and their characteristics in 
SWIO, but the statistical prediction of seasonal TCs counts/frequency has been 
given less attention over the SWIO. 

In view of the above, the present study was aimed at predicting TCs and TSs 
seasonal counts (frequency) over the SWIO basin defined by 39.5˚E - 71˚E, 2.5˚S 
- 22.5˚S. Since TCs and TSs occurring over the SWIO basin, become very de-
structive to Tanzania and other EA countries, especially when they track over 
the northern Mozambique Channel [12], their impacts over Tanzania and other 
adjacent countries have implications on a wide range of socio-economic sectors 
[12] [13] [14]. Thus, baseline information on TCs/TSs frequency over the SWIO 
basin is needed to assist the policy makers and planners to formulate contingen-
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cy plans and disaster risk reduction programmes for the TC/TS hotspots areas. 
Moreover, enhancement and validation of the seasonal rainfall forecasts (MAM 
and OND) critically needs more information/inputs about the TCs and TSs ac-
tivities over the basin.  

2. Methods  
2.1. Study Area, Data Acquisition and Processing 

The Southwestern Indian Ocean (SWIO) basin is bounded by 0˚ - 40˚S and 39˚ - 
90˚E. As far as this study is concerned, the study domain was designed to be 
northwestern part of the SWIO defined by 2.5˚ - 22.5˚S and 39.5˚ - 71˚E as 
shown in Figure 1. This area was selected based on the fact that most of the 
TCs/TSs tracks are observed over this domain; moreover, the study was more 
interested on TCs which in most times affects the coastal and hinterlands of 
Tanzania.  

The TCs/TSs datasets used in this study was acquired from International Best 
Track Archive for Climate Stewardship (IBTrACS) sited by  
(https://www.ncei.noaa.gov/products/international-best-track-archive). The data 
included the observations on number of TCs observed during DJFM and NM for 
34 TC seasons spanning from 1977/78 to 2010/2011. Furthermore, the data con-
tained information such as TC/TS name, date, position (in latitude and longi-
tude), minimum surface pressure, and maximum wind speed of TCs for every 
6-hours interval. Other datasets used are the large scale environmental parame-
ters which include SST, OLR, zonal winds (u) and meridional winds (v) for dif-
ferent pressure levels, the datasets were acquired from NOAA NCEP-NCAR  
 

 

Figure 1. The SWIO basin (red); and the study domain (blue); (Source a map drawn 
from grads software). 
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Reanalysis 1 data. The data on the equatorial Southern Oscillation Index (ESOI) 
which covers the area over the eastern equatorial Pacific (80˚W - 130˚W, 5˚N - 
5˚S) and Indonesia (90˚E - 140˚E, 5˚N - 5˚S) was obtained from the NOAA 
Climate Prediction Center (CPC) climate indices, while the data on Quasi Bi-
ennial Oscillations at 50 mb and 30 mb zonal wind indices, was cited by  
http://www.cpc.ncep.noaa.gov/data/indices/qbo.u30.index. The data on Nino 3.4 
[24] defined over the region bounded by 120˚W - 170˚W and 5˚S - 5˚N was ob-
tained from NOAA CPC. Moreover, the standard SOI was obtained from NOAA 
Climate Prediction Center (CPC) climate data indices and the link is  
(https://www.cpc.ncep.noaa.gov/data/indices/soi). 

The SWIO data on TCs and TSs December to March (DJFM) seasons span-
ning from 1977/78 to 2010/11 was sorted to obtain TSs/TCs records that only fall 
in the study domain. During sorting, the data with no records of both central 
wind and central pressure were discarded, with most such gaps found from 1978 
- 1982. Wind pressure relationship derived by [25] was used to filler the TCs/TSs 
records with gaps in either wind or central pressure. The Beaufort scale wind 
classifier was used to remove Tropical Depression (TD) records (i.e. 8.75 m∙s−1 ≤ 
Ws ≤ 16.98 m∙s−1), where Ws refers to wind strength/speed  
(https://education.nationalgeographic.org/resource/beaufort-scale). The TSs 
records characterized by 17.5 m∙s−1 ≤ Ws ≤ 32.4 m∙s−1 and TCs records characte-
rized by Ws ≥ 32.9 m∙s−1 were retained  
(https://education.nationalgeographic.org/resource/beaufort-scale). 

The large scale environmental parameters including low level relative vorticity 
(hereafter LLRV850) mean vertical wind shear derived from 200 - 850 mb (he-
reafter Evws) and zonal mean steering wind speeds from 500 - 700 mb (hereafter 
Umst) were derived from the monthly mean gridded field reanalysis products of 
zonal (u) and meridional (v) winds component [26]. Both u and v had spatial 
resolution of 2.5˚ × 2.5˚ and temporal scale spanning from April 1974 to date. 
The monthly gridded interpolated OLR [27] had a spatial resolution of 2.5˚ × 
2.5˚. The Extended Reconstructed SST (ERSST) version 3b (v3b) [28] had a spa-
tial resolution of 2˚ × 2˚ and spanned from 1854 to date. To customize the data 
and the study area, all the gridded monthly data sets were configured to fit the 
study domain with temporal coverage of the data, and also being configured to 
fit the climatological records of TSs and TCs datasets which spanned from 
1978-2011 (with the exception of OLR which spanned from 1979 to 2011 i.e. 
1978 did not have enough data records for this variable). After this configura-
tion, the long-term monthly and seasonal averages were calculated. 

Environmental vertical wind shear (Evws) which is defined as the magnitude of 
the vector difference of winds between 200 and 850 mb pressure levels [29] [30] 
given by: 

( ) ( )2 2
vws 200 850 200 850E U U V V= − + −                (1) 

where U200 and U850 represent the zonal winds at 200 - 850 mb and V200 and V850 
represent the meridonal winds at 200 - 850 mb, respectively. 
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Evws is a crucial component for the development and weakening of TCs [31] 
[30] and it is inversely related to vertical uplifting of moisture in the TCs envi-
ronment [32]. LLRV850 was computed using a centered finite-differencing 
scheme, and Umst was obtained by averaging the zonal winds (u) wind at 500 and 
700 mb. This data was used based on the fact that mid tropospheric flow asso-
ciated with 500 - 700 hPa gives the best correlations with cyclone movements 
[33]. 

Furthermore, the global and regional indices of ENSO, Nino 3.4 indices, ESOI 
and 30 - 50 mb QBO was calculated into monthly and seasonal averages of Sep-
tember to November (SON) and June to August (JJA), as well as the running 
mean for DJF season. Moreover, the QBO absolute difference i.e. |50 - 30| for 
each month and each season were also determined 

2.2. Inter Annual Variability and Correlation between TCs and  
Gridded Parameters 

In this study, five gridded parameters were used in searching for the potential 
predictors; these include SST, OLR, LLRV850, Evws and Umst. After being processed 
into seasonal and monthly averages, the point to field correlations maps between 
TCs and TSs frequency and these gridded parameters within the domain defined 
by 70˚W - 120˚E and 45˚S - 45˚N at p ≤ 0.05 were determined (for example 
contours in Figure 4). The monthly time leads of November backwards to June 
(6 months leads) and seasonal leads of September to November (SON) and June 
to August (JJA) were used for developing these correlations. Areas with high 
correlations (of r ≥ ±0.35) were identified and extracted using Grid Analysis and 
Display System (GrADS) software. Moreover, inter annual variability of the ex-
tracted area averages values of gridded parameters and season TCs and TSs fre-
quency were analyzed to deduce the major patterns of the variability. Apart from 
the correlation between the global and regional indices, the inter-annual varia-
bility of TCs and TSs with ESOI, QBO, ENSO and Nino 3.4 indices were plotted 
and analyzed. 

2.3. Identifying and Selecting Potential Predictors and Modeling  
Procedures  

In determining the potential predictors to be used in forecasting model the fol-
lowing criterions were used: 1) the sign of correlation between the predictor and 
TSs/TCs frequency. This was used based on the nature of the relationship be-
tween the predictor and TSs/TCs. In this process the predictors with low corre-
lations with TCs or with correlation which opposes the relationship between the 
TCs and that particular predictor were filtered out; 2) the strength of the corre-
lation and inter-annual variability plots for TCs/TSs frequency and that of pre-
dictor were used to determine how the phases and trends of the two curves 
(TCs/TSs frequency and the predictor) were matched. 3) Other criterion used 
includes a) persistence of the predictor before the onset of TS/TC season, b) the 
correlation between the observed and the cross validated (forecasted) TCs/TSs 
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(i.e. how good the phase was captured by the model), and c) the significance of 
the chi (χ2) squared test between the model residual and deviance (i.e. model 
goodness of fit). The generalized linear models (GML) with the Poisson family 
(i.e. Poisson model) were used. The model was used to determine whether there 
was a strong relationship between each type of potential predictors (single pa-
rameter models) and predictands. Apart from single parameter models, mul-
ti-parameters models including the thermodynamic, dynamic and the combined 
models (i.e. combination of dynamic and thermodynamic parameters) were also 
developed.  

The log linear Poison regression model was used to predict the DJFM and NM 
TSs and TCs. The choice of this model in preference to the linear statistical 
models (e.g. least square models) was based on its improved hindcast skill [34]. 
The model is often used to forecast the occurrence of rare and discrete events, 
such as tornado counts, droughts occurrences, or cold spells, and even earth-
quakes [35] [36] [37]. Moreover, the Poisson distribution restricts the possibility 
of having negative outcomes making it an ideal tool for forecasting TCs occur-
rences [29] [36]. With this model, the probability distribution i.e. probability of 
occurrence of exactly y TCs, is given by the equation:  

( )~ Poissoni iY λ                         (2) 

where, 0expi j ijj Xλ β β= +∑ . The above equation can be expressed by a log 
linear equation given by: 

( ) 0ln Xλ β β′= +                         (3) 

where 

{ }

{ }0 SST VORT OLR EVWS UMST NINO3.4 SOI QBO

SST VORT OLR EVWS UMST NINO3.4 SOI QBO
1,2,3, ,

, , , , , , , ,

i i i i i i i i i

j

X
i N

β β β β β β β β β β

∈ + + + + + + +

=

∈

  

In the above equations, the potential predictors X(i) could be SST, LLRV850, 
OLR, EVWS, UMST or Nino 3.4 indices, where β0 stands for model intercept, and β1 
to βn are the model coefficients based on the number of predictors.  

Though TCs are developed from TSs (i.e. TCs depends on further intensifica-
tion of TSs), but their prediction was undertaken independently. This is because 
both TSs and TCs have impacts to the western SWIO countries; moreover, it is 
not necessary for each tropical storm to develop into matured TC. In the ther-
modynamic model, the environmental variables of SST, OLR and SOI/ESOI 
were used as potential predictors, whereas in the dynamic model the environ-
mental variables of Umst, Evws and LLRV850 were used as potential predictors 
where in the combined model both dynamic and thermodynamic potential pre-
dictors were used.  

2.4. Leave One Out Cross Validation and Verification Technique 

Many seasonal TCs forecasting studies including [29] [33] [36] [38] among oth-
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ers, have used the Leave One Out Cross Validation (LOOCV) techniques to as-
sess the skill of their models for unseen data. This study used the LOOCV tech-
nique [34], where one case was left out as the testing case and the remaining 
cases were used to build the model. The same procedure was repeated for all da-
ta cases (i.e. entire length of the predictors), where the output of this prediction 
was referred to as a hindcast if the predicted outcome was known and forecast if 
the predicted outcome was not known. Evaluation of the model performance for 
future use is considered to be a very important aspect in modeling discipline 
[34] [39]. This can be achieved by: 1) correlation analysis between the hind-
cast/forecast and the observations 2) determining the root mean square error 
(RMSE) or mean absolute error (MAE). In this study the RMSE and MAE were 
used to evaluate the performance of the models. The MSE is closely related with 
the average accuracy of the forecast as it maps the clustering of residuals around 
the regression line, where tightly clustering corresponds to low values of MSE 
and vice versa. For TCs prediction RMSE of the hindcast/forecast provides a 
measure of the model hindcast/forecast skill by comparing the amplitudes of the 
observed and predicted TCs. The closer the hindcasts/forecasts to the observa-
tion the lower the RMSE and the better is the model. 

In this study our model skill was evaluated using both the RMSE of the hind-
casts and that of the persistence (i.e. climatological forecasts). The RMSE for the 
hindcast is given by:  

( ) ( )2
h

1
RMSE 1

i n

i i
i

n y σ
=

=

= −∑                   (4) 

where yi is the ith observation and σi is the ith hindcast and n is the length of both 
observations and hindcast. 

Where the RMSE for the persistence or climatology is given by:  

( ) ( )2
clim clim

1
RMSE 1

i n

i i
i

n y σ
=

=

= −∑                 (5) 

where yiclim is the number of TCs predicted using only months, latitude and lon-
gitude as predictors, this will be the same number predicted each year. 

Hence based on [40] the skill score (SS) of the hindcast was obtained using 
Equations (4) and (5) calculated as follows 

( )p climss 1 RMSE RMSE= −                   (6) 

where the RMSEp indicates the root mean square error of the predicted model, 
and the values for the SS lies between 0 and 1; When SS = 1 indicates a perfect 
model hindcast; SS = 0 indicates hindcast that are only accurate as the reference 
climatology; SS ≤ 0 indicates the forecast that are less accurate than the refer-
ence. 

After cross validating the models, we constructed the two ways contingency 
tables for model verification. We used the R software to construct the 2 × 2 
square matrix using the forecasts and observations of DJFM and NM TSs and 
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TCs frequency. This square matrix was based on hit rates which showed whether 
the event was forecasted (F)/not forecasted (NF) and being observed (OB)/not 
observed (NOB). Moreover, we performed the analysis of contingency tables 
based on, 1) Percent correct (pc); 2) Bias of the model (which measures the cor-
respondence between average forecasted and observed); 3) Critical success index 
(CSI) and 4) the false alarm ratio. We used forecast verification for assessing the 
quality of our forecasts, as well strengths and weaknesses of our forecasts.  

3. Results  
3.1. Inter Annual Variability of TCs and TSs 

The results of the inter annual variability of TCs and TSs frequency for the 
DJFM and NM seasons presented in Figure 2 show that, the TCs frequency 
during the DJFM (Figure 2(a)) and NM seasons (Figure 2(b)) were characterized  
 

 
(a) 

 
(b) 

Figure 2. Inter annual variability of observed DJFM TCs and TS showing the years where 
their frequency is σ ≥ −1 and σ ≥ 1 where σ is the standard deviation of TCs frequency. 
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by high inter-annual variability but with higher frequency after 1994 than before 
1994. The periods marked by 1994, 2003 and 2007 were marked by higher 
TCs/TSs frequency for both seasons. Moreover, results of inter annual variability 
of DJFM TCs and TSs presented in Figure 2(a) show that, the periods during 
which the TC/TS frequency exceeds one standard deviation (i.e. TCs/TSs fre-
quency are ≤ −1σ or ≥ 1σ) coincides with the either El Nino or La Nina events. 
For instance, during 1980 some TCs and TSs frequency were less than −1σ, 1985 
TS frequency was greater than 1σ, 1991-1992 both TCs and TSs frequency was 
less than −1σ), 1994-1995 (where both TC and TS were greater than 1σ), 1997 
(where TS was greater than 1σ), 2004 and 2007 both TCs and TSs frequency ex-
ceeded 1σ. Besides the results show that TCs frequency lower peaks which are 
less than −1σ (e.g. of 1983/84, 1985/86) were aligned with weak La Nina, while 
TCs frequency which was greater than 1σ (e.g. 1987/88) was aligned with strong 
El Nino events. Further results in Figure 2 revealed that the TCs frequency dur-
ing 1994/95, 2003/04 and 2004/05 were aligned with moderate El Nino events 
with the exception of TCs frequency of 2007/08 which was aligned with mod-
erate La Nina events. The coincidence of TCs high/low TCs/TSs frequency with 
ENSO (El Nino/La Nina) conditions is well supported by the existence of strong 
correlations (with correlation factor, r = 0.4 and r = 0.3) between ENSO indica-
tors (such as DJF ESOI and SON and DJF OLR standardized departures) with 
the observed DJFM TCs and TSs. Thus, the alignment of high TCs frequency 
(either less than −1σ or greater than −1σ) with La Nina/ El Nino indicates that, 
ENSO condition which have its high phase during DJF [20] could be among the 
factors which affect inter annual variability of TCs/TSs frequency in SWIO.  

Furthermore, the inter-annual variability of DJFM and NM TSs and TCs fre-
quency with ESOI for February and April presented in Figure 3 showed that, 
there exists a higher level of positive association between TSs/TCs frequency 
with ESOI indicating an increase of TCs activities subjected to increasing ESOI. 
For instance, the inter annual variability of DJFM and NM TCs/TSs frequency 
with the ESOI for February presented in Figure 3(a) showed that, the TCs/TSs 
frequency patterns are well captured by ESOI patterns except for some few cases 
(e.g. from 1994 onwards both TSs and TCs have shown an increasing trend, the 
same feature is shown by February ESOI). Inter annual variability of DJFM and 
NM TCs/TSs with the April ESOI (Figure 3(b)) almost had the same features as 
that of Figure 3(a). 

The analysis of correlation between the DJFM and NM TCs/TSs with Ocean 
Nino Indices (ONI) anomalies at Niño 3.4 region revealed that Nino 3.4 indices 
for SON, JJA, and August to October (ASO) had significant negative correlation 
with DJFM TCs frequency with r values of −0.37 (p = 0.03), −0.4 (p = 0.02) and 
−0.32 (p = 0.06 not significant). This negative correlation may signify that, 
DJFM TCs frequencies are more favored by La Nina conditions rather than El 
Nino as agreed by [20]. This is also supported by [40] who noted that, ENSO 
causes a geographical shift in the positions of TC maxima. As for the correlation  
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(a) 

 
(b) 

Figure 3. Inter annual variability of DJFM and NM TSs and TCs with E SOI where (a) 
DJFM and NM TCs and TSs with February SOI; (b) same as (a) for April SOI. 
 
between the ESOI and DJFM and NM TSs/TCs results revealed significant cor-
relation (r = 0.32 to 0.36), indicating that the curves for ESOI and DJFM and 
NM TCs/TSs are well phased (Figure 3).  

3.2. The Influence of Sea Surface Temperatures on Tropical  
Cyclones and Tropical Storms 

The analysis of monthly mean SST patterns as precursor of TCs over SWIO 
during JJA and SON (early TCs season) presented in Figure 4 show that, over 
Southern Indian Ocean (SIO) from JJA (Figure 4(a)) to SON (Figure 4(b)) 
there exists a southward shift of higher SSTs about 6˚ - 8˚ latitude contoured by 
a 27˚C to 33˚C isotherm, followed by a westward shift of about 2˚ longitudes 
over Somali Sea. This condition could be explained by the east west fluctuation 
of IOD, propagation of Ocean Rossby wave activity from SIO to SWIO and also 
reflection of the Ocean Rossby waves. Moreover, the results in Figure 4(b) 
shows a northward shift of higher SON means SSTs over the northern Atlantic 
Ocean (NAO). 
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Figure 4. SST distribution over Southern Indian Ocean (SIO) during JJA (a) and SON (b). Monthly av-
erage JJA (a) and SON (b) SSTs and the correlation coefficients for the NM TCs with June SSTs (c) and 
NM TSs with SON SSTs (d). 

 
The correlation analysis between TCs frequency variability with Oceanic and 

atmospheric predictors, revealed that SON SSTs have positive correlation with 
NM TCs frequency of up to 0.4 at North Atlantic Ocean at 30˚ - 48˚W and 27˚ - 
45˚N and SIO at North Eastern Reunion at 63˚ - 83˚E and 10˚ - 22˚S. Over 
southern Atlantic Ocean both negative and positive correlations of about r = ± 
0.35 were developed (Figure 4(c)). For JJA results revealed negative correlations 
of up to 0.35 with TCs in DJFM over the SIO (65˚ - 115˚E and 38˚ - 45˚S) 
(Figure 4(d)). Generally, the monthly mean SSTs revealed that September to 
November were having significant positive correlation at various regions of At-
lantic and SIO; whereas July to August were having weak correlations, implying 
that, DJFM TCs have weak association with JJA gridded mean SSTs over SIO 
and Atlantic Ocean during JJA (Figure 4(c) and Figure 4(d)). On the other 
hand, correlations between NM TCs frequency with SON SSTs at p ≤ 0.05 re-
vealed the existence of highest positive correlations of up to 0.4 at NAO region 
bounded by 30˚ - 50˚W and 30˚ - 45˚N, while for September the results show a 
correlation of up to r = 0.35 mapped at 30˚ - 40˚W and 20˚ - 30˚S, and for June 
SSTs higher r values (i.e. r ≤ +0.35) were concentrated around 10˚ - 30˚W and 5˚ 
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- 15˚S at Southern Atlantic Ocean (SAO). In general point to field correlation 
between monthly and seasonal SSTs with DJFM and NM TCs/TSs were mainly 
concentrated on both Indian and Atlantic Oceans. Moreover, data from highly 
correlated areas (i.e. at r ≥ ±0.35) were extracted.  

3.3. The Influence of Evws, Umst, and LLRV850 to the Tropical  
Cyclones Frequency 

The analysis of the monthly and seasonal averages of Evsw for JJA, SON, DJF, and 
DJFM revealed a southward shift of low Evws values as we approach the peak TCs 
season. This could be explained by the positional variation of ITCZ. The south-
ward shift of low Evws widely seen when you cross examine the position of 10 
m∙s−1 Evws contour during JJA, SON and DJFM (Figure 5) over the tip of Mada-
gascar and at Southern Atlantic Ocean. Moreover, results in Figure 5 revealed a 
timely positioning and division of equatorial (8˚N - 12˚S) 10 m∙s−1 Evws contour 
over eastern, central and western closed contour as shown in Figure 5(b). This 
timely position of low Evws, contours could be associated with tropical convection 
bands during north-south and east-west oscillations of ITCZ. This fluctuation 
and oscillations of Evws creates the good environments to TCs genesis and devel-
opment [7] [41]. Results of the point to filed correlations between DJFM and 
NM TCs/TSs frequency with monthly and seasonal area averaged Evws (Figures 
were not given) revealed that, Southern American areas (30˚ - 60˚W and 18˚ - 
26˚S), northern Indian Ocean (40˚ - 60˚E and 0˚ - 10˚N) at Somali Sea, South 
Eastern South America (30˚ - 70˚W and 17˚ - 25˚S) and Northern Asia (40˚ - 
60˚E and 40˚ - 45˚N) had highest correlations.  

The results of the analysis Umst (i.e. both seasonal and monthly) revealed that, 
latitude range of 10˚N - 10˚S was contoured by low Umst values ranged by −5 ≤ 
Umst ≤ 0 m∙s−1 (weak westerly winds) (Figure 6(a)). These low Umst values (weak 
westerlies) are contoured from north to south e.g. during June highest contour 
over the stated region was −10 m∙s−1, with a zero contour at the tip of Mozambi-
can channel whereas in November highest contour was −5 m∙s−1 with zero con-
tour retreated just southern tip of Madagascar (Figure 6(b)). The long term 
DJFM Umst over SWIO could lies between −5 m∙s−1 ≤ Umst 0 where towards more 
negative Umst indicate stronger TCs and vice versa. The results of the correlation 
between Umst and DJFM and NM TCs/TSs had shown similar results to that of 
Evws, and areas bounded by 0˚ - 10˚N and 30˚ - 70˚W to 60˚ - 80˚E, were mapped 
with higher correlations. Moreover, high correlation between Umst with NM and 
DJFM TCs and TSs frequency was mapped over the continental areas of North-
ern to Southern Africa, East and West Africa and North and Southern America 
whereas over the Ocean, high correlations were mapped over Mediterranean 
Sea, Atlantic Ocean and Indian Ocean were also among the areas which results 
into significant high negative correlations.  

The analysis of the influence of seasonal and monthly average LLRV850 on TCs 
over SWIO (Figure 7) have mapped higher vorticity values during SON of up to 
−10 × 10−6 s−1 over areas with high DJFM TCs tracks, whereas during DJF,  
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(a) 

 
(b) 

 
(c) 

Figure 5. The long term seasonal zonal mean winds (umst) where (a) represents the JJA 
and (b) represents the SON and (c) represents DJFM (peak TCs season). 
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(a) 

 
(b) 

 
(c) 

Figure 6. Seasonal mean Umst (1978-2011); where (a), (b), and (c) represent JJA, SON and 
DJFM, respectively. 
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(a) 

 
(b) 

Figure 7. Variation of long term LLRV850 (a) for SON and (b) for DJF. 
 
LLRV850 contours of −3 × 10−6 s−1 to −9 × 10−6 s−1 were mapped on off eastern 
Madagascar. The latitude ranges of 5˚ - 10˚S were under the influence of a nor-
theasterly trough of positive LLRV 850 indicating the influence of northeasterly 
monsoon winds as platforms for TCs genesis. The correlation between LLRV850 
with DJFM and NM TSs/TCs (Figures were not shown) were mapped over 
SWIO TCs prone regions with r ≥ ±0.35. The areas having these significant high 
correlations occurred over both Indian and Atlantic Oceans whereas over conti-
nents high correlations were mapped over southwestern African coast, North-
western South America, West Africa and Ethiopian highlands. The correlation of 
LLRV850 with DJFM and NM TSs and TCs during June to August (JJA) period 
had most areas with higher negative correlations than early TCs season of SON 
where most correlations were marked equator ward of 20˚N - 20˚S. Negatively 
correlated areas were favoured because TCs frequency increases with low values 
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of LLRV850 as noted by [7] [42] [43] [44]. 

3.4. Influence of Outgoing Longwave Radiation on Tropical  
Cyclones and Storms Frequency 

The influence of OLR to the DJFM and NM TCs/TSs showed that, the monthly 
(July and November) and the seasonal (SON and DJF) had average values 
aligned on the Northeast (NE) to Southwest (SW) direction, with low OLR val-
ues ranged from 200 - 260 W∙m−2 over SWIO TCs prone areas. Results of 
monthly spatial distribution of low OLR from July to November presented in 
Figure 8(a) and Figure 8(b) revealed that, during July (Figure 8(a)) lowest OLR  
 

 

Figure 8. Monthly mean OLR spanning from 1982-2012 for July (a) and November (b) and seasonal mean for SON (c), and from 
1982-2011 for DJF (d). 
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value of 200 W∙m−2 was centered at 0˚ - 5˚S and 60˚ - 70˚E, whereas over the 
eastern Madagascar, low OLR value of 270 W∙m−2 was centered at 15˚ - 20˚S and 
50˚ - 65˚E. As for November (Figure 8(b)) lowest OLR shifted more southwest 
ward and centered at 5˚ - 10˚S and 70˚ - 75˚E. Moreover, the seasonal distribu-
tion of low OLR values had same alignment like monthly. For instance, during 
SON (Figure 8(c)) results show that, the locations of deep convection (up to 200 
Wm−2) were aligned few degrees south and north of the equator within grid 
boxes defined by 60˚ - 80˚E and 5˚N - 8˚S, 80˚ - 100˚E and 5˚N - 5˚S over the 
Indian Ocean; whereas over the continent the deep convection was marked over 
the region bounded by 5˚N - 5˚S and 20˚ - 35˚E (northwestern Tanzania and the 
Democratic Republic of Congo). During December to February (DJF) Figure 
8(d) show that deep convection was shifted more southward with northeast 
alignment (values up to 200 W∙m−2). This shift of low OLR values, resulted into 
low convection band width reduction and northward penetration at (35˚ - 55˚E 
and 10˚S - 5˚N) of low convection band, Over the continent the high convection 
belt over Congo shifted southward resulting into deep convection zone covering 
Mozambican channel and Madagascar (Figure 8(c)) to be northwesterly shifted 
by Oceanic high convection resulting into compressing of both Oceanic and 
continental low convection belt.  

The correlation (r) between OLR and DJFM and NM TSs/TCs at p ≤ 0.03 
(Figures was not shown) gave higher r values of up to −0.44, with negative cor-
relations especially during June to August during June to August were dominat-
ed over Northern to Northeastern Madagascar and Northern (40 - 45˚N and 20 - 
26˚W) and equatorial Atlantic Ocean. This JJA, SON and DJF mapping of deep 
OLR and their significant correlations at different Oceanic and continental areas 
revealed the high predictive skill of OLR to NM TCs and DJFM TCs and TSs 
over Southeastern Indian Ocean, Atlantic Ocean and Mediterranean Sea 

3.5. Performance of Various Environmental Parameters as  
Potential Predictors for the Single Parameter Models for  
November to May Season 

The performance of five environmental parameters (SST, OLR, Evws, Umst and 
LLRV850) as the potential predictor was assessed using Poisson’s regression equa-
tions, with graphical plots of the model output curves for each environmental 
parameter shown in Figure 9. The summaries on the performance of the five 
environmental parameters are shown in Table 1.  

When SST was used as a potential predictor, the model output curve that was 
drawn to fit the observed NM TC values were given by: 

( )sstln NMTCs 16.05 0.85 0.43b ca a= − + ∗ + ∗               (7) 

where ab = October SST at Southwestern AO and ac = equatorial SOI during 
April. 

Apart from October, other potential predictors for NM TCs which were in-
vestigated included: September North Atlantic SST, November north Atlantic  
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(a) 

 
(b) 

Figure 9. NM TCs model output for (a) Evws (dark blue), SST (blue), Vort (black), and 
Umst (gray); (b) OLR (blue). The red curves represent the observed NM TCs. 
 
Table 1. Performance of environmental parameters in fitting the TCs frequency during 
NM season using the Poisson regression model. 

Environmental 
parameter 

Correlation (r) between 
observed and fitted 

P 
value 

MAE 
SS % 

MSE 
SS % 

SST 0.54 0.001 21 30 

Evws 0.76 0.01 41 57 

Umst 0.73 0.01 31 53 

LLRV850 0.78 0.01 35 60 

OLR 0.87 0.01 43 61 

Note that SS indicates the Skill Score. 
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SST, and October North Atlantic SST but these predictors were inferior to Oc-
tober SST and were therefore discarded. SSTs potential predictors over Indian 
Ocean were filtered using a correlation threshold of r ≥ +0.35. Analysis of the 
SST model performance revealed significant z scores, and χ2 of 0.83, suggesting 
that the model fitted the data very satisfactorily. Moreover, correlation between 
observed and fitted SST TCs model during NM season gave a strong correlation 
(r = 0.54 at p ≤ 0.001), with the skill score of 21% and 30% based on MAE and 
MSE. The results of the SST TCs model Figure 9(a) (blue curve) indicated that 
April equatorial SOI and October Southwestern Atlantic Ocean SST was poor 
environmental parameters for predicting NM TCs. 

As for Evws its fitted model (Figure 9(a) red curve) was given by: 

( )vwsE 14 20 3ln MNTCs 6.95 0.12 0.11 0.12d e d= − ∗ − ∗ − ∗         (8) 

where d14 = September Evws at Somali sea, e20 = November North Atlantic Ocean 
Evws and d3 = June southwestern Tanzania Evws. The model had a significant z 
scores (p ≤ 0.01) with negative β values (see Equations (5) and (6)) indicative of 
a negative exponential relationship between Evws and TCs. The correlation be-
tween the observed and the forecasted Evws NM TCs was very strong (r = 0.76; p 
≤ 0.01), whereas the model skills based on MAE and MSE were 41% and 57% 
respectively, suggesting that the Evws had a better performance in predicting NM 
TCs compared to the SST. 

The Poisson regression equation fitting the model for Umst was given by; 

( )Umst 9 5 13ln NMTCs 2.54 0.12 0.13 0.17h h h= − ∗ − ∗ − ∗         (9) 

where h9 = July Southeastern AO, h5 = July North Africa, and h13 = August Sou-
theastern Asia Figure 9(a) (gray curve). The model had a significant z score (p ≤ 
0.01), with a higher degree of goodness of fit (χ2), and negative β coefficients. 
The model gave a strong correlation between observation and the fitted Umst TCs 
(r = 0.73 at p ≤ 0.01) suggestive of a strong relationship between Umst and NM 
TCs. Like Evws, the observed model skill based on MAE and MSE were 31% and 
57% (Table 1), respectively. 

The filtering process of the LLRV850 predictors in fitting NM TCs retained 
Uv13 = October Southern Madagascar, Uv19 = November Eastern Namibia, Uv24 
= September North Eastern Madagascar and Uv26 = September Eastern Namibia 
as the best potential predictor. The output Poisson’s regression equation for fit-
ting the data was given by  

( ) 5 5
vort 19 26

5 4
24 13

ln NMTCs 1.12 0.39 10 1.95 10

1.23 10 6.12 10

Uv Uv

Uv Uv

= − × ∗ − × ∗

− × ∗ − × ∗
       (10) 

The output curve for vorticity model is presented in Figure 9(a) (black curve). 
The model presented in Equation (5.6) had a significant z scores (p ≤ 0.01) for 
most potential predictors, with Uv13 increasing the model goodness of fit and the 
skill by 20. The LLRV850 model Figure 9(a) (black curve) showed a strong corre-
lation (r = 0.78; p ≤ 0.01) between the observed and fitted NM TCs, with the ob-
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served and fitted being almost in phase. The model skills based on MAE and 
MSE skill scores were estimated at 35% and 60%, respectively suggesting that the 
LLRV850 had highest ability to forecast future TC events compared to the other 
environmental variables. Thus, when the performance of the Evws, Umst and 
LLRV850 was compared, the LLRV850 was the best, followed by the Evws..  

The OLR predictors were characterized by negative exponential relationship 
between the predictors and TCs/TSs frequency suggesting that areas with low 
OLR (deep convection), favored TCs/TSs formation and development. The 
model output for the OLR predictor Figure 9(b) (blue curve) showed high level 
correlation (r = 0.81 at p ≤ 0.01) between the fitted and the observed NM TCs as 
indicated by the level of goodness of fit (χ2) (at p = 0.87). The model output was 
given by the Equation (11). 

( )olr 3 13 11ln NMTCs 39.47 0.04 0.10 0.02b b a= − ∗ − ∗ − ∗         (11) 

where b3 = November OLR at Southeastern Atlantic Ocean; b13 = SON OLR at 
Mediterranean Sea and a11 = July OLR at Southeastern Indian Ocean. This model 
designed from the environmental variable OLR model had the highest prediction 
skill of 43% and 61%, indicating that the model can foresee the future TCs by 61%. 

3.6. The Performance of Dynamic, Thermodynamic and Combined  
Models for November to May Tropical Cyclones or Tropical  
Storms Season 

The summary of the results of the performance of the three models (i.e. dynam-
ic, thermodynamic and combined models) for the NM, TCs/TSs seasons are 
presented in Table 2. The results revealed that the SSTs predictors showed the 
least performance in predicting both TCs and TSs during the NM season. By 
contrast, the dynamic models had relatively higher performance with skill of 
42% (MAE) and 61% (MSE). With these models the comparison between the 
observed and cross validated TCs/TSs frequency had a relatively stronger corre-
lation factor (r = 0.78). However, the model cross validation sum of errors was 
relatively low (cv. ss = 0.03). For the NM TSs the model was characterized by the 
dynamic potential predictors which had high performance of 52.5% (MAE) and 
76% (MSE) and lowest sum of cross validation errors of about 0.06. 
 
Table 2. NM TCs/TSs model performance. Refer Table A1 (in appendix) for model equ-
ation.  

Type 

NM TCs NM TSs 

r RMSE 
MAE_SS 

% 
MSE_SS 

% 
r RMSE 

MAE_SS 
% 

MSE_SS 
% 

Thermo 
dynamic 

0.62 1.5 20 38 0.52 2.3 13.5 26 

Dynamic 0.8 1.1 42 67 0.78 2.2 41.5 61 

Combined 
model 

0.8 1.1 39 64 0.87 1.6 52.5 76 
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Furthermore, the RMSE for the cross validated models ranged from 1.1 to 1.5 
and 1.6 to 2.3 (Table 2) for the NM TCs and TSs, respectively. Moreover, the 
model analysis had revealed that the cross validated thermodynamic, dynamic 
and combined models during the NM season had Pseudo-R^2 ranged from 0.46 
to 0.63 and 0.36 to 0.66 for the NM TCs and TS, respectively. 

The inter annual variability of the cross-validated model outputs for the dy-
namic and combined models during NM TCs/TSs Figure 7(a) and Figure 7(b) 
showed strong correlations between the observed and the cross-validated model 
outputs for both the TCs and TSs showing best fitting of the curves. The results 
further indicated that both the observed and cross validated model out puts for 
dynamic and combined models were characterized by increasing TCs/TSs trends 
with higher TCs/TSs frequencies after 1994 than before 1994. By contrast, the 
thermodynamic model outputs for NM TCs/TSs showed poor correlation be-
tween the observed and the cross-validated model output, and the model was 
generally underestimated the forecasted TCs/TSs values in most years Figure 
7(a) & Figure 7(b) (black curves). 

3.7. The Performance of Dynamic, Thermodynamic and Combined  
Models for December to March Tropical Cyclone/Tropical  
Storms Season 

The results on the performance of the three models in predicting the DJFM 
TCs/TSs are summarized in Table 5 As can be seen from Table 5 the two mod-
els (dynamic model and the combined model) had superior performance over 
the thermodynamic model for predicting DJFM TCs and TSs, with relatively 
higher correlation coefficients as well as model skills. The correlation (r) be-
tween the observed and cross validated model output results for the dynamic 
and combined model ranged between 0.78 to 0.86, while r for the thermody-
namic model ranged between 0.62 and 0.73. The model skill performance for the 
dynamic and combined model based on MAE and MSE ranged from 37% - 49% 
(for MAE) and from 60% - 73% (for MSE). By contrast, the model skill perfor-
mance for the thermodynamic model ranged from 21% - 31% (for MAE) and 
from 37% - 52% (for MSE).  

The above presented results are consistent with the results presented in Figure 
10 and Figure 11 which shows the inter-annual variability of the observed DJFM 
TCs/TSs frequency and the cross-validated DJFM TCs and TSs, where the curve 
fitting between the observed and the cross-validated model output values is 
slightly better for the dynamic and combined models than for the thermody-
namic model. The results further revealed that the curve fitting for the thermo-
dynamic model was generally worse for the DJFM TSs than for the DJFM TCs.  

Furthermore, the RMSE for the cross validated DJFM TCs models ranged 
from 0.83 to 1.1 (Table 3), respectively. Moreover, the model analysis had re-
vealed that the cross validated thermodynamic, dynamic and combined models 
during the NM season had Pseudo-R^2 ranged from 0.43 to 0.61 and 0.42 to 
0.57 for the DJFM TCs and TS, respectively. 
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(a) 

 
(b) 

Figure 10. Cross validated models for NM TCs and TSs for dynamic; thermodynamic; 
and all parameter (combined) model (a) NM TCs models and (b) same like (a) but for 
NM TSs models.. 
 
Table 3. DJFM TCs/TSs model performance. Refer Table A2 for model equations. 

Type 

DJFM TCs DJFM TSs 

r RMSE 
MAE_SS 

% 
MSE_SS 

% 
r 

MAE_SS 
% 

MSE_SS 
% 

Thermo 
dynamic 

0.73 
0.71 

1.1 
31 
29 

52 
50 

0.62 21 37 

Dynamic 0.86 0.83 46 73 0.78 37 60 

Combined 
model 

0.84 
0.84 

0.85 
47 
47 

69 
70 

0.85 49 72 
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(a) 

 
(b) 

Figure 11. The cross validated DJFM TCs and TSs models for dynamic, thermodynamic 
and all parameter (combined) model (a) DJFM TCs and (b)same like (a) but for DJFM 
TSs models. 

3.8. Verification Analysis of Cross Validated Seasonal Tropical  
Cyclone Models 

Verification of the model performance using 2 × 2 contingency tables revealed 
that, during both NM and DJFM seasons, all models had the best value of zero 
for the false alarm ratio (i.e. proportion of the forecasted events that turn to be-
ing wrong (Table 4), whereas for bias (B) (i.e. comparison of average forecast 
and observation), all the three models showed that the forecasted and observed 
TCs frequencies were approximately equal Table 4 and Table 5. As for the pro-
portion of percent correct (pc) and critical success’s index (sci) the models had 
values ranging from 0.83 to 0.94, indicating that the models were doing very  
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Table 4. Analysis of the performance for the NM TCs and TSs models. 

Model 

NM TCs 
combined 

NM TCs 
Thermodynamic 

NM TCs 
dynamic 

NM TSs 
combined 

NM TSs 
Thermodynamic 

NM TSs 
dynamic 

OB NOB OB NOB OB NOB OB NOB OB NOB OB NOB 

F 29 0 29 0 29 0 32 0 32 0 32 0 

NF 5 0 5 0 2 3 2 0 2 0 2 0 

PC/CSI 0.85/0.85 0.85/0.85 0.94/0.93 0.94/0.94 0.94/0.94 0.94/0.94 

Bias 0.85 0.85 0.93 0.94 0.94 0.94 

FAR 0 0 0 0 0 0 

Note: OB = observed, NOB = not observed, F = forecasted, NF = Not forecasted, PC = percent correct, FAR = False alarm rate and 
CSI = critical successive index. 
 
Table 5. Analysis of the performance for the DJFM TCs and TSs models. 

Model 

DJFM TCs 
combined 

DJFM TCs 
Thermodynamic 

DJFM TCs 
dynamic 

DJFM TSs 
combined 

DJFMTSs 
Thermodynamic 

DJFM TSs 
dynamic 

OB NOB OB NOB OB NOB OB NOB OB NOB OB NOB 

F 28 0 28 0 28 0 32 0 32 0 32 0 

NF 2 4 6 0 3 3 2 0 2 0 2 0 

PC/CSI 0.94/0.93 0.82/0.82 0.91/0.9 0.94/0.94 0.94/0.94 0.94/0.94 

Bias 0.93 0.82 0.9 0.94 0.94/0.94 0.94 

FAR 0 0 0 0 0 0 

 
good forecasts. However, in case of misses (i.e. observed TC/TS events but not 
forecasted), the combined and thermodynamic models for DJFM and NM TCs 
had highest missed of 6 and 5 as shown in Table 4 and Table 5. However, the 
presented results revealed that, all the three models had generally fewer miss in 
predicting TSs than in predicting TCs for both seasons (Table 4 and Table 5). 

3.9. Verification Analysis of Cross Validated Seasonal Tropical  
Cyclone Models 

Verification of the model performance using 2 × 2 contingency tables revealed 
that, during both NM and DJFM seasons, all models had the best value of zero 
for the false alarm ratio (i.e. proportion of the forecasted events that turn to be-
ing wrong (Table 4), whereas for bias (B) (i.e. comparison of average forecast 
and observation), all the three models showed that the forecasted and observed 
TCs frequencies were approximately equal Table 4 and Table 5. As for the pro-
portion of percent correct (pc) and critical success’s index (sci) the models had 
values ranging from 0.83 to 0.94, indicating that the models were doing very 
good forecasts. However, in case of misses (i.e. observed TC/TS events but not 
forecasted), the combined and thermodynamic models for DJFM and NM TCs 
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had highest missed of 6 and 5 as shown in Table 4 and Table 5. However, the 
presented results revealed that, all the three models had generally fewer miss in 
predicting TSs than in predicting TCs for both seasons (Table 4 and Table 5). 

4. Discussions and Conclusion 
4.1. Discussion 

The SWIO Tropical cyclones and storms frequency for DJFM and NM seasons 
have been forecasted. In Tanzanian the DJFM season is characterized by a num-
ber of adverse impacts to the coastal society and their neighbor while the NM 
season, has its dynamics very much interrupted by March to May (MAM) rain-
falls. Moreover, the former season had higher area averaged SSTs (>28˚C) and 
increasing trend of SSTs anomaly with higher spatial distribution of at least 
0.4˚C at the Mozambican channel. These study findings are consistent with the 
studies of [11] [42] who indicted that low vertical wind shear and warm SST 
anomalies are conducive to more TCs activity. Furthermore, [42] found that 
over Mozambican channel majority of TCs are generated in January to February 
(JF), whereas [20] conclude that SSTs averaged over the region 8 - 22˚S and 50 - 
70˚E can be used a predictor for TCs frequency (TCs days). Moreover, the ob-
served high SST anomaly can be explained by the influence of northeast mon-
soon which causes a reversal of the Somali current, where coastal waters moves 
southwest and cooler air causes the surface water to cool and creates deep mix-
ing. The east west variation of the Indian Ocean Dipole (IOD) could be another 
reason for this SST anomaly variation. The east west wind variation and zonal 
winds over 850 mb and 200 mb during the preseason (JJA) and during the onset 
of the season (SON) provides the changes in atmospheric circulation patterns to 
accommodate the TCs condition over SWIO, this argument is well approved by 
the presented results in Figures 5-7 whereas the DJFM wind circulation (Evws, 
Umst) reveals the climatological wind circulation during the peak TCs season. 

The presented results of the correlation between the Equatorial SOI and DJFM 
and NM TCs/TSs gave high correlations (at p = 0.04) between equatorial SOI, 
this can be linked with the climatology of the TCs in the SWIO where December 
to April have higher TCs and TSs records which are associated with the presence 
of higher SOI. This finding is consistent with that of [45] that higher SOI is as-
sociated with an increased likelihood of TCs in the early season. Moreover, the 
presented results of the Inter annual variability of TCs/TSs with Umst, SST, equa-
torial SOI, and warm and cold episodes of ENSO among others, had provided 
the promising predictive skill where in most cases the peaks for the predictors 
and predictands were in phase following each other. The presented results based 
on the model performance for TCs and TSs during the NM season using single 
parameter models have shown good performed (Table 1), where for instance 
OLR model was the best by having high correlation between the observed and 
the fitted TCs (r = 0.81) and a prediction skill of 61%, indicating that, the deep 
convection over Southeastern Atlantic Ocean in the vicinity of Amazon Forests 
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during November, the July Equatorial Atlantic Ocean deep convection among 
others, have shown a good predictive skill in predicting the NM TCs. Though 
Indian Ocean SSTs have been proved to be a potential predictor for TC days 
prediction [4] as well as for TCs genesis and intensification [10] [41] but in this 
study, the area averaged SSTs over SWIO, have been out numbered in predicting 
the number (frequency) of TCs event. This less predictive skill of the SWIO area 
averaged SSTs could be contributed by the fact that, the correlation threshold 
which was set by this study in selecting the potential predictors was high. Be-
sides, the SWIO SSTs potential predictors which had high correlations with TCs 
and TCs during DJFM and SON seasons were either had having low contribu-
tion in model coefficients (β value) or negative skill score. These arguments for 
SWIO SSTs to be out numbered in predicting the TCs and TSs frequency, could 
be consistent with [44] arguments that, the thermodynamic parameters play a 
more climatological role in tropical cyclogenesis, with their values varying little 
on a day-to-day basis. 

The presented results of the correlation between the TCs frequencies and the 
September (−lead 2), October (−lead 1) northern Atlantic Ocean area averaged 
SSTs, and the April (lead 5) SOI have shown predictive value but with low skill 
(31% and 37% for single parameter and thermodynamic models of NM TCs). 
These presented results can be explained by northward shift of higher positive 
SST contour (28˚C during JJA to SON) over the northern Atlantic Ocean at the 
north western coast of Africa and North east south America (Figure 4(b)) and 
an increased SSTs due to warming of tropical Atlantic Ocean (which is much in-
fluenced by warm ENSO episodes). This tropical Atlantic Ocean warming, may 
course the Ocean evaporated moisture and heat to be transferred to Indian 
Ocean. Moreover, the increased SSTs over tropical Atlantic Ocean can also be 
explained by the positive polarity of the North Atlantic Oscillation (NAO) which 
is associated with the warming of the tropical Indian Ocean surface. Moreover, 
this finding and arguments (the ongoing discussion) are well supported by the 
findings of the studies by [45] [46] [47] [48]. 

The presented forecasting results of the DJFM TCs frequency using the ther-
modynamic prediction had improved the correlation coefficient between the 
observed and the cross validated TCs to be 0.73 using the September North At-
lantic Ocean SSTs and October South Atlantic Ocean SSTs and to be 0.70 when 
the August Mediterranean Ocean SSTs were used instead of Southeastern Atlan-
tic Ocean SSTs. Moreover, the model skill performance was increase from 37% 
with NM TCs to 52% with DJFM TCs. Based on the inter annual variability of 
the cross validated TCs, the presented results have shown that the model output 
was capturing most peaks of the observed TC frequencies with little under esti-
mation of the forecasted TC frequencies.  

The presented results have shown that, the Southeastern Atlantic Ocean SSTs 
had an impact to SWIO TC frequencies, this could be explained by the fact that 
Ocean currents may influence climate by transporting warm and cold waters to 
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other regions. For instance, South Atlantic Central Water and denser water 
masses are exported to the Indian Ocean through Retroflection (turns back on 
itself) of Agulhas current at Atlantic Ocean [49] [50] [51] [52]. Besides, the Sub-
tropical Indian Ocean Dipole (SIOD) may have an influence to strength the rela-
tionship between the SWIO SSTs with TC frequency especially during DJFM 
where the SIOD is shifting further northward of the Mozambican Channel as 
well explained by [53] [54]. 

The presented results for the dynamic TC frequencies models during NM 
season have shown that, the model was dominated by vorticity from Eastern 
Namibia as well as from North eastern Madagascar during SON and November. 
These predictors resulted into a high degree of association (r = 0.8) between 
cross validated and observed TCs and higher prediction skill of 67%. On the 
other hand, the wind derived predictors have dominated the combined NM TCs 
model. For instance, the model was constructed using wind derived parameters 
of Evws (i.e. September Evws from Somali Sea), Umst (November and July Umst from 
Western Kenya and northwestern Atlantic Ocean), and North Atlantic Ocean 
SSTs. Moreover, the presence of Umst predictors in the models could be ex-
plained by long track steering level 700 mb westerly and 200 mb easterly from 
North Atlantic Ocean and from Congo basin, as well supported by the study of 
[24], whereas September Evws could be due to Oceanic low level (850 mb) nor-
theasterly and upper level westerly. 

For the DJFM TC frequencies, the dynamic model has been dominated by all 
wind derived parameter of Umst (during SON over western Kenya), Evws (during 
November over Northern Atlantic Ocean) and vorticity (during September over 
Northeastern South America). These potential dynamic predictors to DJFM 
TCs have resulted to a higher degree of association between the cross validated 
model output and observations (i.e. r = 0.86) with a prediction skill of 73%. The 
presented results of the all predicted and observed NM and DJFM TCs and TSs 
had shown to have high frequency during moderate El Nino conditions of 
1994/1995, 1977/78, 1982/83, 1994/95, 2002/03, 2006/07 and 2009/2010, but did 
not capture the 1997/198 strong El Nino conditions which was mostly influ-
enced by the reversal of the Indian ocean SST dipole mode from climatologically 
direction of west-east oscillation to east-west oscillation.  

The environmental synoptic scales parameter derived from the winds (i.e. 
Umst, Evws, and vorticity from different locations over land and Ocean) were hav-
ing oscillation and division of high Evws contours over southern latitudes which 
could be contributed the enhancement of the southward movement of genesis 
positions based on changes in vertical wind shear (i.e. Evws is consistent with a 
warming-induced expansion due to general circulation over tropical atmos-
phere). This north south oscillation of high Evws is well supported by [55] who 
found that, on average the latitude where TCs reach their peak strength has 
shifted farther north/south of the equator. This pole ward shift in latitude of 
maximum intensity could be a zonal average trend, where the pattern is strong 
in some basins but weaker/absent in others. 

https://doi.org/10.4236/acs.2023.132008


K. H. Kai et al. 
 

 

DOI: 10.4236/acs.2023.132008 131 Atmospheric and Climate Sciences 
 

The presented results showed that, correlations between observed and cross 
validated TCs frequency, the skill scores, RMSE, MAE, and the pseudo R^2 were 
higher in dynamic and combined than in thermodynamic models, this was indi-
cating that, the potential predictors for thermodynamic models was well ex-
plaining the variability of TCs frequency compared to potential predictors used 
in dynamic models. Moreover, in most cases the cross validated dynamic and 
combined models outputs and the observed were in phase and were having 
nearly the same patterns. Statistically the model verification performance using 2 
× 2 square matrix and its contingency tables showed that all model types had 
scored higher values of percent correct item (pc) ranging from 0.85 to 0.94 with 
zero values of false alarm rate, whereas for the bias aspect the analysis revealed 
that, all the models had bias value of approximately equals to one, indicating 
that, the models were neither over forecasting no under forecasting. As for the 
aspect of misses, the results presented in Table 4 and Table 5 had shown that, 
TSs frequency models had few misses compared to TCs frequency models. For 
instance, out 34 TC events observed, 32 TCs events were correctly forecasted and 
observed and only two TCs events were not forecasted but were observed. The 
presented results for the dynamic models had shown that, out of 34 TCs events + 
29 and 28 TCs events were correctly forecasted and observed, but 2 TCs events 
for during NM season and 3 TCs events during DJFM season were not forecasted 
but were observed, and 3 TC events were not forecasted and not observed at all.  

4.2. Conclusions 

1) Inter annual variability of SWIO TCs and TSs frequency during DJFM and 
NM seasons indirectly exhibits ENSO events and equatorial southern oscillation 
indices. 

2) The variability of the Northern Atlantic Ocean SSTs has shown to impacts 
the TCs frequency over SWIO. 

3) The penetration of warm SSTs northern Indian Ocean and linkage of re-
troflexed waters from the Agulhas which execute an equator ward meander of 
variable extent before proceeding eastward as well as positive (negative) mode of 
Indian Ocean Subtropical Dipole (IOSD) may have an influence to enhance the 
SWIO SSTs relation with DJFM and NM TCs/TSs frequency. 

4) The wind derived environmental parameters of Umst, Evws and LLRV850 ac-
counts for 61% - 63% for the NM and DJFM TCs and 78% for TSs. This can be 
influenced by a westerly wind anomaly which extends across the tropical Atlan-
tic and Africa at 700 mb, and 200 mb easterlies over the Atlantic Ocean that ex-
tend to the Indian Ocean.  

5) The influence of wind derived parameters to SWIO TCs frequency may be 
contributed by Pacific-South Atlantic wave train (southern subtropical jet 
stream) which modulates SWIO wind shear.  

5. Recommendations 

More studies should be conducted to find more factors affecting the TSs and TSs 
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frequency and strength and their impacts to the seasonal rainfall of OND and 
MAM in SWIO basin and Tanzania in particular. 
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Appendix 

Table A1. The thermodynamic, dynamic and combined model equations for predicting 
the NM TCs and TSs frequency. 

Type Model equation for NM TCs 

Thermo 
dynamic 

( )thermln NMTCs 21.35 0.41 0.68 0.26c h aprs= + ∗ + ∗ + ∗  

Dynamic ( ) 5 5 5
dyn 19 24 26ln NMTCs 1.34 3.0 10 1.9 10 1.4 10u u u= − ∗ ∗ − ∗ ∗ − ∗ ∗  

Combined 
model 

( )comb 22 14 12ln NMTCs 11.8 0.27 0.07 0.65 0.11h d h h= − − ∗ − ∗ + ∗ + ∗  

 Model equation for NM TSs 

Thermo 
dynamic 

( )thrmln NMTSs 23 0.66 0.50cc kai= − + ∗ + ∗  

Dynamic 
( ) 4 01

dyn 15 11

02 4
10 45

ln NMTSs 3.6 8.6 10 1.4 10

6.3 10 4.4 10

uu k

e uu

−

−

= − ∗ ∗ − ∗ ∗

− ∗ ∗ − ∗ ∗
 

Combined 
model 

( ) 4 01 02
com 15 11 10

02 4
20 45

ln NMTSs 5.1 9.6 10 1.8 10 8.1 10

4.4 10 3.3 10

uu k e

e uu

− −

−

= − ∗ ∗ − ∗ ∗ − ∗ ∗

− ∗ ∗ − ∗ ∗
 

Note that; c = September North Atlantic Ocean SST (0.51); h = October South West At-
lantic Ocean SST (0.41); aprs = April ESOI (0.36); u19 = November Eastern Namibia 
LLRV850 (−0.45); u24 = SON Northeast Madagascar LLRV850 (−0.4); u26 = October 
Southern South Africa LLRV850 (−0.47); h22 = November Western Kenya Umst (−0.45); d14 
= September Somali Sea Evws (−0.46); h12 = Umst (−0.45); cc = June Equatorial AO SST 
(0.44); kai = September northwest AO SSTs (0.51); uu5 = June Equatorial AO LLRV850 
(−0.57); k11 = September South Western Indian Ocean Umst (−0.43); uu45 = SON Eastern 
Namibia LLRV850 (−0.39); e20 = September South east South American Evws (−0.39). Note 
the numbers within the brackets are their correlation with TCS or TSs during DJFM and 
NM TCs/TSs seasons. 
 
Table A2. The thermodynamic, dynamic and combined model equations for predicting 
the DJFM TCs and TSs frequency. 

Type Models for DJFM TCs 

Thermo 
dynamic 

( )thrmln DJFMTCs 28.5 0.76 0.76be bk= − + ∗ + ∗ , 

( )thrmln DJFMTCs 22.6 0.74 0.31be ax= − + ∗ + ∗  

Dynamic 
( ) 1 1

dyn 8 26

2 5
20 8

ln DJFMTCs 1.88 1.4 10 4.1 10

9.2 10 2.0 10d

k k

e u

− −

−

= − × ∗ − × ∗

− × ∗ − × ∗
 

Combined 
model 

( )com 20 8 26ln DJFMTCs 10.4 0.5 0.1 0.1 0.4be e k k= − + ∗ − ∗ − ∗ − ∗  

( )com 20 26ln DJFMTCs 10.4 0.5 0.1 0.4be e k= − + ∗ − ∗ − ∗  

 Models for DJFM TSs 

Thermo 
dynamic 

( )thrm 9 12 20ln DJFMTSs 34.7 0.76 0.73 0.25c c b= + ∗ + ∗ + ∗  
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Continued 

Dynamic ( ) 2 5 4
dyn 17 12 26ln DJFMTSs 2.02 5.57 10 1.47 10 8.64 10g vr vr−= − × ∗ − × ∗ − × ∗  

Combined 
model 

( ) ( )2
comb 17 4

5 5
26 12

ln DJFMTSs 3.68 4.77 10 0.88 2

1.03 10 1.33 10

g e g

vr vr

−= − × ∗ − − ∗

− × ∗ − × ∗
 

Note that; be = September North Atlantic Ocean SST (0.38); bk = October South East At-
lantic Ocean SST (0.35); ce = SON South West Indian Ocean SSTS (0.41); ax = August 
Mediterranean Sea SST (0.41); k8 = September South East South America Umst (−0.47); k26 
= SON Western Kenya Umst (−0.47); ed20 = November North Atlantic Ocean Evws (−0.45); 
u8 = September North East South America LLRV850 (−0.55); k8 = September South East 
South America Umst (−0.47). c9 = September TUNIS OLR (−0.62); c12 = October North 
East Madagascar OLR (−0.36); b20 = August North Indian Ocean SSTs (0.4); g1 = Decem-
ber South East Atlantic Ocean Evws (−0.44); vr12 = August coastal Tanzania LLRV850 
(−0.53); vr26 = JJA north east south America LLRV850 (−0.56); g4 = July North West Africa 
Evws (−0.55). 
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