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Abstract 
Severe convective weather can lead to a variety of disasters, but they are still 
difficult to be pre-warned and forecasted in the meteorological operation. 
This study generates a model based on the light gradient boosting machine 
(LightGBM) algorithm using C-band radar echo products and ground obser-
vations, to identify and classify three major types of severe convective weather 
(i.e., hail, short-term heavy rain (STHR), convective gust (CG)). The model 
evaluations show the LightGBM model performs well in the training set 
(2011-2017) and the testing set (2018) with the overall false identification ra-
tio (FIR) of only 4.9% and 7.0%, respectively. Furthermore, the average 
probability of detection (POD), critical success index (CSI) and false alarm 
ratio (FAR) for the three types of severe convective weather in two sample 
sets are over 85%, 65% and lower than 30%, respectively. The LightGBM 
model and the storm cell identification and tracking (SCIT) product are then 
used to forecast the severe convective weather 15 - 60 minutes in advance. 
The average POD, CSI and FAR for the forecasts of the three types of severe 
convective weather are 57.4%, 54.7% and 38.4%, respectively, which are sig-
nificantly higher than those of the manual work. Among the three types of 
severe convective weather, the STHR has the highest POD and CSI and the 
lowest FAR, while the skill scores for the hail and CG are similar. Therefore, 
the LightGBM model constructed in this paper is able to identify, classify and 
forecast the three major types of severe convective weather automatically with 
relatively high accuracy, and has a broad application prospect in the future 
automatic meteorological operation. 
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and Forecast 

 

1. Introduction 

Severe convective weather usually refers to kinds of disastrous weather generated 
by deep moist convections, such as hail, gale, tornado and heavy precipitation 
[1]. Although there is no unified criterion for the definition of severe convective 
weather, the severe convective weather defined by the Central Meteorological 
Observatory of China Meteorological Administration refers to the event with 
any or several following weather conditions: hail with a diameter of 5 mm or 
above on the ground, tornado at any level on land, convective wind gust (CG) of 
more than 17 m∙s−1 and short-term heavy rainfall (STHR) of 20 mm∙h−1 or above 
[2]. Since the severe convective weather has strong destructiveness and often 
brings great harm to industry, agriculture and people’s safety, its nowcasting and 
early warning play a great important role in the meteorological disaster preven-
tion and mitigation. Moreover, severe convective weather occurs abruptly and 
locally with short duration, so it is still difficult to be early warned and fore-
casted in the meteorological operation. For example, the probability of detection 
of human forecasts of STHR, hail and CG are all less than 35%, while the false 
alarm ratio is even higher than 90% for the CG and hail in 2015-2017 [3]. 
Therefore, it is urgent to improve the forecast and early warning skills of severe 
convective weather in China and enhance the services of disaster prevention and 
mitigation. 

With the continuous densifying of the Doppler weather radar network, the 
radar-echo products have been playing a key role in the monitoring, analysis and 
short-term early warning of severe convective weather [4] [5]. At present, most 
of the new generation Doppler weather radars in China are S-band and C-band 
radars. The S-band weather radar stations mainly are located in eastern China, 
and their data are the majority of radar products in researches with advantages 
such as the weak echo attenuation (He, 2012). The C-band radar stations mainly 
are located in western China, but their data are not fully studied and applied in 
researches and operations. Although the C-band radar products have problem of 
echo attenuation, studies have shown that the research results based on the 
products of S-band and C-band radar have good consistency in detecting rain 
[6], hail [7] and so on. Due to the complex topography in northwestern China 
with plateaus, mountains and deserts, disasters such as mountain torrent and 
debris flow are easy to occur in extreme severe convective weather, such as the 
heavy mountain torrent and debris flow disaster in Zhouqu, Gansu Province on 
August 8, 2010 and the disaster of heavy hail, mountain torrent and debris flow 
in Min County, Gansu Province on May 10, 2012. Therefore, it is very important 
for the meteorological operation in northwestern China to explore the applica-
tion of C-band radar in the early warning and forecast of severe convective 
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weather and enhance its warning and forecast skill. 
At present, the early warning and nowcasting (0 - 2 hours) of severe convec-

tive weather are carried out mainly through the manual recognition of ra-
dar-echo and satellite images. Traditional methods of the early warning and 
forecast of severe convective weather mainly include the extrapolation forecast, 
the experimental forecast, the statistical forecast [8] [9] and the probability fore-
cast [10], which have certain limitations, such as hysteresis, and low accuracy. 
Artificial intelligence and machine learning can classify and identify severe con-
vective weather automatically, rapidly and systematically without artificial devia-
tion. Therefore, the application of advanced big data, machine learning and arti-
ficial intelligence techniques in the short-term forecast of severe convective 
weather is one of the groundbreaking hotspots in meteorological research. For 
example, McGovern et al. [11] showed the applications of modern artificial in-
telligence techniques in forecasting a wide variety of high-impact weather phe-
nomena, including storm duration, severe wind, severe hail, precipitation classi-
fication, renewable energy and aviation turbulence. Czerneckia et al. [12] applied 
machine learning to large hail predictions using the ERA5 data. Zhou et al. 
(2019) used a deep learning algorithm to forecast severe convective weather in-
cluding hail, short-duration heavy rain, convective gust (CG) and thunderstorm, 
and found that the deep learning algorithm has a higher classification accuracy 
than support vector machine and random forest. Machine learning methods are 
also used to forecast the damage of straight-line wind [13], nowcast the 0 - 2 h 
storms [14] and lighting occurrence [15], diagnose aviation turbulence [16], map 
storm structures in advance [4] and even map the spatial distribution of soil or-
ganic matter [17]. 

The light gradient boosting machine (LightGBM) algorithm is a research hot-
spot in the data mining and classified prediction in recent years, and is widely 
used in the classification problems in all walks of life. For example, LightGBM is 
used in human activity recognition such as the safe driving [18], and the medical 
research such as the protein-protein interactions [19]. LightGBM is also widely 
used in the prediction of economics. Ma et al. [20] generated a prediction of 
peer-to-peer (P2P) network loan default based on the LightGBM and the ex-
treme gradient boosting algorithms. Jiang et al. [21] predicted the directions of 
stock-price index using four machine-learning methods including the LightGBM. 
Sun et al. [22] used LightGBM to forecast the price trend of cryptocurrency 
market and found that the robustness of the LightGBM model is better than 
other methods. LightGBM has wide applications in atmospheric science as well, 
such as the prediction of air quality [23] [24] and wind power [25]. Moreover, 
Fan et al. [26] evaluated the LightGBM, random forest, the tree-based M5 Model 
Tree and four empirical models (Hargreaves-Samani, Tabari, Makkink and 
Trabert) to estimate daily reference evapotranspiration with local and external 
meteorological data, and pointed out that LightGBM generally performs better 
than other models. 

https://doi.org/10.4236/acs.2021.112017


X. W. Liu et al. 
 

 

DOI: 10.4236/acs.2021.112017 287 Atmospheric and Climate Sciences 
 

Although some studies have applied machine learning in the classification and 
identification of a single type of severe convective weather [12] [13] [27], various 
types of severe convective weather often occur concomitantly. Therefore, this 
study develops a LightGBM model to identify and classify three major types of 
severe convective weather using C-band radar-echo data and ground observa-
tions of severe convective weather. The LightGBM model is tested and evaluated 
in the training set and the testing set of independent samples, respectively, and 
then applied in the forecast of severe convective weather. The LightGBM algo-
rithm and its model construction are introduced in Section 2. Section 3 intro-
duces the datasets used in this study, including the radar products and ground 
observations of severe convective weather, and the methods of model evaluation. 
The main results are given in Section 4, and the main conclusions are summa-
rized and discussed in Section 5. 

2. Methodology and Data 
2.1 LightGBM Algorithm and Model Construction 

The LightGBM is a gradient boosting decision tree (GBDT) algorithm frame-
work proposed by Microsoft in 2017 [28], which aims to solve the problems of large 
time consumption and poor scalability in the calculation of high-dimensional 
large-sample data. It is essentially an ensemble learning algorithm to boost a 
weak learner to a strong one by combining many low-accuracy trees [25]. 
Through the continuous iteration and gradient descent method, LightGBM 
makes the loss function smaller and smaller by moving toward the negative gra-
dient direction of the loss function in each iteration, and finally a superior tree is 
obtained and used as the prediction model [20] [29]. Before the LightGBM, there 
have been many efficient algorithms to achieve the GBDT [30], such as the ex-
treme gradient boosting (XGBoost) algorithm. However, these algorithms show 
relatively low efficiency and cost much time when the data is high-dimensional 
with large sample size [25]. This is mainly because these algorithms need to iter-
ate over all the data samples and then estimate the information gain of all the 
possible divide points. To solve this problem, the LightGBM adopts two innova-
tive sampling algorithms, the exclusive feature bundling (EFB) and gradi-
ent-based one-side sampling (GOSS). The EFB algorithm reduces the number of 
features by binding mutually exclusive features, so the data feature scale is re-
duced and the model’s training speed is improved. The GOSS algorithm ex-
cludes most samples with low gradient and estimates the information gain with 
the rest samples. The training amount is reduced while the information gain is 
guaranteed, and the model’s generalization ability is enhanced. Therefore, com-
pared with other traditional GBDT frameworks, the LightGBM has the advan-
tages of high speed, memory saving and better generalization ability. Detailed 
information of the calculation procedures of LightGBM can be found in related 
literatures [19] [24] [26]. 

The construction steps of LightGBM model are shown in Figure 1. It is di-
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vided into five steps: data collection, feature engineering, model training, cross 
validation and model evaluation. The data collected in this study includes the 
observations of classified severe convective weather (dependent variable), ra-
dar-echo products and other ground meteorological observations during the pe-
riod of severe convection (independent variables). Then the collected data are 
screened preliminarily by manual work to select the characteristic variables, 
which have the possible ability to identify the dependent variables. Then the col-
lected data are put into the next step of feature engineering. The feature engi-
neering is the most important part in constructing the LightGBM model, and 
finds the features of independent variable which can best reflect the essence of 
the dependent variables for further identification and classification. The feature 
engineering is applied over and over accompanied by the further data screening, 
which eliminates the useless samples with incomplete characteristic variables or 
singular values, and finally selects the most useful independent variables and 
also improves the data qualities of training and testing set. The processed data 
are then put into step 3 and 4 to establish the LightGBM model through the re-
petitive training, parameter adjustment (step 3) and cross validation (step 4) us-
ing the LightGBM algorithm (Figure 1). In the cross validation, the ratio of the 
model-training samples to the cross-validation samples is 8:2. After repetitive 
training and parameter adjustment, if the LightGBM model reaches the expected 
optimal performance, the model is then applied l evaluation in the training and 
testing set, respectively. If the LightGBM model into the next step of applica-
tions, such as the forecast, and also gives the results of mode does not reach the 
expected performance, the model needs to be re-built and back to step 2 (Figure 
1). 

2.2. Datasets 
2.2.1. Independent Variables of LightGBM Model 
Previous studies have shown that the Doppler weather radar products, such as 
reflectivity factor, echo intensity, top height and vertical liquid water content,  

 

 
Figure 1. Flow map of the construction steps of LightGBM model. 
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can provide quantitative criteria for the severe convective weather [31]. There-
fore, radar products are the major independent variables of the LightGBM 
model to classify and identify severe convective weather. The radar products in-
clude the reflectivity factor (R), combined reflectivity (CR), average radial veloc-
ity (V), echo top height (ET), storm top height (TOP), maximum echo height 
(HT) and vertical integrated liquid-water content (VIL). The quality control has 
been used for the R and CR by filtering the ground clutter through the member-
ship function [32]. Due to the close relationship between the CG and the ground 
elements, the ground observations used in this paper include pressure (PRS), air 
temperature (TEM), relative humidity (RHU) and instantaneous wind speed 
(WIN), which are all from the ground-observation stations of CMA (China Me-
teorological Administration). The ground-observation stations in the study area 
include 49 national basic-reference stations, and 1112 intensified stations which 
are the unattended automatic meteorological stations measuring very limited 
variables such as precipitation and temperature. 

The radar products used in this paper are from three C-band radars located in 
Lanzhou City, Tianshui City and Qingyang City of Gansu Province (Figure 2). 
The effective scanning radius of C-band radar is 150 km, but the top of the 
storm cannot be scanned if the distance is less than 30 km and the bottom of the 
storm cannot be scanned if the distance is greater than 120 km. Therefore, the 
optimal distance for the C-band radar is 30 - 120 km, which is adopted in this 
paper. The extraction methods of radar products are as follows. 

The radar products R, CR and V are all from the precipitation model, with the 
spatial resolution of 1 km×1˚ (polar coordinates). The data at 3 elevation angels 
of 0.5˚, 1.5˚ and 2.4˚ are adopted for the R and the V (i.e., 0.5˚ R, 1.5˚ R, 2.4˚ R, 
0.5˚ V, 1.5˚ V and 2.4˚ V), so there are three sets of products for each. In the  

 

 
Figure 2. The scan area of Lanzhou, Tianshui and Qingyang Radar. The blue, red and 
black circle are the areas in 30 km, 120 km and 150 km radius, respectively. 
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extraction of product feature data, the pixel nearest to the observation point of 
the severe convective weather is taken as the center, and the maximum value 
within the surrounding 5 × 5 pixels is extracted as the storm characteristic value 
of the severe convective weather. The specific calculation formula is as follows. 

( )( )Value max Value ,n n i j=                    (1) 

where n is the storm cell number, and the values of i and j are from −2 to 2. 
The similar method is also used in the extraction of ET. The ET is the height 

of the echo with R ≥ 18.3 dBZ, which is the average value within the surrounding 
5 × 5 pixels. The TOP is the maximum height of the storm with R ≥ 30 dBZ, 
which reflects the height of the strong echo top of the storm. The HT is the 
strong echo height calculated from the vertical difference of the strongest echo at 
each elevation angle, which is more accurate and credible than the maximum re-
flectivity height found at a single elevation angle. 

The calculated variables based on the radar products include the core thick-
ness (H), the centroid height with R above 45 dBZ (H_45) and the strong echo 
(R ≥ 45 dBZ) duration (Time). The VILD (Vertically Integrated Liquid Water 
Content Density) is the ratio of the VIL to the TOP, and the H is the height dif-
ference between the upper and lower boundaries of the area with R ≥ 45 dBZ in 
the storm. 

In the meteorological operation, it is also necessary to track and forecast the 
classified severe convective weather. The storm cell identification and tracking 
(SCIT) [33] product of radar echo is one of the most representative strong con-
vection identification algorithms at present, which can correctly track and iden-
tify 70% - 90% of storm cells, so this product is used to forecast the moving posi-
tion of severe convective weather. In this paper, the forecast duration of the 
SCIT is the product of the forecast interval time (15 minutes) and the number of 
forecast intervals (1 - 4), which is 15 - 60 minutes. 

2.2.2. Dependent Variables 
The cases of severe convective weather and non-severe convective weather 
within the scanning radius of the three radars from 2011 to 2018 are collected in 
this paper as the dependent variables of LightGBM model. The collected severe 
convective weather cases are classified into three types firstly: hail, CG and STHR. 
Tornado rarely occurs in the study area, so it is not considered here. Then, ac-
cording to the locations and occurring time of the severe convective weather, the 
corresponding radar-scan data in the same period of the severe convective weather 
are extracted as the samples of severe convective weather. For example, ground 
observations show that a station had hail during 14:28-14:58 (Beijing time, the 
same below), while the radar scan starts at 14:26 with an interval of 6 minutes, so 
five complete radar-scan data within the next 30 minutes (14:32, 14:38, 14:44, 
14:50 and 14:56) are extracted as five hail samples. For the non-severe convective 
weather, samples are selected randomly from the radar-scan results during the 
period without severe convective weather, including various situations with no 
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echo, weak echo and strong echo. In this way, the datasets of 5,741 samples of 
severe convective weather and 14,001 samples of non-severe convective weather 
during 2011-2018 are established (Table 1). Since the LightGBM model needs a 
large training set, 17,749 samples during 2011-2017 are taken as the training set 
(Table 1), which has 14,200 samples for the model training and 3,549 samples 
for the cross validation. The samples in 2018 are used as the testing set for inde-
pendent validation including 541 samples of severe convective weather and 1452 
samples of non-severe convective weather (Table 1). To facilitate the ma-
chine-language recognition, the events of hail, CG, STHR and non-severe con-
vection are labeled. The classification labels for the non-severe convection, hail, 
CG and STHR are 0, 1, 2 and 3, respectively (Table 1). 

2.3. Model Evaluation Methods 

In the classification problem, the contingency table is often used to compare the 
observation and the prediction and using the FIR to show the evaluation results. 
The FIR used in this paper refers to the ratio of the number of false identifica-
tions of LightGBM model to the total sample number of the observed three types 
of severe convective weather, as shown in Equation (2). The overall FIR used in 
this paper is defined the same, which is the ratio of the total number of false 
identifications of all types of severe convective weather to the total number of 
samples. 

false identification numberFIR= 100%
total sample number

×               (2) 

The widely used probability of detection (POD), critical success index (CSI) 
and false alarm ratio (FAR) in the meteorological field are also applied to evalu-
ate the identification and forecast effect of the severe convective weather (Lu et 
al. 2018). Their calculations in this study are as follows. 

correct identification numberPOD 100%
total sample number

= ×              (3) 

correct identification numberCSI 100%
total sample number false identification number

= ×
+

     (4) 

false identification numberFAR 100%
correct identification number false identification number

= ×
+

  (5) 

The inter-comparison between the model results based on radar products and  
 

Table 1. The sample numbers of severe convective weather (SCW) for the training set 
(2011-2017) and the testing set (2018) used in the LightGBM model and their label values. 

 Non-SCW hail CG STHR 

Training set 12,549 834 231 4135 

Testing set 1452 51 12 478 

Label value 0 1 2 3 
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the observations of severe convective weather is used to determine the identifi-
cation of LightGBM model is correct or false. The identification time range is the 
duration of the observed events of severe convective weather, and the spatial 
range is 5˚ × 5 km (radar extraction radius, polar coordinates). For example, if 
an STHR occurs somewhere during 15:00-15:30, then the LightGBM model is 
used to identify all the radar products in this period within the 5˚ × 5 km area 
around the station. When an STHR is identified by the model, it is a correct 
classification. When other severe convective weather or non-severe convective 
weather is identified, it is a false identification. Therefore, the detecting time of 
LightGBM model for the samples in the training set and the test set is synchro-
nous with the occurrence time of the observations, so it can be easily applied to 
the early warning system in the operation. For the accuracy of forecasts, the ra-
dar products used in LightGBM model are 15 - 60 minutes in advance. Therefore, 
for the forecast results of the model, the longest detection time is one hour. The 
identification criteria for the CSI and the FAR are similar to that of the POD. 

3. Results 
3.1. Characteristic Value Analysis 

The feature engineering in the LightGBM modeling will find the characteristics 
of independent variable that can best reflect the essence of the dependent vari-
ables to classify samples, and allocate the weights of the independent variables in 
the calculation according to their importance [30]. Therefore, the importance of 
each independent variable to the classification result can be obtained. According 
to the results from LightGBM model, the characteristic values, namely, the im-
portance scores of the independent variables, are ordered. The larger value indi-
cates the greater importance (Figure 3). 

 

 
Figure 3. The importance scores of the independent variables of LightGBM model. 
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As shown in Figure 3, the importance of 1.5˚ R is highest, indicating that it 
contributes the most to the identification and classification of severe convective 
weather. The top six factors are 1.5˚ R, CR, 0.5˚ R, 1.5˚ V, VIL and ET, respec-
tively, indicating that these characteristic variables are significantly different in 
different severe convective weather and can be easily identified and classified. 
These factors are also the most widely used radar products to identify severe 
convective weather in the meteorological operation and research. Thus, those 
results of LightGBM model are consistent with the actual forecast experience. 
The importance of the factors’ characteristics below the sixth rank has similar 
order of magnitude, but it does not mean that these independent variables are 
not important. The permutation and combination of these independent vari-
ables are used comprehensively in the LightGBM model. 

3.2. Model Evaluation in Training Set 

The samples of severe convective weather in the training set from 2011 to 2017 
are used to train the LightGBM model, and the model results for the training set 
is obtained, as shown in Table 2. For the three types of severe convective 
weather of hail, CG and STHR, the minimum and maximum FIRs are 6.2% 
(STHR) and 14.4% (hail), respectively. The STHR is mainly misclassified as 
non-severe convection weather and hail, and the hail is mainly misclassified as 
STHR. The FIR for the CG is 13.0%, and it is mainly misclassified as hail and 
STHR. The FIR for the non-severe convective weather is only 3.6%. If the total 
false identifications for all the types are divided by the total number of training 
set samples, the overall FIR of the LightGBM model for the severe convective 
weather is obtained, which is only 4.9%. 

The skill scores of LightGBM model in the training set are shown in Figure 4. 
Among the three types of severe convective weather (i.e., hail, CG and STHR), 
the STHR shows the highest POD and CSI, which are 93.8% and 84.4%, respec-
tively, while the POD and CSI for the hail and the CG are similar. The STHR 
also has the lowest FAR of 10.6%. In summary, the average POD, CSI and FAR 
of the LightGBM model are 88.8%, 73.9% and 18.8%, respectively, indicating 
that the LightGBM model can achieve high accuracy and satisfactory result after 
sufficient training. 

 
Table 2. The occurrence number of severe convective weather (SCW) in the training set 
(2011-2017) for the ground observations and the results of LightGBM model, and their 
false identification rates (FIR) and the overall FIR. 

Obs. 
Classification of LightGBM model 

Hail CG STHR Non-SCW FIR Overall FIR 

Hail 143 5 19 0 14.4% 

4.9% 
CG 4 40 2 0 13.0% 

STHR 18 5 775 28 6.2% 

Non-SCW 17 3 71 2419 3.6% 
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Figure 4. The POD, FAR and CSI scores for the results of LightGBM model in the train-
ing set (2011-2017). 

 
Table 3. The occurrence number of severe convective weather (SCW) in the testing set 
(2018) for the ground observations and the identification results of LightGBM model, and 
their false identification rates (FIR) and the overall FIR. 

Obs. 
Classification of LightGBM model 

Hail CG STHR Non-SCW FIR Overall FIR 

Hail 43 2 6 0 15.7% 

7.0% 
CG 1 10 1 0 16.7% 

STHR 12 2 438 26 8.4% 

Non-SCW 8 2 80 1362 6.2% 

3.3. Model Evaluation in Testing Set Using Independent Samples 

The constructed LightGBM model is then applied to the testing set with 1993 
independent samples in 2018 for further evaluations. Results in Table 3 show 
that, in the independent validation, the FIRs for hail, CG and STHR are 15.7%, 
16.7% and 8.4%, respectively, and the non-severe convective weather shows the 
lowest FIR of 6.2%. Therefore, the overall FIR is 7.0% for the testing set. Similar 
to the results of the training set, the hail is mainly misclassified as STHR, and the 
STHR is mainly misclassified as non-severe convection and hail. The skill scores 
for three types of severe convective weather are shown in Figure 5. Although the 
skill scores of the independent testing set are slightly lower than those in the 
training set, the average POD still reaches 86.4% (Figure 5). The average CSI 
and FAR are 64.3% and 29.0%, respectively. In addition, the POD and CSI for 
the STHR are also the highest with the lowest FAR, and the skill scores of the CG 
and the hail are similar (Figure 5). 

3.4. Model Application in Forecast 

Based on the fact that LightGBM model can identify three types of severe con-
vective weather well, the SCIT products are then used in LightGBM model to 
forecast the type and position of the severe convective weather in advance of 15 - 
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60 minutes. The forecast samples are 45 severe convective weather events in 
2020. In addition, although the SCIT products can only forecast the moving po-
sition of the storm centroid, the spatial range of the forecast is 5˚ × 5 km (polar 
coordinates), which is the radar extraction radius and the detection range of the 
model. 

According to the skill scores of forecast (Figure 6), three major types of con-
vective weather in the future 15 - 60 minutes can generally be forecasted based 
on the LightGBM model and the SCIT products. In the classified forecast of se-
vere convective weather, the STHR shows the highest POD of 63.8% and CSI of 
64.5%, followed by the CG. The STHR also shows the lowest FAR of 30.9%, fol-
lowed by the hail. The average POD, CSI and FAR for the three types of severe 
convective weather are 57.4%, 54.7% and 38.4%, respectively. Although the 
forecast of severe convective weather carried out by LightGBM model is less ac-
curate than the classification and identification in the training and testing set, it 
can still meet the need of classified nowcasting for the severe convective weather 
in the operation of weather forecast with the advantages of higher efficiency and 
automation. 

 

 
Figure 5. The POD, FAR and CSI scores for the results of LightGBM model in the testing 
set (2018). 

 

 
Figure 6. The POD, FAR and CSI scores for the results of LightGBM model in 2020. 
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In order to further illustrate the forecast performance of the LightGBM model 
and the SCIT products, a case of severe convection episode in 2020 is demon-
strated in Figure 6. In the observation, scattered convections begin to develop in 
Gannan and Linxia areas at 16:00 on May 6th 2020. From 17:00 to 19:00, three 
stations in the southeast of Gannan had hail and CG, and 26 stations in Gannan, 
Dingxi, Tianshui and the northwest of Longnan had STHR (Figure 7(a)). Thus, 
the LightGBM model and SCIT products are used since 17:00 to forecast and 
classify the severe convective weather 15 - 60 minutes in advance. According to 
the forecast results (Figure 7(b)), LightGBM model correctly forecasts all the 
events of severe convective weather, but falsely alarms one record of hail in the 
south of Dingxi, one record of CG in the south of Gannan and 16 records of 
STHR in Gannan, Dingxi, Tianshui and Longnan. Although there are false 
alarms in LightGBM model for all the three types of severe convective weather, 
there is no missing report. 

4. Discussion 

The LightGBM model generated in this study can classify and identify three ma-
jor types of severe convective weather rapidly and automatically, and its perform-
ances in accuracy and false alarm are also relatively better than other systems. For  

 

 
(a) 

 
(b) 

Figure 7. The ground observations (a) and the forecast results of LightGBM model 15 - 
60 minutes in advance (b) for the severe convective weather on May 6th 2020. The trian-
gle, circle and pentagram are the hail, STHR and CG, respectively, and their hollow pat-
terns represent the right classification, and the solid patterns represent the false classifica-
tion. The colorful shadow is the CR value (unit: dBZ). 
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example, the STHR and hail identified by LightGBM model in the training and 
testing set have higher POD and lower FAR than those of the logistic regression, 
the random forest, the support vector machine algorithm, the multilayer percep-
tron and the deep convolutional neural network based on numerical weather 
prediction data [3]. The forecast POD of hail, CG and STHR of LightGBM 
model are 53.2%, 55.3% and 63.8%, respectively, which are all higher than those 
of the 12-h in advance forecast of the deep convolutional neural network 
(around 25%, 30% and 55%, respectively) [3]. The mean forecast FARs of 
LightGBM model is lower than 40%, which is over 50% for the STHR and over 
90% for the CG and hail in the study of Zhou et al. (2019). In general, the 
LightGBM model is satisfactory for the severe convective weather classification, 
and has the advantages of high speed and less computing resource consumption, 
which can significantly improve the early warning and forecast skill of severe 
convective weather, and has a broad application prospect in the future automatic 
meteorological operation. 

The generally ideal performance of LightGBM model is mainly because it is 
trained by a large number of radar products and observations. The application of 
extensive radar products and intensified ground-observation data is the key and 
main feature of this paper. Although there are plenty of Doppler weather radars 
in the central and western regions of China, the secondary development and ap-
plication of the radar products in the actual meteorological operation are still 
relatively insufficient, so the abundant radar products accumulated during the 
historical period have not been fully utilized. This paper makes full use of these 
precious data, and extends the application value of the C-band radar products. 
However, there are still some deficiencies in the LightGBM model generated in 
this study, such as the limited sample number of severe convective weather and 
the insufficient quality control of the radar products, which need more effort in 
the future for further improvements. 

5. Conclusions 

This study constructs a LightGBM model based on the C-band radar-echo data 
to identify, classify and forecast three major types of severe convective weather 
(hail, CG and STHR). The model performances are evaluated by the training set 
and testing set, and then applied in the forecast of severe convective weather. 
The main conclusions are as follows. 

In the training set during 2011-2017, the overall FIR of the LightGBM model 
for three types of severe convective weather is 4.9%. The FIRs for the STHR and 
the hail are 6.2% and 14.4%, respectively, which are the minimum and the 
maximum. The FIR for the non-severe convective weather is only 3.6%. In terms 
of the skill scores, the average POD, CSI and FAR for the three types of severe 
convective weather are 88.8%, 73.9% and 18.8%, respectively. Therefore, the 
LightGBM model constructed based on the C-band radar products and the 
ground observations of severe convective weather is satisfactory to the accuracy 
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of meteorological operation. 
The evaluations of LightGBM model using the testing set with independent 

samples in 2018 show that the overall FIR for the three types of severe convective 
weather and non-severe convective weather is 7.0%. The FIRs for the hail, the 
CG and the STHR are 15.7%, 16.7% and 8.4%, respectively. The skill scores for 
the testing set are lower than those in the training set, but the average POD is 
still up to 86.4%, with the average CSI of 64.3% and the average FAR of 29.0%. 
The STHR shows the highest POD and CSI and the lowest FAR, and the skill 
scores for the CG and the hail are similar. Therefore, the LightGBM model 
demonstrates relatively accurate classification and identification of severe con-
vective weather. 

The SCIT products and the LightGBM model are used to forecast the types 
and locations of severe convective weather in advance 15 - 60 minutes. The re-
sults show that the average POD, CSI and FAR for the three types of severe con-
vective weather are 57.4%, 54.7% and 38.4%, respectively. Similar to the results 
of training set and testing set, the STHR shows the highest POD and CSI, which 
are 63.8% and 64.5%, respectively, and it also shows the lowest FAR (30.9%). 

In general, the classification of severe convective weather based on the 
LightGBM model is ideal. The LightGBM algorithm used in this study is more 
advanced than neural network, multiple linear regression and other methods 
commonly used in meteorological field, and has more advantages than SVM, lo-
gistic and other machine learning methods. Therefore, this method has a broad 
application prospect in the future automatic identification and early warning of 
severe convective weather. However, there are still some deficiencies in the 
LightGBM model generated in this study, such as the limited sample number of 
severe convective weather and the insufficient quality control of the radar prod-
ucts, which need more effort in the future for further improvements. 
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